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What are Cosmic Rays?

i charged par"ricles "

Cosmic rays particles hit the Earth's atmosphere at the rate of about 1000
per square meter per second. They are ionized nuclei - about 90% protons,
9% alpha particles and the rest heavy nuclei - and they are distinguished by
their high energies. Most cosmic rays are relativistic, having energies
comparable or somewhat greater than their masses. A very few of them have
ultrarelativistic energies extending up to 1020 eV (about 20 Joules), eleven
order of magnitudes greater than the equivalent rest mass energy of a
proton. The fundamental question of cosmic ray physics is, "Where do they
come from?” and in particular, "How are they accelerated to such high
energies?"”.

Gaisser, Engel, Resconi "Cosmic Rays and Particle Physics”



The (local) Cosmic Ray spectrum
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The (local) Cosmic Ray spectrum

mean energy ->
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The (local) Cosmic Ray spectrum

mean energy ->
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Basics

The simplest accelerator

(The electrostatic accelerator)



Charged particles and electromagnetic fields

cosmic rays are charged particles —> they are affected by electromagnetic fields
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Charged particles and electromagnetic fields

cosmic rays are charged particles —> they are affected by electromagnetic fields

EDQ 50

Simplifying assumption —> be lazy and consider only constant fields

A particle of charge g moving at a velocity u fill experience a force:

»)

B
\ |
|
)

Lorentz force
L to velocity —>
doesn't change
| the particle energy!

relativistic momentum  p = ymu

|
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The electrostatic accelerator

Problem: particle at rest at + = 0 and x = O embedded in a constant electric field



The electrostatic accelerator

Problem: particle at rest at t+ = 0 and x = O embedded in a constant electric field
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The electrostatic accelerator

Problem: particle at rest at t+ = 0 and x = O embedded in a constant electric field

q @

(T 57 1/2
€T = 7327 1-+-<}£Ef) — 1 — ct

qEt
7= 1 (222)] 1
B 2_ 1/2
Et 2
E, = 1-+-<}iu3) mc — qEtc

//” i i

I use a subscript t not to confuse
particle energy with electric field



Non dimensional units

change variables

X t Et
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A useful expression
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A useful expression

— (1 —|—7‘2)1/2 — 1
= (1 + 72)1/2

in dimensional units:

= q B d constant rate I




Maximum energy

this is an accelerator
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Maximum energy

this is an accelerator

@4 2
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The maximum energy problem:
the role of radiative losses

Problem: accelerated charges emit radiation!

2 2 acceleration
classic Larmor forula— P — g Q_Saz/
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Section 14.2 of Jackson
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The maximum energy problem:
the role of radiative losses

classic Larmor forula —>

Problem: accelerated charges emit radiation!

relativistic generalisation

2 ¢ |

P =
3 m2c3

N

(

dp
dr

-

T proper time — d7 = dt/V ,

dp
dr
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The maximum energy problem:
the role of radiative losses

Problem: accelerated charges emit radiation!

2 2 acceleration
classic Larmor forula— P — g Q_Saz/
C

2
relativistic generalisation 1/7

| - /

p_2 d—52—52 dp\*| _2 ¢ (152 2N
3 m2c’ dr dr 3 m2c’ dr

2 q° @ .
- 3m2e3 \ dt

Section 14.2 of Jackson

T proper time —> dr = dt/’y ,

N
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The maximum energy problem:
the role of radiative losses

loss

P  2¢FE1 2 ¢°E | does NOT depend |
dE, /At~ 3m2c3u ¥ 3m2ct | on particle energy! |
7/

gain

N — . 1 2 ¢°F
condition to have acceleration —> i 7 < 1

— 3 m#c

T 3 m2ct
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The maximum energy problem:
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The maximum energy problem:
the role of radiative losses

is this limit really constraining? ‘

= ——

L < 2 3 for protons
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remember: % =qF < § (£> ~ 10256V/Cm




Energetics
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Energetics

Electromagnetic energy in the accelerator:
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Energetics

Electromagnetic energy in the accelerator:

Emaa: 2
WtatsE2L3:< t > L ~ 3 x 10°3
q

T e ——— S - _ _ — — — — —

l, To accelerate to extreme energy we need extremely energetic accelera’ror‘s!

—




Energetics

Emaaz
—_— L, —
: : ~300
Electromagnetic energy in the accelerator:
supernovae

Emaa;‘ 2
VV PN E2L3 _ t N 1 53
tot < q ) 5% 10 O2OeV pc “t5

T e ——— S - _ — — — — —

‘ To accelerate 'ro extreme energy we need ex‘l'r'emely energehc accelera’ror‘sl




Things to remember

The simplest (electrostatic) accelerator

& Most effective for:

2 large size

2 strong field

> large charge

® Radiative losses might prevent acceleration but in fact for any
practical purpose can be neglected!

@ —> electrostatic accelerators are very efficient!

® To reach larger particle energies accelerators must contain huge
amounts electromagnetic energy




What's next?

Is the simplest accelerator a good one? How common are
electrostatic accelerators in astrophysical environments?

@ Note that an implicit assumption done so far is that acceleration
happens in vacuum

® In fact, the Universe is filled with plasma, and this has to be taken
iInto account

W We'll need to study some properties of astrophysical plasmas



Can we keep a static and uniform electric
field in an astrophysical plasma?

i unfortunately, that's quite difficult... |
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An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"...a basic property of plasma, its tendency towards electrical neutrality. If over a
large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce these
potential difference, i.e., to restore electrical neutrality.”

(Lyman Spitzer "Physics of fully ionised gases”)
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Can we keep a static and uniform electric
field in an astrophysical plasma?

unfortunately, that's quite difficult...

= ————

An excess of electrical charge is needed to maintain a static electric field. However we
should remember...

"...a basic property of plasma, its tendency towards electrical neutrality. If over a
large volume the number of electrons per cubic centimeter deviates appreciably
from the corresponding number of positive ions, the electrostatic forces resulting
yield a potential energy per particle that is enormously greater than the mean
thermal energy. Unless very special mechanisms are involved to support such large
potentials, the charged particles will rapidly move in such a way as to reduce these
potential difference, i.e., to restore electrical neutrality.”

(Lyman Spitzer "Physics of fully ionised gases”)

e —————————————— e e ———— l
| ..but there is still maybe some hope? |

= ———

So, the answer is no...

I = a——————




Electrostatic accelerators
in astrophysncal envuronmen’rs’

In mosf astrophysical environments sfahc elecfr'lc flelds cannof be
mam‘l'amed because of the very high elec’rrlcal conduc’nvu‘l'y of plasmas

—

THIS \S A Big, FAT
WASTE OF MY T\ME /

’ We need to fmd ways to ener'glse par'tlcles
‘ il dlffer'en'r fr'om the elec'rr'os'rahc accelerator |




Electrostatic accelerators
in astrophysncal envnronmen’rs’

In mosT astrophysical environments STGTIC elecfr'lc flelds cannof be
mamfamed because of the very high elec’rrlcal conduc’nvu‘l'y of plasmas

THIS 1S A BlG, FAT

WASTE OF MY TlME'

: l

—

We need to fmd ways to ener'glse par"l'lcles
dlffer'en'r fr'orn the elec'rr'osfahc accelerator |

|
|

JMos'r of the concept discusedloped ‘

dur'mg our first lecture remain valid

—— _ _ __ _—_ ~



The problem of particle acceleration
in astrophysical plasmas



Way-out #1: time varying B

- We DO need electric fields to accelerate particles! |
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Way-out #1: time varying B

— _ i = — - —— S —

- We DO need electric fields to accelerate particles! |

e L

N

'd Maxwell equations ﬂ

VE = 4mp =0 —> plasma quasi-neutrality

. 108
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VE =0
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Way-out #1: time varying B

- We DO need electric fields to accelerate particles! |

— L

N

'd Maxwell equations i

—> plasma quasi-neutrality
[Faraday la]

i—-
|

A time varying magnetic field ,
acts as a source of electric field!

= — —_




Way -out #32: change rest fr'ame




Way-out #2: change rest frame
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. Consider a magnetised cloud of plasma moving at a (non relativistic) velocity u

primed quantities —> cloud frame

Lorentz transformation |
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Way-out #2: change rest frame

= ———————e e — - — == 77—7

| Consider a magnetised cloud of plasma moving at a (non relativistic) velocity u

primed quantities —> cloud frame

i_- =
[

0=FE+

| an observer in the lab frame sees an electric field!

— == —




Order of magnitude estimates
of the induced electric field
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Order of magnitude estimates
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Order of magnitude estimates
of the induced electric field
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Order of magnitude estimates
of the induced electric field

— . 10B
| time-varying B-field ﬂ V X E = -y

characteristic length

1 characteristic velocity
V X %\Z L B U -
f b~_—-—~—b
2 I 1 B 1 c C
ot T

characteristic time

‘ Lorentz = U
. | E=——x
transformation C

wuf]
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Hillas criterium

Let's go back to the results obtained for the electrostatic accelerator

electric charge velocity

N/

BN SROELE

F~ —B f / \
C size

B-field

B U L
EmeT ~ 3w 10127 [ — | eV
t 8 (,uG) (1000 km/s) (pc) ©

Eme® = gEL




Hillas criterium

Let's go back to the results obtained for the electrostatic accelerator

electric charge velocity
o S
Emae (—) BUL
[/ C

FEF~—B

B-field

B U L
E"® ~ 3 x10%Z — | eV
2 (i) () ()

e P ——

1‘ ver'y general, we dldn'r assume anything about The ncn‘ure of The accelerator'l l




Hillas criterium

Important result: we don't need to know how particles are

accelerated in order to know whether or not a given astrophysical

object is, potentially, a good particle accelerator!




Hillas criterium

= - - Emaac
"i Larmor radius H Ry = t

Hillas, Ann. Rev. Astron. Astrophys. (1984)
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Hillas criterium

= - Emaac
i| Larmor radius H Ry = t

in order to get the most optimistic (but still plausible) result —> u/c ~ 1

Emae (2) BUL Ry (E™®) ~ L

C

Hillas, Ann. Rev. Astron. Astrophys. (1984)
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Hillas criterium

= - Em(l.CU
i| Larmor radius H Ry = t

in order to get the most optimistic (but still plausible) result —> u/c ~ 1

Emas (Q)B U L

/ Ri(E]™) ~ L

. In order to be accelerated, a particle |
J must be confined within its accelerator! |

— = —— —____

Hillas, Ann. Rev. Astron. Astrophys. (1984)
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The Hillas plot
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The Hillas plot
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The Hillas plot
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The Hillas plot
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The Hillas plot
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The Hillas plot
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Maximum energy and fastest acceleration
rate from the Hillas criterium
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Maximum energy and fastest acceleration
rate from the Hillas criterium
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|
| Electrostatic accelerator

ii maximum energy —> ﬂ E}/m “=qFL

| acceleration rate—> |
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Maximum energy and fastest acceleration
rate from the Hillas criterium

r ~ —~
| .
Electrostatic accelerator | Hillas criterium
| maximum energy —> | EV"9° = ¢EL (R | E"*" = qBL
dE,
| acceleration rate—> | —— = qgBc
e dt
L \_ y
| )
Induced electric field
U
F~—B—RB
C |
N y




Maximum energy and fastest acceleration

rate from the Hillas criterium
T * ) B

|
| Electrostatic accelerator | Hillas criterium

ii ma>:ilnum energy —> i Ema’a3 = qb L ﬁ E;(nax = qBL

J qcce_Ier'a'rion rate—> H dEt E ¢ dz = cht ¢ d(f?( B QBC |
L : : ’

| ) from now on we can remove the subscript t to
Induced electric field distinguish particle energies from electric fields
U
F~—b—2D
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Maximum energy and fastest acceleration
rate from the Hillas criterium

Electrostatic accelerator

|
\—

4B,
dr

ii maximum energy —> ﬂ E" =qFEL ﬁ E*" = gBL
ii acceleration rate—> H

) )

Hillas criterium

qF ¢ dor = cdt ¢ dﬂx = gBc

J t *
- y

Induced electric field

E%EBHB
C

)

from now on we can remove the subscript t to
distinguish particle energies from electric fields

' The Hillas criterium states that particles l
with energy above Emax cannot be |
confined within the system and escape! |

— = o ————

|




Energy budget from the Hillas criterium

How large is the total magnetic energy contained in the accelerator?
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Energy budget from the Hillas criterium

How large is the total magnetic energy contained in the accelerator?

-& magnetic energy | Wg ~ B dm L’
] 813

7 ‘ — ) Emcm; :

-& Hiljas criterium ﬂ Rr (E;naa;) — 7B ~ L

B =

E

qL

particle energy

maa Ema,a:
~o (

L
1020eV pC

—1
) G
J




Energy budget from the Hillas criterium

How large is the total magnetic energy contained in the accelerator?

E? L
WB — max

6 g2

o oy ] B? 4

{ magnheti n | W ~ LB

lﬁ magnetic energy B Sr 3

il ‘ - ’ Emaa; h
-& Hiljas criterium I Ry (E;,mx) = B ~ L

B =

E

qL

particle energy

maa Ema,a?
~o (

L
1020eV pC

—1
) G
J

~5x 10°2Z ! (

Erax >2 (

102VeV

o
— | erg
pcC

As reference value: 1 supernova releases 105! erg in form of kinetic energy




What about energy losses?

Implicit assumption made in deriving the Hillas criterium:

energy losses can be neglected. But this is, in general, not truel




The best accelerator

(allowed by fundamental physics)
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Hillas criterium and radiative losses

The Hillas criterium does not consider the possible effects of radiative losses

™ An electrostatic accelerator would be such a great
accelerator because radiative losses can be neglected

@ Unfortunately this is no longer
true if one considers more B’ A\
realistic situations where
maghetic, rather than electric

| 27, I fields are present

—_— B} dv
"l Lorentz force H Fr, = gﬁ X B = ’ymd—;_

®

_qu.B

accelerated
particles radiate |

"l acceleration | a |

Yme




Synchrotron radiation

(for more details see "Radiative processes in astrophysics” Rybicki & Lightman)

— . 2q°
d ARgc{iiaTed power | P = > 3’7 {,VQaﬁ 4 ai}

— qu, B
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"l Radiated power H
"l acceleration H
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Curvature radiation

radiation emitted by particles that move along curve field lines

R

&«

B

curvature radius

relevant for very strong B-fields (e.g.
close to pulsars), when any initial
component of v orthogonal 1o B is
damped due to synchrotron losses
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Synchrotron versus curvature losses

P. E?

] Hillas! )

_ - __

E > E, —>these particles cannot be confined in the accelerator

E < E, —>we consider curvature radiation for these particles, as it
maximises the value of Emax

Aharonian el at. PRD (2002)
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Energetics
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Causality

unfortunately the situation is not as simple as that...
consider for example a wind-type accelerator

™ If the plasma expands, the B field
I 'I‘ decreases

™ So we have a limited time to
accelerate particles
& Let's say the field drops when:

AL ~ L

/1
—> t = AL/c~ Ljc
N

® A particle moving will the flow can be
accelerated over a time (region):

—
l t' ~ L/Tc
R ~ LT
F—— 2. —— B —> the constrain refers to a very small fraction

of the volume of the source —> the total energy
is much larger!



Things to remember

Hillas criterium

® Combined with constraints due to radiative losses can be used to
identify possible particle accelerators

® Even in the most optimistic scenarios, large energy budgets are
required to reach 1020 eV —> extreme accelerators

¥ Relativistic effects may, under certain conditions, mitigate the
requirements. Otherwise very large sizes have to be invoked.



Summary



Hillas, Hillas, and Hillas
(1) Hillas review paper

1. Particles may gain energy gradually by numerous encounters with
regions of changing (moving) magnetic field ; such processes are variants
of Fermi’s mechanism (43). Their advantage is that the energy is spread
over many decades, and in the shock-wave varnant (7, 8, 12, 64) the
spectrum very convincingly emerges as ~ E 2. Their disadvantages are
that they are slow, and that it is hard to keep up with energy losses at the
highest energies.

2. Particles may be accelerated directly to high energy by an extended
electric field (e.g. emf arising in rapidly rotating magnetized conductors,
such as neutron stars or supermassive objects). Such a mechanism has
the advantage of being fast, but it suffers from the circumstance that the
acceleration occurs in an environment of very high energy density, where
new opportunities for energy loss exist. In addition, the complexity of
such an analysis is daunting: and it is usually not obvious how to get a
power-law spectrum to emerge.

A. M. Hillas, Annual Review of Astronomy and Astrophysics, 22 (1984) 425



Hillas, Hillas, and Hillas
(2) Hillas criterium

Hillas criterium |
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Hillas, Hillas, and Hillas
(3) Hillas plot
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Hillas,

Hillas, and Hillas

(3) Hillas plot (updated)
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The End

Thanks to everybody



