Cosmology and Stellar Physics with Gravitational Lens Time Delays

Sherry Suyu
Max Planck Institute for Astrophysics
Technical University of Munich
Academia Sinica Institute of Astronomy and Astrophysics

June 22, 2021
SFB 1258 Seminar on Multimessenger Astronomy
Hubble tension

Hubble constant H_0
- age, size of the Universe
- expansion rate: $v = H_0 d$

Tension? New physics?
Need more precise & accurate H_0

Need independent methods to overcome systematics, especially the unknown unknowns
Distance Ladder

ladder to reach objects in Hubble flow \((v_{\text{peculiar}} << v_{\text{Hubble}} = H_0 d)\)

1 (Kpc) 2 (Mpc) 3 (Gpc)

1: Geometry \(\rightarrow\) Cepheids
2: Cepheids \(\rightarrow\) SN Ia
3: SN Ia \(\rightarrow\) \(z, H_0\)

[slide material courtesy of Adam Riess]
Distance Ladder

ladder to reach objects in Hubble flow ($v_{\text{peculiar}} \ll v_{\text{Hubble}} = H_0 d$)

1 (Kpc) 2 (Mpc) 3 (Gpc)

1: Geometry \rightarrow Cepheids 2: Cepheids \rightarrow SN Ia 3: SN Ia \rightarrow z, H_0

[slide material courtesy of Adam Riess]
Distance Ladder

ladder to reach objects in Hubble flow ($v_{\text{peculiar}} \ll v_{\text{Hubble}} = H_0 d$)

1 (Kpc) 2 (Mpc) 3 (Gpc)

1: Geometry \rightarrow Cepheids

2: Cepheids \rightarrow SN Ia

3: SN Ia \rightarrow z, H_0

[slide material courtesy of Adam Riess]
Distance Ladder Measurements

- **Hubble Space Telescope Key Project** [Freedman et al. 2001]
 - \(H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1} \) (10% uncertainty)
 - resolving multi-decade “factor-of-two” controversy

- **Carnegie Hubble Program** [Freedman et al. 2012]
 - \(H_0 = 74.3 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1} \) (2.8% uncertainty)

- **Supernovae, \(H_0 \) for the dark energy Equation of State “SH0ES” project** [Riess et al. 2021]
 - \(H_0 = 73.2 \pm 1.3 \text{ km s}^{-1} \text{ Mpc}^{-1} \) (1.8% uncertainty)

- **Carnegie-Chicago Hubble Program** [Beaton et al. 2016]
 - aim 3% precision in \(H_0 \) via independent route with RR Lyrae, the tip of red giant branch, SN Ia
 - \(H_0 = 69.6 \pm 0.8 \text{ (stat)} \pm 1.7 \text{ (sys) km s}^{-1} \text{ Mpc}^{-1} \) [Freedman et al. 2019, 2020]
Megamasers

Direct distance measurement without any calibration on distance ladder

1. Distance: \[D = \frac{r}{\Delta \theta} \] (for \(D >> r \))

2. Gravitational acceleration in a circular orbit:
\[a = \frac{V_0^2}{r} \]
\[r = \frac{V_0^2}{a} \]

\[D = \frac{V_0^2}{a} \Delta \theta \]

\[D = \frac{V_0^2 \sin i}{a} \Delta \theta \]

[slide material courtesy of C.-Y. Kuo]
Megamasers

\[D = V_0^2 \sin i / a \Delta \theta \]

How to measure \(V_0, \Delta \theta, a \) and \(i \)?

[slide material courtesy of C.-Y. Kuo]
Megamasar Cosmology Project

$H_0 = 73.9 \pm 3.0 \text{ km s}^{-1} \text{ Mpc}^{-1}$

- assuming uncertainty of 250 km/s for peculiar motions
- peculiar motion is currently the dominant source of uncertainty

[Pesce et al. 2020]
Cosmic Microwave Background

CMB Temperature fluctuations

[Planck Collaboration 2016]

\(\Omega_m h^2, \Omega_b h^2 \) \[h = H_0 / 100 \text{ km/s/Mpc} \]

\(\Omega_m h^{3.2} \)

1. Ratio of peak heights \(\rightarrow \) \(\Omega_m h^2, \Omega_b h^2 \) \[h = H_0 / 100 \text{ km/s/Mpc} \]

2. Location of the first peak in flat \(\Lambda \text{CDM} \) \(\rightarrow \) \(\Omega_m h^{3.2} \)

- Under flat \(\Lambda \text{CDM} \) assumption, (1) and (2) yield \(h = 0.674 \pm 0.005 \) \[\text{Planck collaboration 2020} \]
- Without flat \(\Lambda \text{CDM} \) assumption, \(h \) highly degenerate with other cosmological parameters (e.g., curvature, \(w \), \(N_{\text{eff}} \))
Standard Siren

Gravitational wave form ➔ luminosity distance D
Measure recessional velocity of EM counterpart v

\[H_0 = \frac{v}{D} \]

GW170817: First measurement of H_0

[Image credit: M. Garlick]
Strong gravitational lensing
Cosmology with time delays

[COSmological MOonitoring of GRAvItational Lenses;
PI: F. Courbin, G. Meylan]
Cosmology with time delays

[Credit: V. Bonvin]
Cosmology with time delays

For cosmography, need:
1. time delays
2. lens mass model
3. mass along line of sight

[Refsdal 1964]

Advantages:
- simple geometry & well-tested physics
- one-step physical measurement of a cosmological distance

HE0435-1223

[Suyu et al. 2017]
H0LiCOW

H_0 Lenses in COSMOGRAIL’s Wellspring

B1608+656

RXJ1131-1231

H0 to <3.5% precision

HE0435-1223

WFI2033-4723

HE1104-1805

[Suyu et al. 2017]
H0LiCOWers

H0LiCOW: H_0 Lenses in COSMOGRAIL’s Wellspring

→ Establish time-delay gravitational lenses as one of the best cosmological probes
H_0 from 6 strong lenses

Blind analysis to avoid confirmation bias

$H_0 \in [0, 150]$ \hspace{1cm} $\Omega_m \in [0.05, 0.5]$

$H_0 : 71.0^{+2.9}_{-3.3}$
$H_0 : 78.2^{+3.4}_{-3.4}$
$H_0 : 71.7^{+4.8}_{-4.5}$
$H_0 : 68.9^{+5.4}_{-5.1}$
$H_0 : 71.6^{+3.8}_{-4.9}$
$H_0 : 81.1^{+8.0}_{-7.1}$

$H_0 : 73.3^{+1.7}_{-1.8}$

H_0 with 2.4\% precision in flat ΛCDM

[Wong, Suyu, Chen et al. 2020]
Residual systematics?

No significant residual systematics detected wrt mass model assumptions

\[H_0 : 74.2^{+1.6}_{-1.6} \]

[Shajib et al. 2020]

\[H_0 : 74.0^{+1.7}_{-1.8} \]

[Millon, Galan, Courbin et al. 2020; TDCOSMO I]

TDCOSMO = COSMOGRAIL + H0LiCOW + STRIDES + SHARP

Two different families of model yield same \(H_0 \) within 1%
TDCOSMO H_0 measurements

- No assumption on the radial mass density profile of the lens galaxy
- Galaxies are described by power law/stars+NFW mass profile

- Assuming SLACS lenses and TDCOSMO lenses share the same anisotropy property
 - $73.3^{+5.8}_{-5.8}$ km s$^{-1}$ Mpc$^{-1}$ (TDCOSMO+SLACS$_{\text{ifu}}$ (anisotropy constraints from 9 SLACS lenses))

- Assuming SLACS lenses and TDCOSMO lenses share the same anisotropy and radial mass density property
 - $67.4^{+4.1}_{-3.2}$ km s$^{-1}$ Mpc$^{-1}$ (TDCOSMO+SLACS$_{\text{SDSS+ifu}}$ (anisotropy and profile constraints from SLACS))

- $73.3^{+1.7}_{-1.8}$ km s$^{-1}$ Mpc$^{-1}$ (HOLICOW)
- $74.0^{+1.7}_{-1.8}$ km s$^{-1}$ Mpc$^{-1}$ (TDCOSMO (NFW + stars/constant M/L))
- $74.2^{+1.6}_{-1.6}$ km s$^{-1}$ Mpc$^{-1}$ (TDCOSMO (power-law))

[Figure credit: Geoff C.-F. Chen]
Stellar kinematics really helps

simulated James Webb Space Telescope NIRSpec observations of stellar kinematic map of lens

[Yıldırım, Suyu, Halkola 2020]
Stellar kinematics really helps

- Inferred $D_{\Delta t}$ depends on assumptions of mass model
- Including kinematic data:
 - reduces dependence of $D_{\Delta t}$ on mass model assumption
 - tightens constraints on $D_{\Delta t}$

[Yıldırım, Suyu, Halkola 2020]
Including spatially-resolved (2D) kinematic data:
• drastically reduces the uncertainty of D_A from $\sim 15\%$ to $\sim 3\%$
• sensitive to systematic errors in kinematic measurements

[Yıldırım, Suyu, Halkola 2020; see also Paraficz & Hjorth 2009; Jee, Komatsu & Suyu 2015; Jee, Suyu, Komatsu et al. 2019]
Calibrating SNe distances with $D_{\Delta t}$

- **B1608+656**
 - [Suyu et al. 2010]

- **RXJ1131-1231**
 - [Suyu et al. 2013, 2014; Tewes et al. 2013]

- **HE0435-1223**
 - [Wong et al. 2017; Rusu et al. 2017; Sluse et al. 2017; Bonvin et al. 2017]

- **SDSS1206+4332**
 - part of extended sample
 - [Birrer, Treu Rusu et al. 2018]
Reduced cosmological dependence

[Taubenberger, Suyu, Komatsu et al. 2019]
Reduced cosmological dependence

[Figure showing comparison of cosmological models with Planck + BAO + SNe Ia and lenses + SNe Ia results.]

[Taubenberger, Suyu, Komatsu et al. 2019; see also Arendse, Agnello & Wojtak 2019]
New quads imaged with HST

New lens systems discovered in DES, Pan-STARRS, SDSS, ATLAS:

[Shajib et al. 2018]
Supernova Refsdal: lensed supernova

MACS 1149.6+2223

[Kelly et al. 2015]
When will the other SN images appear?
Predicted magnification and delay

[Kelly et al. 2016]
Predicted magnification and delay

in October 2015: predict detection of SX before end of 2015
[Treu et al. 2016]
HST observations in Oct 2015: no sign of SX
in Nov 2015: no sign of SX…
Appearance of image SX

December 2015

[Kelly et al. 2016]
Magnification and delay

Predicted with GLEE (code for cosmography) [Grillo, Karman, Suyu et al. 2016]
Spot on!

[Kelly et al. 2016]
H_0 à la Supernova Refsdal

feasibility study of using SN Refsdal for H_0 measurement

- S1-S2-S3-S4 delays from Rodney et al. (2016)
- SX-S1 delay estimated based on detection in Kelly et al. (2016)

[Grillo, Rosati, Suyu et al. 2018, 2020]
HOLISMOKES
Highly Optimised Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals
PI: S. H. Suyu

Lensed supernovae provide great opportunities for
1) Constraining the progenitor of Type Ia supernova
 single degenerate double degenerate
 White dwarf (WD) accreting from non-degenerate companion WDs merging

2) Measuring the expansion rate of our Universe

[Suyu, Huber, Cañameras et al. 2020]
Future Prospects

Experiments and surveys in the 2020s including Euclid, Rubin, and Roman observatories will provide ~10,000 lensed quasars and ~100 lensed supernovae [Oguri & Marshall 2010]
Summary

- From 6 lensed quasars in H0LiCOW, $H_0 = 73.3^{+1.7}_{-1.8}$ km/s/Mpc in flat ΛCDM with physically motivated mass models, completely independent of other probes
- New lensed quasar systems being discovered, observed and analysed as part of TDCOSMO
- SN Refsdal blind test demonstrated the robustness of our cluster mass modeling approach and software GLEE
- HOLISMOkes! Lensed supernovae to constrain supernova progenitors and cosmology
- Current and future surveys will have thousands of new time-delay lenses, providing an independent and competitive probe of cosmology and supernova physics