Prospects for High-Energy and Multi-Wavelength Polarimetry of Blazars

Markus Böttcher
North-West University
Potchefstroom
South Africa

Quasar 3C175
YLA 6cm image (c) NRAO 1996

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation of South Africa.
Blazars

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars with relativistic jets pointing close to our line of sight
- Rapidly (often intra-day) variable
- Strong gamma-ray sources
- Radio knots often with superluminal motion
- Radio and optical polarization
Blazar Spectral Energy Distributions (SEDs)

Non-thermal spectra with two broad bumps:
Blazar Spectral Energy Distributions (SEDs)

Non-thermal spectra with two broad bumps:

- Low-energy (probably synchrotron): radio-IR-optical(-UV-X-rays)
Blazar Spectral Energy Distributions (SEDs)

Non-thermal spectra with two broad bumps:

- Low-energy (probably synchrotron): radio-IR-optical(-UV-X-rays)
- High-energy (X-ray – γ-rays)

3C66A

3C279

MAGIC
Blazar Classification

Low-Synchrotron Peaked (LSP): Quasars (FSRQs)/Low-frequency peaked BL Lac Objects (LBLs)

Low-frequency component from radio to optical/UV,

\[\nu_{sy} \leq 10^{14} \text{ Hz} \]

High-frequency component from X-rays to \(\gamma \)-rays, often dominating total power

(Hartman et al. 2000)
Blazar Classification

Low-Synchrotron Peaked (LSP): Quasars (FSRQs)/Low-frequency peaked BL Lac Objects (LBLs)

Low-frequency component from radio to optical/UV,
\[\nu_{sy} \leq 10^{14} \text{ Hz} \]

High-frequency component from X-rays to \(\gamma \)-rays, often dominating total power

High-Synchrotron Peaked (HSP): High-frequency peaked BL Lacs (HBLs):

Low-frequency component from radio to UV/X-rays,
\[\nu_{sy} > 10^{15} \text{ Hz} \]

often dominating the total power

High-frequency component from hard X-rays to high-energy gamma-rays

(Hartman et al. 2000)

(Acciari et al. 2009)
Blazar Classification

Low-Synchrotron Peaked (LSP): Quasars (FSRQs) / Low-frequency peaked BL Lac Objects (LBLs)

- Low-frequency component from radio to optical/UV,
 \[\nu_{sy} \leq 10^{14} \text{ Hz} \]
- High-frequency component from X-rays to γ-rays, often dominating total power

Intermediate-Synchrotron Peaked (ISP): Intermediate BL Lacs (IBLs):

- Peak frequencies at IR/Optical and GeV gamma-rays,
 \[10^{14} \text{ Hz} < \nu_{sy} \leq 10^{15} \text{ Hz} \]
- Intermediate overall luminosity
- Sometimes γ-ray dominated

High-Synchrotron Peaked (HSP): High-frequency peaked BL Lacs (HBLs):

- Low-frequency component from radio to UV/X-rays,
 \[\nu_{sy} > 10^{15} \text{ Hz} \]
- Often dominating the total power
- High-frequency component from hard X-rays to high-energy gamma-rays

(Hartman et al. 2000)

(Abdo et al. 2011)

(Acciari et al. 2009)
Flux and Polarization Variability

Multi-wavelength variability on various time scales (months – minutes)
Sometimes correlated, sometimes not

(3C279: Abdo et al. 2010)
Flux and Polarization Variability

Multi-wavelength variability on various time scales (months – minutes)
Sometimes correlated, sometimes not

Observed optical polarization degrees $\Pi_{\text{opt}} \lesssim 30\%$
Flux and Polarization Variability

Multi-wavelength variability on various time scales (months – minutes)
Sometimes correlated, sometimes not

Observed optical polarization degrees \(\Pi_{\text{opt}} \sim 30\% \)

Both degree of polarization and polarization angles vary.
Swings in polarization angle sometimes associated with high-energy flares!
Open Physics Questions

- Source of Jet Power (Blandford-Znajek / Blandford-Payne?)

- Physics of jet launching / collimation / acceleration – role / topology of magnetic fields

- Composition of jets (e⁻-p or e⁺-e⁻ plasma?) – leptonic or hadronic high-energy emission?

- Mode of particle acceleration (shocks / shear layers / magnetic reconnection?) - role of magnetic fields

- Location of the energy dissipation / gamma-ray emission region
Leptonic Blazar Model

Relativistic jet outflow with $\Gamma \approx 10$
Leptonic Blazar Model

Relativistic jet outflow with $\Gamma \approx 10$
Leptonic Blazar Model

Relativistic jet outflow with $\Gamma \approx 10$
Leptonic Blazar Model

Injection, acceleration of ultrarelativistic electrons

Relativistic jet outflow with $\Gamma \approx 10$
Leptonic Blazar Model

Injection, acceleration of ultrarelativistic electrons

Relativistic jet outflow with $\Gamma \approx 10$

Radiative cooling \leftrightarrow escape \Rightarrow

$$Q_e(\gamma,t) = \gamma^{-q}$$

$$\tau_{cool}(\gamma_b) = \tau_{esc}$$
Leptonic Blazar Model

Injection, acceleration of ultrarelativistic electrons

Relativistic jet outflow with $\Gamma \approx 10$

Synchrotron emission

Radiative cooling \leftrightarrow escape \Rightarrow

$Q_e(\gamma,t) = \gamma^{-q}$ or $\gamma^{-(q+1)}$

γ_b, γ_1, γ_2

γ_b:
$\tau_{\text{cool}}(\gamma_b) = \tau_{\text{esc}}$

νF_{ν}
Leptonic Blazar Model

Injection, acceleration of ultrarelativistic electrons

Relativistic jet outflow with $\Gamma \approx 10$

Radiative cooling \leftrightarrow escape \Rightarrow

$Q_{\gamma}(\gamma, t)$

γ^{-q} or γ^{-2}

Seed photons:
- Synchrotron (within same region [SSC] or slower/faster earlier/later emission regions [decel. jet]), Accr. Disk, BLR, dust torus (EC)

γ_{b}:
$\tau_{\text{cool}}(\gamma_{b}) = \tau_{\text{esc}}$
Hadronic Blazar Models

Relativistic jet outflow with $\Gamma \approx 10$
Hadronic Blazar Models

Injection, acceleration of ultrarelativistic electrons and protons

Relativistic jet outflow with $\Gamma \approx 10$

$Q_{e,p}(\gamma, t)$

γ^{-q}

γ_1, γ_2

Narrow Line Region

Broad Line Region

Jet

Black Hole

Accretion Disk

Obscuring Torus
Hadronic Blazar Models

- Injections, acceleration of ultrarelativistic electrons and protons
- Relativistic jet outflow with $\Gamma \approx 10$
- Synchrotron emission of primary e^-
- $Q_{e,p}(\gamma,t)\gamma^{-q}$

νF_ν
Hadronic Blazar Models

Injection, acceleration of ultrarelativistic electrons and protons

Relativistic jet outflow with $\Gamma \approx 10$

Synchrotron emission of primary e^-

Proton-induced radiation mechanisms:

$Q_{e,p}(\gamma,t)$

γ^{-q}

νF_ν

νF_γ
Hadronic Blazar Models

Injection, acceleration of ultrarelativistic electrons and protons

Relativistic jet outflow with $\Gamma \approx 10$

Proton-induced radiation mechanisms:

- Proton synchrotron
 - $p\gamma \rightarrow p\pi^0$
 - $\pi^0 \rightarrow 2\gamma$

- $p\gamma \rightarrow n\pi^+$; $\pi^+ \rightarrow \mu^+\nu_\mu$

- $\mu^+ \rightarrow e^+\nu_e\nu_\mu$

- secondary μ^-, e-synchrotron

- Cascades …

Synchrotron emission of primary e−

$Q_{e,p}(\gamma,t)$
Lepto-Hadronic Model Fits to Blazar SEDs

RGB J0710+591 (HBL)

Red = leptonic
Green = lepto-hadronic
In many cases, leptonic and hadronic models can produce equally good fits to the SEDs.
In many cases, leptonic and hadronic models can produce equally good fits to the SEDs.

Possible Diagnostics to distinguish:

- Neutrinos
- Variability
- Polarization
Possible Distinguishing Diagnostic: Polarization

- Synchrotron Polarization

For synchrotron radiation from a power-law distribution of electrons with $n_e (\gamma) \sim \gamma^{-p} \rightarrow F_{\nu} \sim \nu^{-\alpha}$ with $\alpha = (p-1)/2$

$$\Pi^{sy}_{PL} = \frac{p + 1}{p + 7/3} = \frac{\alpha + 1}{\alpha + 5/3}$$
Possible Distinguishing Diagnostic: Polarization

• Synchrotron Polarization

For synchrotron radiation from a power-law distribution of electrons with \(n_e(\gamma) \sim \gamma^{-p} \rightarrow F_\nu \sim \nu^{-\alpha} \) with \(\alpha = (p-1)/2 \)

\[
\Pi_{PL}^{sy} = \frac{p + 1}{\alpha + 1} = \frac{p + 7/3}{\alpha + 5/3}
\]

\(p = 2 \rightarrow \Pi = 69 \% \)

\(p = 3 \rightarrow \Pi = 75 \% \)
Compton Polarization

Compton cross section is polarization-dependent:

\[\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon} \right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4 \left[\overrightarrow{e} \cdot \overrightarrow{e}' \right]^2 \right) \]

\[\epsilon = \frac{h\nu}{m_e c^2} : \]

Thomson regime: \(\epsilon \approx \epsilon' \)

\[\Rightarrow \frac{d\sigma}{d\Omega} = 0 \text{ if } \overrightarrow{e} \cdot \overrightarrow{e}' = 0 \]
Compton Polarization

Compton cross section is polarization-dependent:

\[
\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon} \right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4 \left[\bar{e} \cdot \bar{e}' \right]^2 \right)
\]

\(\epsilon = \frac{h\nu}{m_e c^2} \):

Thomson regime: \(\epsilon \approx \epsilon' \)

\(\Rightarrow \frac{d\sigma}{d\Omega} = 0 \) if \(e \cdot e' = 0 \)

\(\Rightarrow \) Scattering preferentially in the plane perpendicular to \(e \)!

Preferred polarization direction is preserved.
Compton Polarization

Compton cross section is polarization-dependent:

\[
\frac{d\sigma}{d\Omega} = \frac{r_0^2}{4} \left(\frac{\epsilon'}{\epsilon} \right)^2 \left(\frac{\epsilon}{\epsilon'} + \frac{\epsilon'}{\epsilon} - 2 + 4 \left[\vec{e} \cdot \vec{e}' \right]^2 \right)
\]

\[\epsilon = h\nu/(m_e c^2):\]

Thomson regime: \[\epsilon \approx \epsilon'\]
\[\Rightarrow d\sigma/d\Omega = 0 \text{ if } \vec{e} \cdot \vec{e}' = 0\]

\[\Rightarrow \text{Scattering preferentially in the plane perpendicular to } \vec{e}!\]

Preferred polarization direction is preserved.
Compton Polarization

Compton scattering of an anisotropic radiation field by non-relativistic electrons induces polarization perpendicular to the plane of scattering.
Compton Scattering by Relativistic Electrons

- Relativistic aberration => approx. axisymmetric radiation field in co-moving frame of e-

- Unpolarized target photons (EC emission) → Unpolarized

- Polarized target photons (SSC) → SSC polarization ~ ½ of target (synchrotron) photon polarization
Multiwavelength Polarization of Blazars

![Diagram of a blazar with labels for accretion disk, dust torus, and various regions like Narrow Line Region, Broad Line Region, Jet, Accretion Disk, and Obscuring Torus. The diagram also includes a graph showing the PD (%) vs. frequency (ν [Hz]) and the νF,ν [Jy Hz] spectrum with bands for IXPE and AMEGO.]
Multiwavelength Polarization of Blazars

- Narrow Line Region
- Broad Line Region
- Jet
- Black Hole
- Accretion Disk
- Obscuring Torus

Graph showing:
- PD [%]
- F_{ν} [Jy Hz]
- ν [Hz]

Key:
- accretion disk
- dust torus
- e$^{-}$ synchrotron
- SSC
- EC
- leptonic total

Comparing with IXPE and AMEGO data.
Multiwavelength Polarization of Blazars

- Narrow Line Region
- Broad Line Region
- Jet
- Black Hole
- Accretion Disk
- Obscuring Torus
- Synchrotron
- SSC
- EC
- Leptonic Total
- Hadronic Total
- Dust Torus
- ν [Hz]
- F_ν [Jy Hz]
- PD [%]
- IXPE
- AMEGO

accretion disk
- dust torus
- e^- synchrotron
- SSC
- EC
- leptonic total
- p synchrotron
- $p\gamma$ cascades
- hadronic total
MWL Polarization of LSP blazars

3C279

(SED from Bottacini et al. 2016)
MWL Polarization of LSP blazars

3C279

Optical Spectropolarimetry

Polarization Degree Π

Leptonic Model
Lepto-Hadronic Model
Synchrotron Component
EC BLR
EC Disk
SSC component
Electron Synchrotron
Proton Synchrotron
SMARTS
Swift-UVOT
Swift-XRT
INTEGRAL-IBIS/ISGRI
Fermi-LAT (Paliya 2015)

SED from Bottacini et al. 2016
Multiwavelength Polarization

Polarization Degree

Π

Disk

Sy

SSC

EC

Total

Optical Spectropolarimetry

λ

$\nu \cdot F_\nu$ [erg]

10^{-12}

10^{-11}

10^{-10}

10^{-9}

10^{-8}

10^{-7}

10^{-6}

10^{-5}

10^{-4}

10^{-3}

10^{-2}

10^{-1}

10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^9

10^{10}

10^{11}

10^{12}

10^{13}

10^{14}

10^{15}

10^{16}

10^{17}

10^{18}

10^{19}

10^{20}

10^{21}

10^{22}

10^{23}

10^{24}

10^{25}

Frequency [Hz]

Linear Polarization [%]

0

5

10

15

20

25

30

35

40

Wavelength λ

Sy

SSC

EC

Total

(Bottacini et al. 2016)
Multiwavelength Polarization

Polarization Degree Π

Disk

Sy

SSC

EC

Total

Optical Spectropolarimetry

Wavelength λ

Linear Polarization (%)

Frequency [Hz]

$\nu \nu F_{\nu}$ [erg]

Bottacini et al. 2016
The Southern African Large Telescope (SALT)
Example: 4C +01.02 (FSRQ at $z = 2.1$)

Large γ-ray (Fermi-LAT) flare in July 2016

(Schutte et al., in prep.)
Example: 4C +01.02 (FSRQ at z = 2.1)

SALT spectropolarimetry observations in July 2016 (flare) and July 2017 (quiescent)

Large γ-ray (Fermi-LAT) flare in July 2016

(Schutte et al., in prep.)
4C +01.02 (PKS B0106+013)

Significant (and time-variable) optical polarization, decreasing towards shorter wavelength => Addition of unpolarized component (accretion disk).
4C +01.02: Combined SED + spectropolarimetry modeling

(Schutte et al., in prep.)
4C +01.02: Combined SED + spectropolarimetry modeling

Tightly constrains BH mass ($4 \times 10^8 M_\odot$) and ordering of magnetic field:
- flare: $F_B = 0.15$
- quiescence: $F_B = 0.02$
X-Ray and Gamma-Ray Polarization: LSP Blazars

Hadronic model:
Synchrotron dominated
=> High Π, generally increasing with energy (SSC contrib. in X-rays).

Leptonic model:
X-rays SSC dominated:
$\Pi \sim 20 - 40 \%$;
γ-rays EC dominated
=> Negligible Π.

(Zhang & Böttcher, 2013)
X-Ray and Gamma-Ray Polarization: ISP Blazars

Hadronic model:
Synchrotron dominated => High Π, throughout X-rays and γ-rays

Leptonic model:
X-rays sy. Dominated => High Π, rapidly decreasing with energy; γ-rays SSC/EC dominated => Small Π.

(Zhang & Böttcher, 2013)
Observational Strategy

- Results shown here are **upper limits** (perfectly ordered magnetic field perpendicular to line of sight).

- Scale results to actual B-field configuration from known synchrotron polarization (e.g., optical for FSRQs/LBLs) =>
 Expect 10 - 20% X-ray and γ-ray polarization in hadronic models!

- X-ray and γ-ray polarization values substantially below synchrotron polarization will favor leptonic models, measurable γ-ray polarization clearly favors hadronic models!

(Zhang & Böttcher, 2013)
The “Big Blue Bump”

- Accretion disk + Corona? → **Unpolarized**
- Additional synchrotron component? → **Moderately polarized**
- Bulk Compton scattering of external radiation field by thermal electrons → **Potentially highly polarized**

Baring et al. (2017):
Monte-Carlo simulations of Diffusive Shock Acceleration

→ Modeling of the soft X-ray excess as bulk Comptonization of IR radiation from dusty torus by shock-heated, thermal electrons tightly constrains thermal vs. non-thermal particle populations

→ Tight constraints on pitch-angle diffusion and plasma parameters
Simulating Polarization of the Bulk Compton Feature

- If due to bulk Compton, the soft X-ray excess in AO 0235+164 could be polarized up to ~ 50 % in soft X-rays (if viewing angle ~ $1/\Gamma$).

X-Ray and Gamma-Ray Polarization: HBLs

In both leptonic and hadronic models, optical and X-ray emission are dominated by jet synchrotron.

X-ray polarimetry may reveal mode of particle acceleration:

- Magnetic reconnection: Acceleration in turbulent regions → Low PD
- Shocks: Significant (up to 50 %) X-ray polarization; likely higher PD in X-rays than in the optical (smaller emission region?)

(Tavecchio et al. 2018)
X-Ray and Gamma-Ray Polarization: HBLs

Evidence for particle acceleration + B-field compression at shocks across blazar classes

(Angelakis et al. 2016 – ROBOPOL)
Caution: PA Swings

- Sometimes Optical / γ–ray flares are correlated with increase in optical polarization and multiple rotations of the polarization angle (PA)
- Duration typically several days
- X-ray polarimetry observations of faint sources may require day-long observations → Polarization measurement smeared out / destroyed!
- Models proposed for PA swings:
 - Helical jet/pattern motion
 - Turbulent cells → Stochastic PA variations (TEMZ)
 - Kink instabilities
 - Helical B-fields in internal shocks (see Böttcher 2019 for a review and refs.)

PKS 1510-089 (Marscher et al. 2010)
Tracing Synchrotron Polarization in the Internal Shock Model

Viewing direction in obs. Frame: $\theta_{\text{obs}} \sim 1/\Gamma$

Viewing direction in comoving frame: $\theta_{\text{obs}} \sim \pi/2$

3DPol (Zhang et al. 2014)

- Solve electron dynamics and radiation transfer with Monte-Carlo / Fokker-Planck scheme (Chen et al. 2011, 2012)

- Time-dependent, polarization-dependent ray tracing for polarization signatures
Light Travel Time Effects

Shock positions at equal photon-arrival times at the observer

(Zhang et al. 2015)
Simultaneous optical + \(\gamma \)-ray flare, correlated with a 180\(^\circ\) polarization-angle rotation.

(AbdO et al. 2010)
Simultaneous optical + γ-ray flare, correlated with a 180° polarization-angle rotation.

(Abdo et al. 2010)
Application to 3C279

Simultaneous fit to SEDs, light curves, polarization-degree and polarization-angle swing

(Zhang et al. 2015)
Application to 3C279

Requires particle acceleration and reduction of magnetic field, as expected in magnetic reconnection!

(Zhang et al. 2015)
The Lepto-Hadronic Version

- Lepto-hadronic (p-synchrotron dominated) 3D time- and polarization-dependent internal shock model (Zhang, Diltz & Böttcher 2016)
- Model setup as for leptonic (3DPol) model, but include injection of ultrarelativistic protons
- Electron + proton evolution with locally isotropic Fokker-Planck equation
- Fully time- and polarization-dependent ray tracing
3D Lepto-Hadronic Internal Shock model

Example case: Magnetic energy dissipation (reducing B-field, additional e and p injection)

(Zhang et al. 2016)

Snap-Shot SEDs

Pol. Deg. vs. Photon Energy
PA swings in hadronic models

MW Light Curves

Pol. vs. time

(Zhang et al. 2016)
PA swings in hadronic models

High-energy (p-sy) polarization signatures much more stable than low-energy (e-sy) signatures, due to slower p cooling:

No PA swings in X-rays – γ-rays!

(Zhang et al. 2016)
Summary

1. X-ray / γ-ray polarimetry of blazars may help answer several outstanding questions:
 a) X-ray – optical co-spatiality?
 b) Mode of particle acceleration (shocks vs. magnetic reconnection)
 c) Leptonic vs. hadronic emission
 d) Nature and origin of “big blue bump” / soft X-ray excess

2. Optical spectropolarimetry + SED modeling tightly constrains unpolarized emission components (e.g., accretion disk) → Measure BH mass

3. Optical PA swings may be modeled with straight shock-in-jet model with helical magnetic fields

4. If PA swings are also present in X-rays, potential problem for X-ray polarimetry of blazars

5. In hadronic models, optical PA swings may not be mirrored in high-energy polarization.

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation of South Africa.
Thank you!

Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.