Virtual Seminar on Multimessenger Astronomy II at Technische Universität München 3rd February 2021

Neutrinos from GRBs: can they account for the IceCube diffuse neutrino flux?

Silvia Celli silvia.celli@roma1.infn.it

Plan of the talk

- Gamma-ray bursts (GRBs): an introduction.
- GRB and ultra-high energy cosmic-ray (UHECR) connection: the **Waxman-Bahcall (WB) bound**.
- The diffuse neutrino flux observed by IceCube (IC).
- ANTARES and IC searches for neutrinos in coincidence with the prompt emission of GRBs:
 Individual source searches (bright GRBs);
 Population searches (diffuse flux).
- Latest results: TeV GRBs and chocked GRBs.

Gamma-ray bursts

First serendipitous discovery in **1967** by the (US) Vela satellites, which were operating to ensure the Nuclear Test Ban Treaty was observed.

Transparency of the Earth's atmosphere for cosmic E-M radiation Radio IR O UV X-rays γ-rays LE HE VHE UHE EHE

10 yrs data taking of the CGRO 5

...namely extra-galactic sources

https://swift.gsfc.nasa.gov/archive/grb table/

Gamma-ray bursts populations

Gamma-ray bursts progenitors

- Long GRBs: soft emission CC SN progenitor
- <u>Short GRBs:</u> hard emission BNS progenitor

A breakthrough: GRB170817A - GW170817

GRB 170817A Gamma rays, 50 to 300 keV 1.500 Fermi Counts per second ᠧᡊᡗᠧᡗᡃᠯᡊᡗᡊᡙᡅ᠆᠋ᠺᡁᢦ᠆ᡁᡰᢦ᠈ᡀ᠕ᡀᢧ Reported 16 seconds 1,000 after detection LIGO-Virgo GW170817 Gravitational-wave strain Reported 27 minutes after detection 300 Frequency (Hz) 100 -2 0 2 -6 -4 Time from merger (seconds) INTEGRAL Gamma rays, 100 keV and higher GRB 170817A Reported 66 minutes 120,000 second after detection ^ՠֈեղովետկ_{նտտո}ւթությ Counts per 115,000 110.000

Gamma-ray bursts: the fireball model

Gamma-ray bursts: the compactness problem

The short variability time observed in GRB lightcurves (10 ms) indicate a size of the emitting region of

$$R \simeq ct_{\rm var} \simeq 3 \times 10^8 \,\rm cm$$

implying for the optical depth of $\gamma\gamma \longrightarrow e^+e^-$ a value of

$$\tau_{\gamma\gamma} = \frac{f_{\rm ph}\sigma_{\rm T}F_{\gamma}d^2}{R^2m_ec^2} \simeq 10^{12}f_{\rm ph}\left(\frac{F_{\gamma}}{10^{-6}\ {\rm erg/cm}^2}\right)\left(\frac{d}{3\ {\rm Gpc}}\right)^2\left(\frac{t_{\rm var}}{10\ {\rm ms}}\right)^{-2}$$

namely thick sources to gamma rays, except in the case of a relativistic jet (bulk Lorentz factor Γ), as

$$\tau_{\gamma\gamma} = \frac{f_{\rm ph}\sigma_{\rm T}F_{\gamma}d^2}{\Gamma^{2\alpha}R^2m_ec^2} \simeq 10^{-3}f_{\rm ph} \left(\frac{\Gamma}{300}\right)^{4+2\alpha} \left(\frac{F_{\gamma}}{10^{-6}\ {\rm erg/cm}^2}\right) \left(\frac{d}{3\ {\rm Gpc}}\right)^2 \left(\frac{t_{\rm var}}{10\ {\rm ms}}\right)^{-2\alpha}$$

Gamma-ray bursts: the compactness problem

Gamma-ray bursts: the internal shock scenario of the fireball model

Acceleration mechanisms:

shock acceleration? magnetic reconnection? other?

Efficiency of particle acceleration?

energy equipartition among electrons and magnetic fields?

Hadronic acceleration?

can GRBs be the main sources of UHECRs?

The Hillas plot for CR sources

The all particle CR spectrum

The all particle CR spectrum

The opaque Universe

$\gamma + \gamma_{CMB} \rightarrow e^+ + e^-$

PeV photons interact with microwave photons (411/cm³) before reaching our telescopes

Neutrinos? Perfect Messenger

- electrically neutral
- essentially massless
- essentially unabsorbed
- tracks nuclear processes
- reveal the sources of cosmic rays

GRB and UHECR connection: the Waxman-Bahcall upper bound

UHECR observations indicate an emissivity of

$$E_{\rm CR}^2 \frac{dN_{\rm CR}}{dE_{\rm CR}} = \frac{\dot{\epsilon}_{\rm CR}^{[10^{19}, 10^{21}]}}{\ln(10^{21}/10^{19})} \simeq 10^{44} \ \rm erg \ Mpc^{-3} yr^{-1}$$

hence a maximum $v_{\mu} + \overline{v}_{\mu}$ intensity as arising from py ($\varepsilon = 1$)

$$I_{\rm max} \simeq 0.25 \xi_{\rm Z} t_{\rm H} \frac{c}{4\pi} E_{\rm CR}^2 \frac{dN_{\rm CR}}{dE_{\rm CR}} \simeq 1.5 \times 10^{-8} \xi_{\rm Z} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$
cosmological effects, O(1)

$$\longrightarrow E_{\nu_{\mu}}^{2} \phi_{\nu} \equiv \frac{c}{4\pi} E_{CR}^{2} \frac{dN_{\nu_{\mu}}}{dE_{\nu}} = \frac{1}{2} \epsilon I_{\max} \simeq 10^{-8} \epsilon \xi_{Z} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

Waxman & Bahcall, PRD 59 (1999) 023002

Hadronic acceleration in GRBs?

pγ collisions might be realized in the dense radiation field of the jet, if protons are accelerated

$$p + \gamma \stackrel{\Delta^+}{\longrightarrow} \begin{cases} p + \pi^0 & \pi^0 \longrightarrow \gamma + \gamma \\ n + \pi^+ & \pi^+ \longrightarrow \mu^+ + \nu_{\mu} \\ \mu^+ \longrightarrow e^+ + \nu_e + \overline{\nu}_{\mu} \end{cases}$$

At at high energies, the interaction proceeds through

$$p + \gamma \longrightarrow K^{+} + \Lambda/\Sigma \qquad \qquad \pi^{-} \longrightarrow \mu^{-} + \overline{\nu}_{\mu}$$
$$K^{+} \longrightarrow \mu^{+} + \nu_{\mu} \qquad \qquad \mu^{-} \longrightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

Neutrinos are smoking guns for hadronic processes

$$E_{\nu} \simeq 0.05 E_p$$

Hadronic acceleration in GRBs?

The synchrotron dominated radiation field of the jet represents the photon target of pγ interaction. In a simplified scenario of **one-zone collision**, the optical depth reads as

$$\tau_{p\gamma} = 0.8 \left(\frac{R}{10^{14} cm}\right)^{-1} \left(\frac{\Gamma}{10^{2.5}}\right)^{-2} \left(\frac{E_{\gamma}}{1 MeV}\right)^{-1} \left(\frac{L_{iso}}{10^{52} erg/s}\right)$$

If the collision takes place in the photosphere, then

$$R_{\rm PH} = \frac{L_{\rm iso}\sigma_T}{8\pi m_p c^3} \Gamma^{-3} \sim 10^{11} \left(\frac{L_{\rm iso}}{10^{52} {\rm erg/s}}\right) \left(\frac{\Gamma}{10^{2.5}}\right)^{-3} {\rm cm}$$

Zhang & Kumar, Phys. Rep. 561 (2015) 1

Guetta et al., Astropart. Phys. 20 (2004) 4

while in the internal shock scenario the dissipation radius is

$$R_{IS} = \frac{ct_{var}}{1+z} \Gamma^2 \sim 10^{13} \left(\frac{t_{var}}{0.01 \text{ s}}\right) \left(\frac{\Gamma}{10^{2.5}}\right)^2 \left(\frac{1+2.15}{1+z}\right) \text{ cm}$$

Operational neutrino telescopes

Mediterranean telescopes

Neutrino event tolopologies

Isolated neutrinos interacting within the detector

Upgoing muon tracks

Neutrino event tolopologies

Upgoing muon tracks

Isolated neutrinos interacting within the detector

Atmospheric neutrino background

and atmospheric muon background

 $u_{\mu}N\longrightarrow \mu X$

The HESE event sample

"Vetoing the muon produced by the same parent meson decaying in the atmosphere"

$$\pi \longrightarrow \mu^{atmo} + \nu_{\mu}^{atmo}$$

- Detects penetrating muons
- Reduced effective volume (400 MTon)
- Sensitive to all flavors
- Sensitive to the entire sky

Schonert et al., PRD 79 (2009) 4

The era of neutrino astronomy

Kopper (IceCube Coll.), PoS ICRC (2017) 981

The era of neutrino astronomy

Kopper (IceCube Coll.), PoS ICRC (2017) 981

in the multi-messenger context

EXTRAGALACTIC SOURCES APPEAR TODAY THE MOST REALISTIC CANDIDATES

Identification of v-sources: open questions

→ SPECTRUM

- Is the IceCube flux an unbroken power law all the way up to 100 PeV? Is there a break or a cut-off?
- Is it a one-component flux?

COMPOSITION

- Has the IceCube flux an extra-galactic origin? Which sources contribute it the most? What is the connection with UHECR sources?
- What is the amount of Galactic component?

ANISOTROPY

- Is the IceCube flux truly isotropic?
- Why don't we see multiplets?

Identification of v-sources: methods

Several strategies to look for v-sources:

- 1. Clustering of neutrino events (all-sky scan);
- Catalog search, i.e. at pre-defined sky positions, as indicated by MM studies (typically bright sources in EM wavelengths): e.g. population & stacking analyses;
- 3. **MM alerts** for extremely energetic events. So far, only this strategy has lead to positive results:
 - → TXS 0506+056 & IC170922A 🔰 IceCube Coll. et al., Science 361 (2018)
- → **TDE AT2019dsg** & IC191001A **I** R. Stein et al., arXiv:2005.05340

Catalog search: transient sources

- GRBs are promising neutrino candidate sources, given their transient nature.
- Background is integrated in a **limited time window**, which is defined by the T90, assuming coincident neutrino-photon emission during the prompt phase of the burst.
- Still, it is necessary to select sources below the detector's horizon at the occurrence of the transient event, as to reduce the huge atmospheric muon background.
- Two ANTARES analyses are presented in the following:
 promising bright GRBs;
 - diffuse search from the GRB population in 2007-2017.

Catalog search: transient sources

We look for **muon neutrinos** in **spatial and temporal coincidence** with the GRB occurrence:

- Angular search window around source position: $\alpha = 10^{\circ}$
- Temporal search window around TO:

 $T_{\text{search}} = T90 \pm 30\% T90 \pm 2 \text{ s}$

150 100 50 -2 time (sec) 50

Catalog search: transient sources

 Discrimination between signal and background relies upon their different spatial distribution, which is obtained through ad-hoc Monte Carlo simulations of the detector's response:

The spatial PDF is centered in the source position, while the background is considered flat in the search cone angle.

Albert et al. [ANTARES Coll.], MNRAS 500 (2021) 4

 Optimization is performed individually for each GRB, based on an extended maximum likelihood ratio

$$Q = \max_{\mu'_s \in [0; n_{\text{tot}}]} \left(\sum_{i=1}^{n_{\text{tot}}} \log \frac{\mu'_s S(\alpha_i) + \mu_b B(\alpha_i)}{\mu_b B(\alpha_i)} - \mu'_s \right)$$

ANTARES search for v from individual bright GRBs

- Source selection:
 - Measured gamma-ray fluence is $F_{\gamma} > 10^{-4} \text{ erg/cm}^2$;
 - Redshift of the progenitor is measured;
 - GRB observable in 2008-2013, from below the ANTARES horizon at T0.

→ GRB080916C, GRB110918A, GRB130427A, GRB130505A

Adrian-Martinez et al. [ANTARES Coll.], MNRAS 469 (2017) 1

 Search optimization on individual GRBs: pseudo-experiments are run in order to optimize the quality parameter of the reconstructed track, as to yield the maximum discovery potential of the model (MDP)

$$MDP = P(Q \ge Q_p^{\text{th}}|\mu_s) = \int_{Q_p^{\text{th}}}^{\infty} P(Q|\mu_s) dQ = \sum_{n_s=0}^{\infty} P(n_s|\mu_s) \int_{Q_p^{\text{th}}}^{\infty} h_{n_s}(Q) dQ$$

ANTARES search for v from individual bright GRBs

GRB110918A

Distributions of the test statistics:

h₀(Q) bkg only h₁(Q) 1 signal event + bkg h₂(Q) 2 signal events + bkg h₃(Q) 3 signal events + bkg

$$p = P(Q \ge Q_p^{\text{thres}} | \mu_b) = \int_{Q_p^{\text{thres}}}^{\infty} h_0(Q) dQ$$

Neutrino flux computation assuming $f_p=10$ and $\Gamma=316$:

PH analytical model from Janag & Kumar, Phys. Rept. 561 (2015) 1

IS numerical model from IF Hummer et al., ApJ 721 (2010) 630 (NeuCosmA)

Data unblinding at optimal cuts results in **no neutrino detection**.

Adrian-Martinez et al. [ANTARES Coll.], MNRAS 469 (2017) 1

ANTARES search for v from individual bright GRBs

For each GRB, the parameter space of the models was investigated:

1. GRB selection for the years from 2007 to 2017

- GRBs from Fermi, Swift, and Konus-Wind satisfying the following conditions are selected:
- T90 (~ duration) measured and > 2s (long GRBs);
- Gamma-ray spectrum is measured;
- Position measured and satellite angular uncertainty <10°;
- One among fluence and redshift is measured;
- Below ANTARES horizon at trigger time (up-going events);

→ sample of 784 GRBs

1. GRB selection for the years from 2007 to 2017

Albert et al. [ANTARES Coll.], MNRAS 500 (2021) 4

42

2. Analysis features

- We explore the selected GRB sample by assuming the **one-zone internal shock** scenario of the fireball model.
- We investigate the uncertainties connected to the lack of knowledge of some model parameters on neutrino expected flux
 - 89% of the sample has unknown z;
 - 68% of the sample has unknown tvar;
 - **Г** is unknown for the entire sample.

Instead of assuming a fixed value for these unknown, we randomly extract their values from distributions obtained by satellites with large statistics.

2. Analysis features

2. Analysis features

From extracted redshift, Γ is derived thanks to correlation with L_{iso}:

+ for each GRB, we can compute $\langle E_{
u}^2 F_{
u}
angle \pm 2\sigma$

2. Analysis features

2. Analysis features The stacking technique allows to derive the GRB sub-sample that is able to provide the highest discovery potential of the model. In order to do so, two strategies are possible:

x Introduce a weight factor according to v flux: would highly depend on the signal modelling;

• Consider the individual source contribution to the overall **MDP**, while accounting for a trial factor in the definition of the pvalue in order to have the same overall probability of false discovery: 1

$$p = 1 - \sigma \longrightarrow p' = \frac{1 - \sigma}{TF}$$

2. Analysis features

Albert et al. [ANTARES Coll.], MNRAS 500 (2021) 4

2. Analysis features

Hence, stacking the entire GRB sample, we obtain:

49

After data unblinding, **no event** passed the selection criteria: hence, we derived an upper limit given the expected signal events

$$n_{\rm s}(N_{\rm GRB} = 784) = 0.03^{+0.14}_{-0.02}$$

50

livetime=18.9 h

Albert et al. [ANTARES Coll.], MNRAS 500 (2021) 4

IceCube search for v from GRBs

The latest IceCube search refers to:

- All flavor (tracks+cascades);
- All sky (upgoing+downgoing);
- Sample of 1172 GRBs, looking for neutrino spatial and temporal coincidences with the prompt phase of gamma-ray emission.

Latest results: TeV GRBs

A major advancement has been recently achieved with the detection of TeV emission from GRBs by **IACTs**:

ANTARES search for v from TeV GRBs

No neutrinos were observed in ANTARES in

coincidence with the prompt and afterglow of the bursts:

- **Real time alert** with upgoing muon tracks **I** GCN 25582 for GRB190829A
- Tailored offline analysis with tracks and cascades

Albert et al. [ANTARES Coll.], arXiv:2011.11411

Event	$\delta t_{ m total}$	$\delta t_{ m up}$	$\delta t_{ m down}$
GRB 180720B	12.1 h	7.7 h	4.4 h
GRB 190114C	2805 s	8 <u></u> 8	2805 s
GRB 190829A	8.1 h	2.85 h	5.25 h

	GRB 180720B	GRB 190114C	GRB 190829A
$\delta t_{ m up}$	$[T_0-350 \text{ s}, T_0+7.6 \text{ h}]$	[일급]	$[T_0-350 \text{ s}, T_0+2.85 \text{ h}]$
$\phi_0^{90\%} {}_{up} \; ({ m GeV} \cdot { m cm}^{-2})$	$\lesssim 1.5$		$\lesssim 1.4$
$\delta t_{ m down}$	$[T_0+7.6 \text{ h}, T_0+12.1 \text{ h}]$	$[T_0 - 350 ext{ s}, extsf{ } T_0 + 2454 extsf{ s}]$	$[T_0+2.85 \text{ h}, T_0+8.1 \text{ h}]$
$\phi_0^{90\%}$ down (GeV·cm ⁻²)	$\lesssim 10$	$\lesssim 1.6$	$\lesssim 4$
$E^{\mathrm{up}}_{5-95\%}$	2.5 TeV - 4.0 PeV	-	$2.5 \mathrm{TeV} - 4.0 \mathrm{PeV}$
$E_{\nu,\rm iso}^{90\%}$ upgoing (erg)	$\lesssim 2 \times 10^{55}$		$\lesssim 2 \times 10^{53}$
$(\frac{f_{\pi}}{f_e})_{\rm up}$	$\lesssim 80$		$\lesssim 5 imes 10^4 - \lesssim 3 imes 10^3$
$E_{5-95\%}^{ m down}$	20 TeV - 30 PeV	7 TeV - 20 PeV	15 TeV - 25 PeV
$E_{\nu,\rm iso}^{90\%}$ downgoing (erg)	$\lesssim 1 \times 10^{56}$	$\lesssim 8 \times 10^{54}$	$\lesssim 7 \times 10^{53}$
$\left(\frac{f_{\pi}}{f_e}\right)_{\text{down}}$	$\lesssim 600$	$\lesssim 2 imes 10^3$	$\lesssim 2 imes 10^5 - \lesssim 1 imes 10^4$
$E_{\gamma,\rm iso} \ (\rm erg)$	6×10^{53} [50; 300 keV]	2.5×10^{53} [1 keV; 10 MeV]	3×10^{50} [1 keV; 10 MeV]
		2×10^{52} [300 GeV; 1 TeV]	2×10^{50} [50 keV; 300 keV]

Neutrinos from chocked GRBs

Unsuccessful GRBs might have unique signatures in neutrinos

K. Murase & K. loca, PRL 111 (2013) 121102

Thermalized photons in the reverse shock have typical temperatures of

$$kT_{\gamma} \simeq 741 \,\mathrm{eV} \,\mathrm{L}_{\mathrm{iso},\,51}^{1/8} \,\epsilon_{\mathrm{e},\,-1}^{1/4} \,\mathrm{t}_{\mathrm{jet},\,2}^{-1/4} \,\rho_{\mathrm{H},-7}^{1/8}$$

From the forward shock region, they're energy reads as $E_{\gamma,\,\rm IS}^{\,\rm max}=\Gamma E_{\gamma,\,\rm RS}^{\,\rm max}\sim 210\,\rm keV$

Neutrinos from chocked GRBs

We performed a Monte Carlo simulation of py interactions with

Fasano et al., arXiv:2021:03502

Neutrinos from chocked GRBs

studying both the region of the Δ^+ resonance, as well as the out-of-resonance region

Neutrinos from chocked GRBs 1. EXPECTED EVENT RATES

Benchmark of the model: z = 1, $E_{iso} = 10^{53}$ erg, $t_{iet} = 100$ s, $\Gamma = 100$, $\Omega = 0.13$ sr (α = 0.2 rad)

Detector	δ	N_{events}
ANTARES	$0^{\circ} < \delta < 45^{\circ}$	0.011
	$-45^\circ < \delta < 0^\circ$	0.016
	$-90^{\circ} < \delta < -45^{\circ}$	0.025
KM3NeT	Mean δ	2.57
IceCube	$0^{\circ} < \delta < 90^{\circ}$	2.05
	$0^\circ < \delta < 30^\circ$	2.45

Fasano et al., arXiv:2021:03502

Neutrinos from chocked GRBs 2. CONTRIBUTION TO THE DIFFUSE NEUTRINO FLUX

Madau & Dickinson, Ann. Rev. A&A 52 (2014) 415

Assuming chocked GRBs follow the SRF $\rho(z) = \frac{(1+z)^{2.7}}{1 + [(1+z)/2.9]^{5.6}}$

Conclusions

- The origin of IC neutrinos remains so far elusive, though overall a major contribution from EG sources appears preferable;
- ANTARES has performed neutrino searches from 4 bright GRBs and from the population of long GRBs occurred in the years 2007-2017 through upgoing muons in spatial and temporal coincidence with the gamma-ray emission. No event satisfied the optimized cuts and limits were derived, as well as constraints in the parameter space of the models;
- Upper limits derived in the stacking search of ANTARES disfavor GRBs as major contributors of the IC diffuse flux (<10% below 100 TeV), consistently with IC results;
- **Choked GRBs** appear a viable alternative, possibly dominating the IC flux if their local rate is of the order of standard GRBs.

THANKS FOR YOUR KIND ATTENTION

