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Abstract

After an introduction to dark matter and supersymmetry, the calculation of the
anapole moment as loop induced electromagnetic interaction of a generic Majorana
fermion is carried out. For this, the contributions of both a scalar and a vector in the
corresponding loop diagram is considered, of which the latter is a novel calculation.
After motivating this inherent electromagnetic moment in the context of dark matter
direct detection experiments, where observation based on this interaction may occur,
a numerical analysis of the anapole moment is carried out. After a brief model-
independent study, the focus is drawn on the dark matter candidate of the minimal
supersymmetric standard model, the lightest neutralino. In particular the parameter
space of the gravity- and anomaly mediated supersymmetry breaking scenarios are
investigated. For this, the experimental constraints on the Higgs boson and the dark
matter relic density are employed.

Zusammenfassung

Nach einer Einführung in die Dunkle Materie und die Supersymmetrie wird die Be-
rechnung des Anapolmoments als schleifeninduzierte elektromagnetische Wechsel-
wirkung eines generischen Majorana-Fermions durchgeführt. Dazu werden die Bei-
träge sowohl eines Skalars als auch eines Vektors im entsprechenden Schleifendia-
gramm betrachtet, wobei letzteres eine neuartige Berechnung ist. Nach einer Motiva-
tion dieses inhärenten elektromagnetischen Moments im Kontext von Experimenten
zum direkten Nachweis dunkler Materie, bei denen eine Beobachtung aufgrund dieser
Wechselwirkung erfolgen kann, wird eine numerische Analyse des Anapolmoments
durchgeführt. Nach einer kurzen modellunabhängigen Untersuchung wird der Fokus
auf den Dunkle-Materie-Kandidaten des minimalen supersymmetrischen Standard-
modells, das leichteste Neutralino, gelenkt. Insbesondere wird der Parameterraum
der Gravitations- und Anomalie-vermittelten supersymmetriebrechenden Szenarien
untersucht. Dazu werden die experimentellen Ergebnisse für das Higgs-Boson und
die Reliktdichte der Dunklen Materie herangezogen.
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Chapter 1

Introduction

Observational evidence suggests that around 80% of matter in our universe is not
visible, but composed of an unknown, dark type of matter instead [1]. These pieces
of evidence can be seen in many astrophysical and cosmological systems, ranging
from rotation curves of galaxies, cluster movements, to large scale structure and the
omnipresent cosmic microwave background [2]. This dominating type of matter is
substantially driving the gravitational dynamics of the structures in our Universe.
If this dark matter (DM) is a particle, it is expected to be truly dark, e.g. it does
not interact with the photon in the same way as the electrons and the nuclei of
the intergalactic medium. Furthermore, it has to be stable; otherwise their content
would have decayed [3]. One typical type of DM candidate is a weakly interacting
massive particle (WIMP), whose present relic abundance is described by the freeze-
out mechanism: The candidate is in thermal equilibrium with the bath of Standard
Model particles at high temperature (early times), but once the annihilations cannot
keep the WIMP in equilibrium with the thermal bath, it stops interacting with the
visible sector [3] and its (comoving) number density becomes constant. Furthermore,
the same couplings leading to the correct dark matter abundance may allow the
detection of WIMPs.

Different strategies both experimentally and theoretically have been developed
trying to detect the DM particle. On the experimental side the approaches can be
separated roughly into three categories: direct detection experiments, where DM in-
teracts with material in the detector directly, indirect detection experiments, where
signals like hard gamma-rays originating from extraterrestrial DM interactions are
looked out for, and collider searches, where DM may be produced via high-energetic
particle collisions. On the theoretical side, many models have been proposed with
varying particle content and interactions allowing both predicting the present ob-
servational evidence for DM and offering a prospect for its detection.

Current evidence does not completely exclude the possibility that the DM particle
can interact with ordinary matter via electromagnetic interactions. In fact the as-
sumption of Lorentz- and electromagnetic gauge invariance do not forbid that DM
can have a charge or other higher electromagnetic moments. In many models, these
higher electromagnetic moments can be generated via quantum corrections. Con-
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Chapter 1 Introduction

cretely, Dirac fermions can carry electric charge, an electric- and magnetic dipole
moment, and an anapole moment. Majorana fermions, due to the fact that they
are self-conjugate fields, can only carry an anapole moment. In this thesis we will
consider the anapole moment of a spin 1/2 Majorana fermion and its application
to the scenario in which it dominates the interaction between the DM particle and
nuclei in direct detection experiments.

One candidate for WIMPs is found in the framework of supersymmetry (SUSY).
This additional symmetry of nature proposes that all particles have a corresponding
supersymmetric partner called sparticle. These new fields differ from their counter-
parts by their spin quantum number. Applying this framework to our currently best
model - the Standard Model (SM) of particle physics - leads to the minimal super-
symmetric standard model (MSSM). Consequently, all matter particles, like quarks
and leptons, have corresponding force-carrier particles called squarks and sleptons
respectively. Similarly the gauge bosons of the strong-, weak- and electromagnetic
interaction have matter fields called gauginos as partners. Apart from addressing
many still-standing issues of the SM, this framework can be studied on its own and
has interesting theoretical features and consequences for quantum field theories in
general.

The thesis is structured as follows, chapter 2 introduces dark matter and some
of the evidence hinting at it followed by a discussion of the freeze-out production
mechanism of a weakly interacting massive particle (WIMP).

Supersymmetry as a framework of physics beyond the Standard Model of particle
physics is introduced in chapter 3. Basics of the construction of supersymmetric
theories and the simplest supersymmetric extension of the Standard Model in the
form of the minimal supersymmetric standard model (MSSM) is given subsequently.

Then, the definition and calculation of the anapole moment of a generic Majorana
fermion is covered in chapter 4. For this, the possible contributions from both scalar
and vector interactions are covered, of which the latter is a novel consideration.
Furthermore, the historic issues surrounding the calculation of the SM neutrino
charge radius is presented and the solution in the form of Pinch-Technique and
Background Field Method are discussed.

In chapter 5 the basics of direct detection experiments are discussed and the pos-
sibility of the detection of a Majorana WIMP via the anapole moment is illuminated.

Chapter 6 contains the numerical analysis of the anapole moment in both, a model-
independent manner and in the context of the MSSM. For the latter, the lightest
neutralino as WIMP DM candidate is considered. Under the assumption that it is
the only WIMP responsible for the present dark matter energy density, some of the
underlying parameter spaces of the supergravity- and anomaly mediated MSSM is
considered and the anapole moment is evaluated in this regions.

Finally, the key results are summarized in chapter 7 and an outlook is given.
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Chapter 2

Basics of Dark Matter

In this chapter the concept of dark matter (DM) is introduced and some of the
observational evidence and basic production mechanisms are presented. We will
also summarize the basics of today’s understanding of cosmology in the form of the
ΛCDM model.

2.1 Standard Cosmology
Based on the observation by Hubble, that the velocity of which galaxies drift apart
from each other is proportional to their distance, the Big Bang scenario was de-
veloped. The basic idea is, that if the distance between galaxies grows with time,
they were closer together in the past. Thus, a common origin in both space and
time was proposed. The present value of this rate is given by the Hubble constant

H0 = 100 · h km s−1Mpc−1, (2.1)

where h ≈ 0.67 is introduced as a dimensionless quantity [1, 3] and allows the study
of H0 irrespective of the issues surrounding its measurement. For this reason many
quantities in this framework depend on h.

More general, the time dependent expansion of the Universe is described by the
Hubble rate

H(t) ≡ da/dt

a
, (2.2)

where a is the scale factor (with the value today set to a0 ≡ 1) describing the change
of length due to the Universe’s expansion and accompanies the spacial components
of the line element

ds2 = dt2 − a2
(

dr2

1− kr2
+ r2dΩ2

)
, (2.3)

for which homogeneity and isotropy is assumed. Further, this line element defines
the Friedmann-Robertson-Walker (FRW) metric gµν . The factor k ∈ {−1, 0,+1}
describes the curvature of an open, flat and closed Universe respectively.
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Chapter 2 Basics of Dark Matter

A common choice to describe the content of the Universe is to model it as a perfect
fluid with energy momentum tensor

Tµν =

(
ρ

−p 13×3

)
, (2.4)

where ρ is the energy density and p is the pressure. Its dynamics are described by
the Einstein equation

Rµν −
1

2
Rgµν − Λgµν = 8πGTµν , (2.5)

where Rµν and R are the Ricci-tensor and Ricci-scalar respectively, while Λ is the
cosmological constant. For a pressureless fluid, one can solve the time- and space-like
components and obtain the Friedmann equations

H2 =
8πG

3
ρ+

Λ

3
− k

a2
(2.6a)

ä

a
+

1

2

ȧ2

a2
= −4πGp+

Λ

2
− 1

2

k

a2
(2.6b)

It is useful to rewrite eq. (2.6a) as

H 2

[
Ωm +Ωr +ΩΛ − 1

]
= k, (2.7)

where H ≡ dln(a)/dt = Ha is the conformal expansion rate, Ωm ≡ ρm/ρc, Ωr ≡
ρr/ρc and ΩΛ ≡ Λ

8πG/ρc are the dimensionless energy density of non-relativistic
matter, radiation and vacuum energy respectively, and ρc ≡ 3H2

8πG is the critical
density. Observations tell us, that the curvature is flat, e.g. k ≈ 0 [1], such that
eq. (2.7) reduces to

Ωm +Ωr +ΩΛ = 1. (2.8)
In general, the thermodynamic equation of state (no summation implied),

pj = wjρj , with wj =


0 non-rel. matter
1/3 rel. matter
−1 vacuum energy

(2.9)

describes the relationship between pressure and density of any type of matter (and
vacuum energy here). One consequence is, that the energy density of the respective
type of energy has a different time-dependency. Explicitly [4],

ρj(a) ∼


a−3 non-rel. matter
a−4 rel. matter
const. vacuum energy

(2.10)

4



2.2 Observational Evidence

implying that in the very early stages of the Universe, the dominating type of en-
ergy was relativistic matter (radiation). With ongoing expansion, this contribution
decreased and the non-relativistic matter started dominating eventually. The in-
termediate epoch, at which the radiation and matter energy densities where equal,
is called matter-radiation equality and plays an important role for the large scale
structures and the cosmic microwave background. Today, the dominating source of
energy density is the vacuum energy, contributing around 70% to the total energy
content of the Universe.

The ΛCDM model is then realized by the spatially flat k = 0 FRW metric of
eq. (2.3). The matter contribution Ωm is further separated into baryonic (visible)
matter Ωb and cold dark matter (CDM) Ωχ. The latter - the DM relic density -
serves as key quantity for testing new models describing DM candidates and de-
pends heavily on the exact framework of the physics beyond the SM. Some ideas are
summarized in section 2.3.

2.2 Observational Evidence
Some examples of evidence hinting at DM ranging from scales of galaxies and galaxy
clusters to cosmological scales are summarized here [2].

2.2.1 Galaxies and Galaxy Cluster
The apparent deviation of the rotation curves of galaxies from the Newtonian pre-
diction is hinting strongly towards a new form of matter. The discrepancy is due to
the fact, that the observed velocity of the outer parts of galaxies is approximately
constant, while from Newtonian physics one would expect a relation

v(r) =

√
GM(r)

r
, (2.11)

with M(r) = 4π
∫
drr2ρ(r) leading to a dependency beyond the optical disk of

v ∼ 1/
√
r, (2.12)

where v is the circular velocity of the galaxy with radius r. The measurement,
that the velocity of objects in the outer regions is nearly constant with respect to
r, can only be explained if there is additional - non-visible - matter with a density
distribution ρnew ∼ 1/r2. This new presence of non-visible, or dark matter (DM),
is then dominantly responsible for the comparably high- and constant velocities in
the outer region of galaxies. This characteristic is best studied by the observation
of Low Surface Brightness (LSB) galaxies, whose mass distribution is dominated by
the presence of DM. How this distribution, also known as DM halo, is shaped in the
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Chapter 2 Basics of Dark Matter

inner regions, is still subject of research: it could present a cored or cuspy profile.
For the outer regions on the other hand, the rotation curves of disk galaxies strongly
suggest a spherical halo shape.

Another form of observational evidence of DM can be found via the effect of weak
gravitational lensing around elliptical galaxies. The strong gravitational potential
generated by the mass aggregated in the galaxy bends the spacetime around the cen-
ter. Since light from behind the galaxy (from our point of view) follows the geodesic
"around" the galaxy, a unique shape is generated. Then, the mass generating this
effect can be deduced and compared to the mass from visible matter.

On the scale of galaxy clusters the first hints of DM were observed in 1933 by F.
Zwicky [5, 6] who found using velocity dispersion measurements that the mass-to-
light ratio in the Coma cluster is two orders of magnitudes higher than that in the
solar neighborhood. There are several ways of determining the mass of a cluster.
Common methods include gravitational lensing, the profile of X-ray emissions and
relating the observed kinetic energy with the potential using the Virial theorem.
Then, one can compare this data with estimates of the mass of visible matter only.

2.2.2 Cosmic Microwave Background
The evidence based on galaxies and galaxy clusters allows us to study the DM
distribution on comparably small scales. In order to quantify its contribution to the
total energy density of the Universe, larger scales have to be probed. In fact, valuable
information can be extracted from the omnipresent Cosmic Microwave Background
(CMB).

At early times when the temperature was high enough, neutrinos, photons and
electrons were in thermal equilibrium via the processes

ν̄e e
− →W ∗ → ν̄e e

− and e−γ → e∗ → e−γ. (2.13)

The interaction rate is given by

Γ := σvn, (2.14)

where σ is the cross section, v the relative velocity and n the number density. Since
the Universe expands, the number density persistently dropped until the processes
of eq. (2.13) could no longer occur. The equilibrium stopped once the Hubble rate,
eq. (2.2), became larger than the interaction rate. The epoch, where they were
equal,

Γ(Tdec.) = H(Tdec.), (2.15)

defines the decoupling temperature Tdec. ≈ 0.26 eV ≈ 3000K at which the photons
decoupled from matter [4]. In fact, these photons are still present but with reduced
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2.2 Observational Evidence

temperature T0 ≈ 2.7K ≈ 60GHz due to the expansion of the Universe. As ap-
parent, this temperature lays in the microwave band, thus giving rise to the name
Cosmic Microwave Background (CMB). First signs of this signature where observed
in 1941 by McKellar [7], but it took until 1964 where Penzias and Wilson accident-
ally discovered a background noise in the microwave band [8], now identified with
the CMB. This discovery was a major milestone for the Big Bang hypothesis and
delivered observational evidence contradicting the competing steady state theory.

Instruments to study the CMB include the Wilkinson Microwave Anisotropy
Probe (WMAP) mission [9] on the observational side, which surveyed the back-
ground over the full sky. After accounting for relative corrections due to earth’s
movement, it was found that the CMB is remarkably smooth, with deviations be-
ing of order δT/T . 10−5. However, the whole sky - as a surface - should not be
causally connected, so there needs to be an explanation of why the temperature is
so uniformly similar. One theory is that the Universe underwent an epoch of very
rapid expansion such that these regions were causally connected. As it turns out,
this inflationary period would be driven by a cosmological constant and not by any
type of matter.

In conclusion, the CMB permits the study of all cosmological model parameters,
since it has all physical information present at the decoupling epoch encoded. These
will be imprinted into temperature fluctuations around T0 and inhabit statistical
information about physical quantities. Leading physical effects on the CMB are

• At the time of photon decoupling there are acoustic oscillations in the photon-
baryon composite due to the presence of gravitational wells caused by DM.
While the composite is pulled down the potential, and if its temperature cannot
adjust fast enough, a pressure is generated acting against the potential. This
induces a temperature fluctuation.

• The Sachs-Wolfe effect describes the effect of general relativity on the CMB
photons, namely the effect caused by a strong gravitational potential changing
over the time a photon is traveling through it. Before and during the decoup-
ling epoch, this effect is hardly separable from the acoustic oscillations. After
decoupling however, when the photons are streaming through the Universe,
this effect can have sizeable effects and has to be integrated over the line of
sight.

From the analysis of the CMB one can infer the values of

Ωtotal(t0), ΩΛ, Ωm(t0)h
2, Ωb(t0)h

2, (2.16)

where each has a separate effect on the shape of the CMB power spectrum (see [4,
Chapter 1.4]).
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Chapter 2 Basics of Dark Matter

2.2.3 Large Scale Structures
Hints at dark matter can also be found in the visible matter distribution in the Uni-
verse. In particular how the large scale structures like (super-) galaxy clusters and
voids are distributed. Their history is governed by the time evolution of primordial
seeds in the energy distribution in the very early epoch of the Universe. Since DM
is the dominating matter form, the gravitational dynamics are mainly governed by
it, driving the aggregation and formation [10].

The basic idea here is, that one studies the deviations of the matter density field
with respect to its mean. That is, one separates the local density ρ(x, t) into

ρ(x, t) = ρ̄(τ)(1 + δ(x, τ)), (2.17)

where ρ̄ is the spatial average and δ(x, τ) is the density contrast. The peculiar
velocity is given by the velocity deviating from the Hubble flow, e.g.

ui(x, τ) ≡ vi(x, τ)− H xi. (2.18)

where vi is the ordinary velocity. In both eq. (2.17) and eq. (2.18), xi ≡ ari and
τ ≡

∫ t
t0=0

dt′

a(t′) are the comoving distance and comoving time respectively. The
conservation of the number density in phase space f(x,p, τ) implies that its total
derivative vanishes:

df

dτ
=
∂f

∂τ
+
∂x

∂τ
· ∇f +

∂p

∂τ
· ∇pf (2.19a)

=
∂f

∂τ
+

p

am
· ∇f − am∇Φ · ∇pf = 0. (2.19b)

This equation is called Vlasov-equation where Φ is the cosmological potential de-
scribing the gravitational source due to the fluctuations only. Taking momentum
moments of the Vlasov-equation, one obtains in lowest order the equations

∂δ(x, τ)

∂τ
= −∇ · [(1 + δ(x, τ))u(x, τ)] (2.20a)

∂uj
∂τ

+ H uj + ui∇iuj = −(∇Φ)j −
1

ρ
∇i(ρσij) (2.20b)

corresponding to the continuity- and Euler equation respectively. The term σij is
the stress-tensor and can be taken to be diagonal and proportional to the pressure of
the fluid. Since in this context, the structure formation is mainly governed by cold
DM modeled as a pressureless fluid, the tensor σij vanishes at first order. However
this approximation is not valid on all scales [10].

With these equations one can study the formation of large scale structures and
test the resulting statistical predictions in the form of the matter power spectrum
P (k) defined by

〈δ(k)δ(k′)〉 = (2π)3δ(3)(k + k′)P (k). (2.21)
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2.3 Production Mechanisms and WIMPs

Here, δ(k) is the density contrast in momentum space and 〈 · 〉 is the correlation
function. This powerspectrum can be compared with both observations and N -
body simulations. The key point is, that the smoothness of the CMB, and thus the
homogeneous distribution of the photon-baryon composite in the early epoch, cannot
serve as a source for the observed structures alone. Instead, one needs additional
matter in order for the observed structures to have formed in the given time of the
Universe. This additional matter is identified with the DM, whose effect on the
structure formation dominates over the contribution from visible matter.

2.3 Production Mechanisms and WIMPs
Several mechanism have been developed to explain the present energy density of
DM, its relic abundance. The most popular ideas are [11]:

1. Freeze-out mechanism: Similar to the decoupling of photons, starting in
thermal equilibrium, when the interaction rate between the DM and SM drops
below the Hubble rate, its comoving number density becomes constant and
freezes out due to lack of interaction processes occurring.

2. Freeze-in mechanism: Here, the DM was never in equilibrium with the
SM (for example achieved with a small coupling y ∼ O

(
10−7

)
). Once the

visible sector producing the DM becomes Boltzmann suppressed, the comoving
number density of the DM freezes-in.

3. Dark Freeze-out mechanism: Similar to the freeze-in mechanism, DM was
never in equilibrium with the visible sector. However, it was in equilibrium
with its own dark sector populated by a freeze-in type yield from the visible
sector. The DM particle annihilates into particles of the dark sector only until
the Hubble rate dominates over this interaction rate.

4. Reannihilation mechanism: Here, the dark sector is thermalized and dark
freeze-out happened prior to the ending of the yield from the visible sector.
Thus, the relic abundance is increased by these processes until the yield stops,
after which the abundance freezes out.

In this work we will focus on weakly interacting massive particles (WIMPs), whose
relic abundance is produced via the freeze-out mechanism. An advantage of the
model is, that a WIMP naturally obtains the correct relic abundance in the early
epoch of the Universe via the same interactions, with which it is detectable [12].
The WIMP relic density is coined by the physics in the era preceding Big Bang
Nucleosynthesis (BBN). Currently, BBN is the earliest time we can probe, where
the elements D, 3He, 4He and 7Li were synthesized within approximately the first
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Chapter 2 Basics of Dark Matter

three minutes. Thus, in order to calculate the WIMP relic density, one has to make
assumptions about the pre-BBN Universe.

The standard computation of freeze-out assumes conserved entropy of both matter
and radiation, thermal production of the WIMPs, that their decoupling occurred
while the Universe was dominated by radiation and that they were in chemical-
and thermal equilibrium before decoupling. Then, production and annihilations of
WIMP pairs took place via SM particles:

χχ̄↔ e+e−, µ+µ−, qq̄,W+W−, ZZ,HH, . . . (2.22)

Processes from right to left occurred as long as the SM particles in the plasma had
enough energy to produce the DM candidate, e.g. T � mχ. The WIMP annihilation
was in equilibrium with the production processes with common rate

Γann = 〈σannv〉neq, (2.23)

where σann is the WIMP cross section, v the relative velocity and neq the number
density at chemical equilibrium. The angles 〈 · 〉 is the average over the thermal dis-
tribution. As the Universe expanded, the number density of the interacting particles
decreased, causing the annihilation- and production rates to decline accordingly.
Then, when the annihilation rate Γann became smaller than the Hubble rate,

Γann < H, (2.24)

chemical decoupling occurred and the number of comoving WIMPs attained a (ap-
proximately) constant value, viz. the number density decreased as ∼ 1/r3 with the
expansion of the Universe. This is the freeze-out mechanism.

In many cases, the WIMP is assumed to be a Majorana fermion such that it
coincides with its own antiparticle: χ = χ̄. In particular this is the case for the
models studied in this work.

The present WIMP density can be calculated via [12]

dn

dt
= −3Hn− 〈σannv〉(n2 − n2eq), (2.25a)

ds

dt
= −3Hn. (2.25b)

In eq. (2.25) time is denoted by t, the entropy densities by s and n (neq) stands for
the number density (at equilibrium). The term ∼ H is responsible for the dilution
due to the expansion, while the term ∼ 〈σannv〉 accounts for annihilations and inverse
annihilations of the WIMP. Combining these two equations by introducing the new
parameters Y = n/s and x = m/T , where T denotes the temperature of the photon
bath, one obtains

dY

dx
=

1

3H

ds

dx
〈σannv〉(Y 2 − Y 2

eq). (2.26)
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2.3 Production Mechanisms and WIMPs

The energy- and entropy density can be related to the photon temperature via

ρ =
π2

30
geff(T )T

4, s =
2π2

45
heff(T )T

3, (2.27)

where geff (heff) stands for the effective degree of freedom of the energy (entropy)
density. With

g
1/2
∗ =

heff

g
1/2
eff

(
1 +

1

3

T

heff

dheff
dT

)
, (2.28)

one can rewrite eq. (2.26) as

dY

dx
= −

(
45

πM2
Pl

)−1/2 g
1/2
∗ m

x2
〈σannv〉(Y 2 − Y 2

eq). (2.29)

where MPl = 1/
√
G ≈ 1.2 × 1019 GeV is the Planck mass. This equation is most

easily solved numerically with initial conditions Y = Yeq at x ≈ 1 resulting in today’s
Y0. Then, one can calculate the WIMP relic density as

Ωχh
2 =

ρ0χh
2

ρ0c
=
mχs0Y0h

2

ρ0c
. (2.30)

The zero as sub- or superscript denotes the present value of the respective quantity.
One important feature of this framework is, that decreasing 〈σannv〉 in eq. (2.26)
leads to an increased WIMP number density and thus to an augmented relic abund-
ance. Since the quantity 〈σannv〉 depends on the interaction strength, it is expected
that a weaker coupling leads to a higher relic density.

Irrespective of the production mechanism responsible for the relic density, the
theoretical prediction has to be compared with observational data. For example the
combined limit from the WMAP+eCMB+BAO+H0 data set gives a cold DM relic
density [9, Table 17] of

Ωχh
2 obs.
= 0.1153± 0.0019, (2.31)

restricting possible DM models.
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Chapter 3

Supersymmetry in a Nutshell

In this chapter the basics of supersymmetry as extension of the Standard Model of
particle physics are introduced.

3.1 Symmetries in Particle Physics
The importance of symmetries can be found in probably every field in physics. Par-
ticularly in particle physics, symmetries can allow or forbid particles and interactions
of a model. The mathematical description is formulated in terms of the action

S =

∫
d4x L, (3.1)

where L = L(φ,Aµ) is the Lagrangian being a function of the fields and interac-
tions of the model. According to Noether’s theorem, whenever the action remains
unchanged under a transformation

S → S′ = S + δS = S, (3.2)

there exists a corresponding conserved quantity. It is said, that the system possess
the symmetry corresponding to the transformation. In classical physics, if a sys-
tem is invariant under translations, the momentum is conserved etc. However this
concept is more general and can be applied to any symmetry. The Lagrangian L
can be considered to be the building block of a theory1 and encapsulates arguably
all physical information about a system. From it, equation of motions, scattering
amplitudes, decay widths and cross sections can be computed.

Since the laws of nature do not change with respect to Lorentz transformations, it
is reasonable to demand that also L should be invariant with respect to them. One
example is the free scalar theory,

Lfree =
1

2
∂µφ∂

µφ−1

2
m2φ2, (3.3)

1Up to redefinitions and integration-by-part identities
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Chapter 3 Supersymmetry in a Nutshell

in which the fields φ transform trivially under the Lorentz group and describe a
spin-0 particle. Since φ transforms trivially, the Lagrangian is Lorentz invariant.

The free theory of a complex scalar,

Lfree = ∂µφ∂
µφ∗−m2φφ∗, (3.4)

is not only Lorentz invariant, but additionally invariant under the global U(1) trans-
formation

φ→ e−iαφ, α ∈ R. (3.5)
The corresponding Noether current,

Jµ =
∂Lfree
∂(∂µφ)

δφ

δα
+

∂Lfree
∂(∂µφ∗)

δφ∗

δα
= −i(φ∂µφ∗−φ∗ ∂µφ) (3.6)

and charge
Q =

∫
d3xJ0 (3.7)

are immediate consequence of Noether’s theorem [13, Chapter 3.3]. If we allow the
parameter in eq. (3.5) to be spacetime dependent, α = α(x), the derivatives in
eq. (3.4) have to be replaced by covariant derivatives for the Lagrangian to remain
invariant:

∂µ → Dµ ≡ ∂µ + ieAµ. (3.8)
The gauge field Aµ can be identified with the photon field. The U(1) symmetry
with a spacetime dependent parametrization α(x) is now considered to be local (or
gauged) and the Lagrangian reads

L = DµφD
µφ∗−m2φφ∗. (3.9)

Note, that the covariant derivative introduces interactions between the charged
scalar and the photon. Often, this gauge redundancy (or invariance) is referred
to as gauge symmetry. Adding the kinetic term of a photon, a spin-1 vector field,
leads to the model of scalar quantum electrodynamics (QED), in which a charged
spin-zero particle interacts with photons:

Lscalar QED = −1

4
FµνF

µν +Dµφ(D
µφ)∗ −m2φφ∗. (3.10)

Here Fµν = i/e [Dµ, Dν ] is the field strength tensor.
Similarly, the SM is a gauge theory whose group structure is determined by

SU(3)c × SU(2)L × U(1)Y , corresponding to the color, left and hypercharge sym-
metries respectively. The SM consists of gauge fields, three generations of fermions
and an uncharged Higgs scalar. After the latter obtains a vacuum expectation value
(vev), the SM gauge group is broken down to SU(3)c×U(1)em whereby the fermions
and electroweak gauge bosons acquire masses.

14



3.2 Why Supersymmetry?

3.2 Why Supersymmetry?
Although the Standard Model (SM) of high-energy physics allows us to study
particles and their interactions in the Universe remarkably precisely, some phe-
nomena are unexplained such that more physics remains to be discovered. Some
examples showing our lack of understanding include [14, Chapter 1.4]

• We do not have a non-classical model of gravity describing phenomena at the
quantum level. Our current best model, Einstein theory, is non renormalizable
at very small length scales (equivalently at high energies Mpl = 1/

√
G ≈

1.2× 1019 GeV).

• The hierarchy problem: Why are the electroweak- and Planck scale so different
with MEW/Mpl ≈ 10−15? Related is the necessity of fine tuning order by order
in perturbation theory due to the sensitivity of the SM Higgs potential to UV
physics.

• Strong CP problem: Ad hoc, no symmetry forbids a term θFµνF̃µν in the
QCD part of the SM Lagrangian, where Fµν is the QCD field strength tensor
and F̃µν its dual. Experimentally, this parameter is unnaturally small with
θ < 10−8.

• Is there a reason for the internal structure of the SM (gauge group SU(3)c ×
SU(2)L × U(1)Y , three generations of fermions, 3 + 1 spacetime dimensions,
origin of all SM parameters, ...)?

• What dark energy and dark matter is.

Since these (and other) problems cannot be solved or explained within the SM,
extensions have to be made. Some of these add new particles and/or interac-
tions to the Lagrangian, while others extend the symmetries. In the latter case,
one can either modify internal symmetries, like embedding the SM gauge group
SU(3)c × SU(2)L × U(1)Y into a more general grand unified theory (GUT), or
modify spacetime symmetries themselves. In this regard, commonly studied ideas
include adding extra dimensions or imposing a new symmetry relating matter and
interaction fields: supersymmetry (SUSY).

SUSY solves some of the mentioned problems. In particular it unifies the gauge
couplings of the SM, offers a DM candidate - usually the lightest neutralino - and
resolves the hierarchy issue and the related sensitivity of the SM Higgs potential to
a high energy scale. Its mass - in the SM - obtains quadratic divergent corrections
from higher order loop diagrams proportional to the cut-off scale. For a cut-off at the
Planck scale, these diagrams lead to corrections which are 30 orders of magnitudes
larger than the Higgs mass itself [15]. In a supersymmetric extension however,
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Chapter 3 Supersymmetry in a Nutshell

every SM loop diagram with fermions is matched with a similar diagram with the
superpartner of the fermion running in the loop. In unbroken SUSY, these two terms
cancel each other and protect the SM Higgs boson from quantum corrections.

While there are many of these useful consequences of SUSY, the idea itself seemed
to be an academical curiosity first, and only later turned out to be useful for solving
problem in the SM [16]. Apart from the SM, it also offers insights into different
aspects of general quantum theories and general relativity.

3.3 Supersymmetric Lagrangians
3.3.1 The Supersymmetry Algebra
SUSY can be seen as naturally emerging from analyzing the scattering matrix S
(S matrix) in a general way using group theoretical arguments. In this elegant
and concise approach the so called no-go theorem, also known as Coleman-Mandula
theorem, plays a central role [17, Chapter 1.2]. This theorem states that the only
symmetries of the S matrix can be the direct product of the Poincaré group (e.g.
Lorentz group + translations) with internal symmetries. Further symmetries would
overconstrain the S matrix and would make it non-physical. For example in 2 → 2
scattering, the S matrix is only a function of the scattering angle, if only Poincaré
is taken into account. A further symmetry would constrain this angle to a certain
value which renders the S matrix non-analytical. However, extending the Lie algebra
to a so called graded-Lie algebra allows for an additional symmetry between bosons
and fermions, which does not violate the no-go theorem. As it turns out [18], this
is indeed the only possibility to extend the Poincaré algebra in such a way that
the Coleman-Mandula theorem is not violated. So not only does it circumvent the
original theorem, but it also is the only way to do it. This means that the SM gauge
group can be extended with an additional, non-internal symmetry. Except noted
differently, only D = 4 and N = 1 (one set of SUSY generators) SUSY is discussed
here.

The SUSY algebra is a graded-Lie algebra, meaning that anticommutation rela-
tions and spinorial/Grassmannian generators Qα and Q†

α̇ replace the usual commut-
ation relations between bosonic-like generators for the extended part. Additionally
to the Poincaré algebra, the SUSY algebra reads

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0, (3.11a)

{Qα, Q†
α̇} = 2σµαα̇Pµ, (3.11b)

where the latter equation encapsulates the non-trivial extension of the Poincaré
algebra (for the convention see section 3.3.2).
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3.3 Supersymmetric Lagrangians

3.3.2 Chiral Supermultiplets: The Wess-Zumino Model
The arguably easiest example of a supersymmetric theory is the Wess-Zumino model
[19]. Following [15, Chapter 3.2], Dirac spinors ψD are represented by left-and right
handed anti-commuting Weyl spinors ξ and χ† respectively:

ψD =

(
ξα
χ†α̇

)
, ψD =

(
χα ξ†α̇

)
= ψ†

D

(
1

1

)
, (3.12)

with spinor space indices α, α̇ = 1, 2 for the left and right handed spinors respectively.
These are raised and lowered with the ε-symbol, defined via

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0. (3.13)

Such that for example ξα = εαβξ
β and χ†

α̇ = εα̇β̇χ
†β̇. The convention for contracting

indices between different spinors is such that

ξχ ≡ ξαχα ≡ ξαεαβχ
β = . . . = χξ. (3.14)

Note the position of the undotted indices, αα, while dotted indices are always con-
tracted from bottom left to top right, α̇

α̇ . The Pauli matrices take the form

σ0 = σ0 =

(
1

1

)
, σ1 = −σ1 =

(
1

1

)
, (3.15a)

σ2 = −σ2 =
(

−i
i

)
, σ3 = −σ3 =

(
1

−1

)
. (3.15b)

The basic ingredients needed to construct the Wess-Zumino model are:

1. The Lagrangian of a free, massless charged scalar

2. The Lagrangian of a free, massless left-handed fermion

3. Imposing SUSY-transformation: The scalar and fermion should transform into
each other

4. The action should remain invariant under this transformation

5. SUSY algebra has to be close; in other words, we want to find a representation
of the superalgebra

6. Find allowed interaction terms
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Chapter 3 Supersymmetry in a Nutshell

The first two points are well known, the respective Lagrangians read

Lscalar = ∂µφ∗ ∂µφ and Lfermion = iψ†σµ∂µψ (3.16)

and together form the 3 + 1-dimensional action

S =

∫
d4x (Lscalar + Lfermion). (3.17)

The scalar and fermion are related to each other via their transformation behavior
under SUSY. In fact, the boson φ (and φ∗) is imposed to transform into the fermion:

δφ ∼ ψα ⇒ δφ = εψ (δφ∗ = ε†ψ†). (3.18)

The equality after "⇒" is due to the spinor structure of ψα on the left hand side
and holds up to an arbitrary factor. Note, that ε is an infinitesimal anti-commuting
spinorial parameter of mass dimension −1/2. With that, the total scalar Lagrangian
transforms as

δLscalar = ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ. (3.19)

Since the action has to remain invariant, the corresponding transformed fermion
Lagrangian has to cancel this contribution (up to a boundary term):

δLscalar + δLfermion
!
= ∂µ(. . .), (3.20)

Keeping in mind the mass dimensions as well as the respective Lorentz- and spinorial
structure, the variation of the fermion is fixed to be of the form:

δψα ∼ (σµε†)α∂µφ, δψ†
α̇ ∼ (εσµ)α̇∂µφ

∗. (3.21)

By plugging this transformation behavior into eq. (3.20) and applying the identities

i) [σµσν + σνσµ]α̇
β̇
= 2ηµνδβ̇α̇, ii) [σµσν + σνσµ] β

α = 2ηµνδβα, (3.22)

one finds the proportionality constants −i and i respectively and obtains:

δψα = −i(σµε†)α∂µφ, δψ†
α̇ = i(εσµ)α̇∂µφ

∗. (3.23)

Now, the only thing which has to be checked is if the SUSY algebra is closed, e.g.
if the commutator of two SUSY transformations is another symmetry of the theory.
Let ε1 and ε2 be the parameters characterizing the SUSY transformation of φ and
ψ. Then one obtains

δε1δε2φ = δε2(ε1) = ε1(−i)σµε†2∂µφ (3.24)
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3.3 Supersymmetric Lagrangians

and thus
(δε1δε2 − δε2δε1)φ = i(−ε1σµε†2 + ε2σ

µε†1)∂µφ. (3.25)
As apparent, the RHS is proportional to the generator of spacetime translation.
However a similar calculation for the transformation of the fermion leads to

(δε1δε2 − δε2δε1)ψα = i(−ε1σµε†2 + ε2σ
µε†1)∂µψα

+ non-zero, (3.26)

where the non-zero terms only vanish on-shell. This means, that SUSY is only
satisfied in the on-shell limit. This problem can be circumvented by introducing an
auxiliary field F to the Lagrangian

Laux = F ∗F, with [F ] = 2 (3.27)

which transforms under SUSY as

δF = −ε†σ̄µ∂µψ, δF ∗ = i∂µψ
†σ̄µε. (3.28)

This auxiliary field is responsible for the cancellation of any off-shell part violation
of the SUSY algebra as in eq. (3.26). Now, also the transformation behavior of ψ
has to be altered accordingly,

δψα = −i(σµε†)α∂µφ+ εαF, δψ†
α̇ = i(εσµ)α̇∂µφ

∗ + ε†α̇F
∗. (3.29)

such that indeed δS = 0 while also accommodating that the SUSY algebra closes
off-shell. Indeed, one finds

(δε1δε2 − δε2δε1)X = i(−ε1σµε†2 + ε2σ
µε†1)∂µX (3.30)

for any X = φ, φ∗, ψ, ψ†, F, F ∗. The triple (φ, ψ, F ) is referred to as a chiral super-
multiplet.

In order to derive the interactions between scalars and spinors, consider n (i =
1, . . . , n) copies of free Wess-Zumino Lagrangians:

Lfree = ∂µφi∗∂µφi + iψi†σ̄µ∂µψi + F i∗Fi. (3.31)

The interaction Lagrangian also has to be invariant under SUSY transformations,
such that the most general ansatz can be chosen to be

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ h.c. (3.32)

From
0

!
= δLint

∣∣∣∣
4 spinors

, (3.33)

one finds that
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Chapter 3 Supersymmetry in a Nutshell

• δW ij/δφk is totally symmetric in i, j, k,

• δW ij/δφ∗k = 0, e.g. W ij is holomorph in φk,

motivating the ansatz
W ij =M ij + yijkφk (3.34)

with yijk a totally symmetric Yukawa coupling and M ij a symmetric mass matrix.
Furthermore, this defines implicitly the superpotential

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk, (3.35)

such that
W ij =

δ2

δφiδφj
W. (3.36)

Note, that in general the superpotential can have a term of the type Liφi with
[L] = 2 if φi is a gauge singlet. Since in the SM no fermion is a gauge singlet, so
is no corresponding superpartner. However this term plays a role in spontaneous
SUSY-breaking. Similar proceeding for the condition 0

!
= δLint

∣∣
∂

shows that also
W i is related to the superpotential:

W i =
δW

δφi
. (3.37)

Using the equation of motion for the auxiliary fields, they can be replaced in the
Lagrangian in favor of the superpotential. Finally, in terms of the superpotential
W , the Lagrangian reads

L = ∂µφi∗∂µφi + iψi†σ̄µ∂µψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i . (3.38)

3.3.3 Gauge Supermultiplets
Following [15, Chapter 3.3], the supersymmetric partner of a gauge field Aaµ is called
a gaugino λa with index a running over the adjoint representation of the gauge
group. The SUSY invariant Lagrangian reads

L = −1

4
F aµνF

µνa + iλ†aσ̄µ∇µλ
a +

1

2
DaDa (3.39)

with the covariant derivative of the gaugino

∇µλ
a = ∂µλ

a + gfabcAbµλ
c (3.40)
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3.3 Supersymmetric Lagrangians

and Da is an auxiliary field and plays a similar role as F before. Interactions between
a chiral supermultiplet and a gauge multiplet are introduced by replacing the ordin-
ary derivatives with covariant derivatives. Since SUSY commutes with gauge trans-
formations, all elements of a chiral supermultiplet are in the same representation
of the gauge group. This means, that under an infinitesimal gauge transformation
expressed by Λa,

Xi → Xi + igΛa(T aX)i, (3.41)
where the matrices T a correspond to the representation to which all of the Xi =
φ, ψ, F belong to. With the mentioned introduction of the covariant derivative, new
terms including interactions between gauginos and matter fields are generated, which
are not compatible with SUSY invariance. Thus, once again the transformation
behavior in δFi has to be altered. After all these steps have been taken, the scalar
potential in Ltotal reads

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa =W ∗
i W

i +
1

2

∑
a

g2a(φ
∗T aφ)2 > 0. (3.42)

The first and second term are called "F -term" and "D-term" contributions, respect-
ively.

3.3.4 Superspace and Superfields
Following [15, Chapter 4], an alternative approach to the direct construction is
based on objects called superfields living in superspace as introduced by Salam and
Strathdee in 1974 [20]. This formalism is used to discuss supersymmetric theor-
ies in a more formal and theoretical way. Instead of working with spacetime only,
the usual coordinates xµ are extended with sets of complex, anti-commuting two
component spinors θα and θ†α̇ whose components behave like Grassmann numbers.
The coordinates (xµ, θα, θ†α̇) define the superspace. The integration- and differenti-
ation behavior of the Grassmann coordinates allows manipulation- and projection
techniques which are used to extract supersymmetry-respecting terms for the Lag-
rangian. For example, the following equations hold:

∂

∂θα
(ψθ) ≡ ∂

∂θα

(
ψβθβ

)
=

∂

∂θα

(
θβψβ

)
= δβαψβ = ψα, (3.43a)

∂

∂θα
(θθ) ≡ ∂

∂θα

(
θβθγεβγ

)
= εαγθ

γ − εβαθ
β = 2θα, (3.43b)∫

d2θ θθ = 1,

∫
d2θ† θ†θ† = 1. (3.43c)

The integration measures are defined as

d2θ ≡ −1

4
dθα dθαεαβ and d2θ† ≡ −1

4
dθ†α̇ dθ

†
β̇
εα̇β̇. (3.44)
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Explicitly, the first integral in eq. (3.43c) reads:∫
dθα dθβεαβ θδθγε

γδ = εαβε
γδ

∫
dθα

(
δβδ θγ − θδδ

β
γ

)
= 2εαβε

αβ = −4, (3.45)

where the property of Grassmann numbers has been used to interchange integral
and derivative.

A general superfield S = S(x, θ, θ†) encapsulates all component-fields of a super-
multiplet, e.g. the spin-0-, spin-12 - and auxiliary field of a chiral supermultiplet.
Since it is a function of both bosonic spacetime coordinates xµ and fermionic anti-
commuting coordinates θα and θ†α̇, we can make the following expansion in coordin-
ates:

S(x, θ, θ†) = a+ θξ + θ†χ† + θθb+ θ†θ†c+ θ†σµθvµ+

+ θ†θ†θη + θθθ†ζ† + θθθ†θ†d. (3.46)

Latin characters represent scalar- or vector fields, while Greek characters stand for
spinorial, anticommuting fields. Due to the Grassmann nature of the additional
coordinates, all higher order terms vanish. Note

• The general superfield has 16 fermionic- and 16 bosonic degrees of freedom,
while, for example, the chiral supermultiplet only contains 4 + 4 = 8. This
means, that the general superfield in eq. (3.46) is a reducible representation of
supersymmetry.

• Using the integration measures as defined in eq. (3.44), one can project out cer-
tain components of S(x, θ, θ†). This will be very important when constructing
the invariant action later on. Some examples are:∫

d2θ S(x, θ, θ†) = b(x) + θ†ζ†(x) + θ†θ†d(x)∫
d2θ† S(x, θ, θ†) = c(x) + θη(x) + θθd(x)∫

d2θ d2θ† S(x, θ, θ†) = d(x)

• Dirac delta functions in superspace can be used for the same purpose. With
respect to the fermionic integration measures they are:

δ2(θ − θ′) = (θ − θ′)(θ − θ′), δ2(θ† − θ′†) = (θ† − θ′†)(θ† − θ′†).

• It is possible to conduct simplifications via integration-by-parts in Grassmann
coordinates: ∫

d2θ
∂

∂θα
=

∫
d2θ†

∂

∂θ†α̇
= 0.
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One appealing feature of this formalism is the observation, that SUSY transforma-
tion correspond to translations in superspace, e.g.

√
2δεS(x, θ, θ

†) = −i(εQ̂+ ε†Q̂†)S(x, θ, θ†) (3.47a)
= S(xµ + iεσµθ† + iε†σ̄µθ, θ + ε, θ† + ε†)− S(xµ, θ, θ†) (3.47b)

with differential operators

Q̂α = i
∂

∂θα
− (σµθ†)α∂µ, Q̂†α̇ = i

∂

∂θα̇
− (σ̄µθ)α̇∂µ. (3.48)

One can check that these differential operators satisfy the SUSY algebra and can
use them to work out the transformation behavior of all fields in S.

As mentioned before, the general superfield S is a reducible representation of
SUSY since the degrees of freedom (dof) do not match the field content of neither
the chiral supermultiplet nor the vector supermultiplet. For the chiral supermultiplet
the redundant dofs of a superfield Φ(x, θ, θ†) can be removed using the (anti-) chiral
Dα (D̄α̇) covariant derivatives2

Dα :=
∂

∂θα
− i(σµθ†)α∂µ, D̄α̇ := − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ, (3.49)

where the constrain defining the left-chiral (or chiral) superfield reads

D̄α̇Φ = 0, (3.50)

while the right-chiral (or anti-chiral) superfield is defined by

DαΦ
∗ = 0. (3.51)

One can solve these constraints by a shift xµ → yµ = xµ − iθσµθ† and will find in
terms of (x, θ, θ†)

Φ(x, θ, θ†) = φ(x)− iθσµθ†∂µφ(x)−
1

4
θθθ†θ†∂2φ(x) +

√
2θψ(x)

− i√
2
θθθ†σ̄µ∂µψ(x) + θθF (x) (3.52)

and a similar expression for Φ∗. The fields (φ, ψ, F ) appearing are identified with
the elements of a chiral superfield behaving under SUSY transformations as derived
in section 3.3.2.

The constraints for extracting a vector supermultiplet is comparably simple and
reads

V = V ∗ (3.53)
2This covariant derivative commutes with SUSY transformations
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for a superfield V . Again, solving this equation leads to a superfield whose compon-
ents are identified with the elements (Aµ, λ,D) of a vector supermultiplet;

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θσµθ†Aµ + θ†θ†(λ− i

2
σµ∂µξ

†)

+ θθθ†(λ† − i

2
σ̄µ∂µξ) + θθθ†θ†(

1

2
D − 1

4
∂2a). (3.54)

The fields a, ξ and b are additional auxiliary fields which can be removed via a
"supergauge" transformation [15, Chapter 4.5].

With the field content of a chiral and vector supermultiplet identified, the question
is how to fiend the corresponding Lagrangian using these superfields. As hinted at
earlier, the Grassmann nature of the additional coordinates can be used for certain
projections. Note that,∫

d4x

∫
d2θd2θ† δεS ∼

∫
d4x

∫
d2θd2θ†

(
εQ̂+ ε†Q̂†

)
IBP
= 0. (3.55)

Such that the action can have SUSY-invariant terms of the form
∫
d4x

∫
d2θd2θ† S.

In particular, a vector superfield will contribute to the Lagrangian this way. This
contribution is called D-term:

[V ]D ≡
∫

d2θd2θ† V (x, θ, θ†) = V (x, θ, θ†)

∣∣∣∣
θθθ†θ†

=
1

2
D − 1

4
∂2a (3.56)

where the term ∼ a vanishes under the integral
∫
d4x. Another contribution arises

from the chiral superfield. Noticing that δεF ∼ ∂µψ, the θθ - component of Φ is
invariant under SUSY and thus may contribute. This term is called F-term:

[Φ]F ≡
∫

d2θd2θ† δ(2)(θ†)Φ =

∫
d2θ Φ

∣∣∣∣
θ†=0

= Φ

∣∣∣∣
θθ

= F. (3.57)

Since the action has to be real, also its complex conjugate has to be included:

[Φ]F + c.c. =
∫

d2θd2θ†
[
δ(2)(θ†)Φ + δ(2)(θ)Φ∗

]
(3.58)

As it turns out, the D-term of a vector superfield and the F-term of a chiral su-
perfield are the only possible ways of extracting a SUSY invariant contribution for
a Lagrangian density. In general, the underlying superfields Φ and V are compos-
ite objects made of other superfields. For example, the superfield S = Φ∗Φ with
Φ = Φ(x, θ, θ†) as in eq. (3.52), is a vector superfield whose D-term reproduces the
free Wess-Zumino Lagrangian. In general, this function of superfields,

K(Φ,Φ∗) = cmnΦ
∗mΦn, (3.59)
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3.4 The Minimal Supersymmetric Standard Model

is called the Kähler potential. Interactions are deduced from any holomorphic func-
tion W (Φi) of the chiral superfields via its F-term. In fact, this coincides with the
earlier derived superpotential. The superpotential

W =
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk (3.60)

replicates all interactions between the fields of n copies of Wess-Zumino models. It
is also possible to describe (non-) Abelian gauge theories in this formalism which
can be achieved by modifying the Kähler potential to be supergauge invariant [15,
Chapter 4.8 f.]

It is noteworthy that SUSY can offer interesting theoretical insights in general
QFT. For example, the fact that the superpotential is holomorph in the field Φ
only, results in the observation that the (Wilsonian) effective action does not get
quantum corrections [21]. Or, in other words, the superpotential is not renormalized
[17, Chapter 8]. In more general SUSY theories a generalization of this observation
is linked to the non renormalization theorems. One interesting example is the N = 4
Super Yang-Mills theory, for which the Lagrangian does not get renormalized at all.
Thus, also the β - function vanishes and the theory becomes scale invariant [22–24].

3.4 The Minimal Supersymmetric Standard Model
The minimal realization of SUSY in virtue of a model describing nature at our scale
is the Minimal Supersymmetric Standard Model (MSSM) whose core features are
summarized here. We assume conserved R- (or matter-) parity ensuring that the
lightest supersymmetric particle (LSP) is stable.

3.4.1 Field Content
Each fermion and spin-1 gauge boson of the SM is respectively embedded into a
chiral- or vector supermultiplet (following [25, Chapter 8.2]). Their bosonic (fer-
mionic) counterparts are then called sfermion (gaugino). In the case of leptons
(quarks), the supersymmetric spin-0 particles are called sleptons (squarks). The
first generation of sfermions can be written as

˜̀
1L =

(
ν̃
ẽ−

)
L

, ẽ1R, q̃1L =

(
ũ

d̃

)
L

, ũ1R, d̃1R. (3.61)

Where the sfermions with left (right) label are the superpartners of the respective left
(right) chiral fermion and do not carry themselves a chirality. The chiral superfields
then read

L1 =

(
Lνe
Le

)
, Ē1, Q1 =

(
Qu
Qd

)
, Ū1, D̄1, (3.62)
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Chapter 3 Supersymmetry in a Nutshell

where the unbarred fields L1 and Q1 are the left chiral fermion doublets while quant-
ities with a bar are the antifermion singlet chiral superfields. Note that all quantum
numbers of a multiplet are identical. The other generations are expressed simil-
arly. Since the superpotential can only contain left chiral superfields, one has to
take the charge conjugates of the SU(2) singlet right chiral fermion fields and com-
plex conjugates of the right sfermion fields as fundamental fields in the superfield
formalism.

Each SM gauge bosons is embedded into a vector supermultiplet. The super-
partners of the U(1)Y , SU(2)L and SU(3)c gauge bosons Bµ, W i

µ and gaµ are four-
component Majorana fermions λ̃0, λ̃i and g̃a respectively.

The Higgs sector of the MSSM differs from the SM case in that it needs two
Higgs doublets. This is due to the fact that, while in the SM one Higgs doublet
is responsible for the generation of masses for both left- and right chiral fields, the
property of the superpotential WMSSM forbids a similar framework. Because it is
an analytic function of left chiral fields only, one needs one Higgs doublet (with
hypercharges Y = ∓1) for each set of fields with T3L = +1

2 and T3L = −1
2 each,

called h1 and h2. Together with their superpartners they form superfields H1 and
H2, see section 3.4.2.

Before going into more details of the different sectors, lets present the overall
picture. The Lagrangian for the MSSM can be split into two contributions [25,
Chapter 8.3]

LMSSM = LSUSY + LSOFT, (3.63)

where LSUSY contains the pure gauge Lg, pure matter LM and Higgs-Yukawa part
LH. The latter contains

LH ⊃
∫

d4θ
[
WMSSMδ

(2)(θ̄) +W†
MSSMδ

(2)(θ)
]

(3.64)

with the superpotential

WMSSM = µH1 ·H2 − feijH1 · LiĒj − fdijH1 ·QiD̄j − fuijQi ·H2Ūj (3.65)

Here, the indices i, j are family indices, A · B ≡ εcdA
cBd for SU(2) superfields A

and B. The ffij are Yukawa couplings and µ is a free parameter.
The second term LSOFT breaks SUSY explicitly and is needed since in the pure

MSSM no spontaneous global SUSY-breaking can occur as can be shown using
supertrace mass sum rules [25, ch. 9.1]. Effectively this allows the study of the
MSSM irrespective of the exact source of SUSY-breaking. Some ideas about the
origin are portrayed in section 3.5. The soft Lagrangian can be divided into two
different contributions:

−LSOFT ≡ VSOFT + gaugino mass terms (3.66)
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3.4 The Minimal Supersymmetric Standard Model

with the part containing no gaugino mass terms reading

VSOFT = q̃∗iL
(
M2

q̃L

)
ij
q̃jL + ũ∗iR

(
M2

ũR

)
ij
ũjR + d̃∗iR

(
M2

d̃R

)
ij
d̃jR

+ ˜̀∗
iL

(
M2

˜̀
L

)
ij

˜̀
jL + ẽ∗iR

(
M2

ẽR

)
ij
ẽjR

+ h1 · ˜̀iL (feAe)ij ẽ
∗
jR + h1 · q̃iL

(
fdAd

)
ij
d̃∗jR + h.c.

+ q̃iL · h2 (fuAu)ij ũ
∗
jR + h.c.

+m2
1|h1|2 +m2

2|h2|2 + (Bµh1 · h2 + h.c.). (3.67)

The gaugino mass terms read

−Lgaugino mass =+
1

2
(M1

¯̃
λ0PLλ̃0 +M∗

1
¯̃
λ0PRλ̃0) (3.68a)

+
1

2
(M2

¯̃
λiPLλ̃

i +M∗
2
¯̃
λiPRλ̃

i) (3.68b)

+
1

2
(M3

¯̃gaPLg̃
a +M∗

3
¯̃gaPRg̃

a). (3.68c)

The potential VSOFT plays a role for the mass terms for sfermions as well as in the
Higgs sector.

3.4.2 Higgs sector
As mentioned previously, the MSSM Higgs sector consists of two SU(2) doublets h1
and h2 which together with their superpartners are part of the superfields H1 and
H2 respectively. Writing out the suppressed SU(2) indices of h1,2 explicitly one gets

h1 ≡
(
h11
h21

)
=

(
h01
h−1

)
, h2 ≡

(
h12
h22

)
=

(
h+2
h02

)
, (3.69)

contributing to the soft Lagrangian as

−LSOFT ⊃ m2
1|h1|

2 +m2
2|h2|

2 + (Bµh1 · h2 + h.c.) (3.70)

where B is the soft SUSY-breaking bilinear and |µ| is the Higgs-higgsino mass para-
meter. Their left chiral supersymmetric partners, called higgsinos, are

h̃1L ≡
(
h̃11
h̃21

)
=

(
h̃01
h̃−1

)
L

, h̃2L ≡
(
h̃12
h̃22

)
=

(
h̃+2
h̃02

)
L

. (3.71)

The Higgs and higgsino fields are contained in left chiral superfields

H1 =

(
H1

1

H2
1

)
⊃ (h1, h̃1L), H2 =

(
H1

2

H2
2

)
⊃ (h2, h̃2L). (3.72)
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Chapter 3 Supersymmetry in a Nutshell

In the context of spontaneous symmetry breaking the Higgs fields obtain vacuum
expectation values (vevs)

〈h1〉 =
1√
2

(
v1
0

)
, 〈h2〉 =

1√
2

(
0
v2

)
, (3.73)

where v1,2 can be chosen to be real and positive. Their ratio is defined as

tanβ ≡ v2
v1
, 0 ≤ β ≤ π/2 (3.74)

and is a free parameter. Furthermore, assuming correct EWSB, they are related to
the masses of the W and Z Bosons by

mW =
g

2
(v21 + v22)

1/2, mZ =
(g′2 + g2)1/2

2
(v21 + v22)

1/2 (3.75)

The Higgs potential reads

VH =
1

8
(g′2 + g2)(|h1|2 − |h2|2)2 +

g2

2
|h†1h2|

2

+m2
1h|h1|

2 +m2
2h|h2|

2 + (m2
12h1 · h2 + h.c.) (3.76)

with

|h|2 ≡ h†h (3.77a)
h1 · h2 = h̃†1h2 ≡ iτ2h

∗
1h2, (3.77b)

m2
12 ≡ Bµ (3.77c)

m2
1,2h = m2

1,2 + |µ|2. (3.77d)

Replacing the Higgs field in the potential with their respective vevs one obtains

V min
H =

1

32
(g′2 + g2)(v21 − v22)

2 +
1

2
m2

1hv
2
1 +

1

2
m2

2hv
2
2 −m2

12v1v2. (3.78)

Demanding that ∂V min
H /∂vi = 0 for i = 1, 2 leads to the relations

m2
12 = −1

2
(m2

1 −m2
2) tan(2β)−

1

2
m2
Z sin(2β) (3.79a)

|µ|2 = 1

cos 2β
(m2

2 sin
2 β −m2

1 cos
2 β)− 1

2
m2
Z . (3.79b)

which can be recast into (see e.g. eq. (8.1.10) in [15])

sin 2β =
2m2

12

m2
1 +m2

2 + 2|µ|2
, (3.80a)

m2
Z =

∣∣m2
2 −m2

1

∣∣√
1− sin2(2β)

−m2
2 −m2

1 − 2|µ|2, (3.80b)
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3.4 The Minimal Supersymmetric Standard Model

highlighting a fine tuning problem between the input parameters in order to obtain
the physical Z-boson mass. Further, µ is a SUSY-respecting parameter, while the
soft masses m1,2 and B are SUSY-breaking, such that any fine tuned balancing
between them seems unnatural. This potential lack of naturalness can be quantified
via the naturalness ca of a parameter a as

ca ≡

∣∣∣∣∣∂ ln
(
m2
Z

)
∂ ln(a)

∣∣∣∣∣. (3.81)

and is explicitly calculated in SUSY spectrum generators like SOFTSUSY [26] and
SuSpect [27].

The mass matrix is given by

m2
ij =

〈
∂2VH
∂φi∂φj

〉
(3.82)

where φi stands for any component of any Higgs field involved. Investigating the
mass diagonal fields one finds

H± = sinβh±1 + cosβh±2 , (3.83a)
G± = − cosβh±1 + sinβh±2 , (3.83b)

with masses
m2
H± = m2

A +m2
W , m2

G± = 0. (3.84)

The massless Goldstone modes are eaten by the SM SU(2) gauge bosons and combine
to the massive W±. The mass m2

A is the mass of the CP odd Higgs A:

A√
2
= Imh01 sinβ + Imh02 cosβ, (3.85a)

G0

√
2
= − Imh01 cosβ + Imh02 sinβ. (3.85b)

with
m2
A =

2m2
12

sin 2β
, m2

G0 = 0. (3.86)

As before, the neutral Goldstone is absorbed and gives mass to the Z Boson. Ad-
ditionally there are two neutral CP even Higgs fields H and h in the spectrum, of
which the latter is identified with the discovered signal at the LHC in 2012 [28, 29].
Since at tree level

mh < mZ | cos(2β)|, (3.87)

large radiative corrections are needed to explain the measured value of mh ≈
125GeV, where the biggest contribution comes from top and stop loops.
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Chapter 3 Supersymmetry in a Nutshell

3.4.3 Neutralinos
The neutralinos emerge as mass eigenstates of the vector

(ψ0)T ≡ (λ0, λ3, h̃
1
1, h̃

2
2) (3.88)

consisting of neutral gauginos λ0 (bino) and λ3 (neutral wino) and neutral Higgsinos
h̃11 and h̃22. The mass Lagrangian reads

−L =
1

2
(ψ0)TMn(ψ0) + h.c. (3.89)

with explicit mass matrix

Mn =


M1 0 −mZcβsW mZsβsW
0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0

 , (3.90)

using the notation cα ≡ cos(α) and sα ≡ sin(α) for α = β, θW . This matrix can be
diagonalized with a unitary 4× 4 matrix N such that

N∗MnN−1 = diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
(3.91)

with ordering mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
of the absolute values of the eigenvalues of

Mn. The corresponding mass eigenstates (neutralinos) then read

χ̃0
i = Nikψ

0
k. (3.92)

In particular, the lightest of these has the form

χ̃0
1 = N11λ0 +N12λ3 +N13h̃

1
1 +N14h̃

2
2 ≡ χ (3.93)

explicitly showing that the lightest neutralino consists of four different fields whose
relative weights depend on the SUSY parameters M1, M2, µ and tanβ. Furthermore
since N is unitary, the weights satisfy∑

i

|N1i|2 = 1. (3.94)

Although it is possible to obtain the matrix N analytically [15, 25], it is easier to
diagonalize Mn using numerical tools instead. In this case one has to manually
sort the eigenvectors according to the absolute value of the eigenvalues in order to
identify the lightest state.
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3.4 The Minimal Supersymmetric Standard Model

3.4.4 Charginos
The chargino mass matrix is derived from the mass term of the fields

ψ+ ≡
(
λ+

h̃12

)
, ψ− ≡

(
λ−

h̃21

)
(3.95)

which are four-component objects consisting of the charged gauginos (e.g. winos)
λ± ≡ (λ1 ∓ iλ3)/

√
2 and spinorial higgsino fields h̃21 and h̃12 each having two com-

ponents. The mass Lagrangian takes the form

−L = (ψ−)TXψ+ + h.c. (3.96)

with mass matrix

X =

(
M2

√
2mW sinβ√

2mW cosβ µ

)
. (3.97)

The matrix X can be diagonalized with two unitary 2 × 2 matrices U and V such
that

U∗XV −1 =MD
c . (3.98)

Equivalently one can take the transpose and obtain

(MD
c )T =

(
U∗XV −1

)T
= V ∗XTU † ≡ ORX

TOTL =MD
c (3.99)

with OR ≡ V ∗ and OL ≡ U∗. Ignoring potential phases of M2 and µ, thus making
X purely real, one can parameterize the mixing matrices as

U =

(
cosφu sinφu
− sinφu cosφu

)
, V =

(
cosφv sinφv

−εv sinφv εv cosφv

)
(3.100)

with
εv ≡ sgn detX = sgn

(
M2µ−m2

W sin(2β)
)

(3.101)
and (u, v) → (L,R) in the notation in which OL/R instead of U/V have been chosen.
With the matrix diagonalized, one can identify the mass eigenstates

χ+
k = Vkmψ

+
m (3.102a)

χ−
k = Ukmψ

−
m (3.102b)

and rewrite the mass Lagrangian as

−L = χ−
k (M

D
c )kmχ

+
m + h.c. (3.103)

with diagonal matrix
MD
c = diag

(
mχ±

1
,mχ±

2

)
. (3.104)
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The masses

m2
χ±
1,2

=
1

2

[∣∣M2
2

∣∣+ ∣∣µ2∣∣+ 2m2
W∓

((∣∣M2
2

∣∣− ∣∣µ2∣∣)2 + 4m4
W cos2(2β)

+ 4m2
W

(∣∣M2
2

∣∣+ ∣∣µ2∣∣+ 2Re{M2µ} sin(2β)
))1/2]

(3.105)

are the eigenvalues of X†X or XX† diagonalized by V or U respectively, e.g.

(MD
c )2 = V X†XV −1 = U∗XX†(U∗)−1. (3.106)

The angles φL/R of the mixing matrices satisfy

tan 2φL =
2
√
2mW (M2 cosβ + µ sinβ)

M2
2 − µ2 − 2m2

W cos 2β
(3.107a)

tan 2φR =
2
√
2mW (M2 sinβ + µ cosβ)

M2
2 − µ2 + 2m2

W cos 2β
. (3.107b)

As noted in [25], since eq. (3.107) is invariant under φL/R → φL/R+π/2, one has to
check which of the four solutions leads to eq. (3.98) being satisfied.

3.4.5 Sfermions
The masses of sfermions have different sources of origin (following [25, Section 9.4]):
explicit mass terms and trilinear A-terms from VSOFT, the contribution from F -
terms due to WMSSM and contributions from D-terms. The latter two are realized
after EWSB while the first is invariant under SU(2)L × U(1)Y and thus in some
sense more universal. A feature is, that left- and right sleptons can mix, but also
mixing of charged sleptons between different generations is - in general - allowed.
The last point however may often be disregarded due to current experimental bounds
hinting at flavor conservation. The sfermion mass terms can be expressed in terms
of six-component vectors

f̃ =

(
f̃L
f̃R

)
, (3.108)

where both f̃L and f̃R are three-component interaction eigenstates in generation
space. For example for selectron type fields f̃ = ẽ one obtains f̃iL = (ẽL, µ̃L, τ̃L)

T

and corresponding supersymmetric praters of the right handed leptons. Finally, the
mass term for each f̃ reads

−Lsfermion mass = f̃ †M2
f̃
f̃ . (3.109)
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For the sneutrinos the block matrix (with 3× 3 blocks) reads

M2
ν̃ =

(
M2

˜̀
L
+m2

ZT
ν̃
3L cos 2β 0

0 0

)
, (3.110)

while for the quarks and charged leptons the matrix is

M2
f̃
=

(
M2

fLL
M2

fLR

M2
fRL

M2
fRR

)
, (3.111)

with [30]

M2
fLL

= M2
f̃L

+m2
Z(T

f̃
3L −Qf sin

2 θW ) cos 2β +m2
f (3.112a)

M2
fLR

= −mf (A
f∗ + µκ) (3.112b)

M2
fRR

= M2
f̃R

+m2
Z(T

f̃
3L −Qf sin

2 θW ) cos 2β +m2
f (3.112c)

M2
fRL

= −mf (A
f + µ∗κ) (3.112d)

where the matrices M2
ẽL

≡ M2
˜̀
L

and M2
ũL,d̃L

≡ M2
q̃L

appear in the soft breaking
Lagrangian as mass of the left chiral fields, while M2

ẽR
and M2

ũR,d̃R
are the masses

of the right chiral fields and Af are the trilinear couplings, see eq. (3.67). The third
component of the weak isospin of f̃ is given by T f̃3L, while the charge and mass of
the fermion f is given by Qf and mf respectively and finally κ = tanβ for f = e, d
and κ = cotβ for f = u.

The terms mf and m2
f above are only approximations; in general one would have

matrices mf and mfm
†
f in generation space respectively in place, see [25, Chapter

9.4]. They are - in general and in particular in the SM - not diagonal and the
corresponding gauge eigenstates have to be rotated into the mass eigenstates first.
In the SM this is achieved as

(me)ij = meiδij , (UuL†muU
uR)ij ≡ muiδij , (UdL†mdU

dR)ij ≡ mdiδij . (3.113)

where the matrices U qL and U qR are unitary. However since the masses of the
fermions in the first two generations are relative small compared to the masses
of fermions in the third generation, as well as the mixing of the third generation
with the first two generations is rather small, it is fair to make the simplification of
diagonal mixing matrices, e.g. assume that mass and gauge eigenstates are identical:

(mu,d)ij = mui,diδij (3.114)
Another way to put it is, that since the masses of the first two generations are
comparably small, approximately, the only non-vanishing elements of the Yukawa
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matrices generating the masses after EWSB can be taken to be [31, Section 12 and
Section 17.4]

y33u = yt; y33d = yd; y33e = yτ . (3.115)

3.5 SUSY-Breaking Scenarios
Since current experiments did not find mass-degenerate supersymmetric partners of
SM particles, SUSY has to be broken spontaneously at a scale MSUSY [15]. There
are multiple ways this can be achieved and usually involve the introduction of new
fields and/or sectors. From a practical point of view, it makes sense to simply
parameterize the effect of any spontaneous SUSY-breaking mechanism implicitly in
the form of the soft breaking LSOFT we introduced in eq. (3.66). Some ways, in
which these soft terms can be generated, are introduced here.

3.5.1 SUGRA
As first model lets discuss the minimal Supergravity3 (mSUGRA) model [25,
Chapter 12]; in which the universal soft breaking terms are due to flavor blind
supergravity interactions mediating SUSY-breaking from a hidden sector to the vis-
ible. At the GUT scale MGUT ∼ 2 · 1016 GeV unification of the unbroken SM gauge
couplings are assumed. The free parameters (at the GUT scale) are the unified
scalar mass m0, unified gaugino mass m1/2, the universal trilinear coupling A0 and
the Higgs sector parameters which in the presence of correct EWSB reduce to tanβ
and sgnµ.

3.5.2 AMSB
Another scenario for the transmission of SUSY-breaking is the anomaly mediated
supersymmetry breaking (AMSB) scheme [15, Chapter 7.8]. The setup here in-
volves extra spatial dimensions such that there exists a physical separation between
the hidden- and visible sector. In many cases it is assumed that only one extra
dimension exists whose size R5 (in units of fundamental Planck scale M5) is relat-
ively larger than the remaining four dimensions. This is required in order to explain
the suppression of flavor violating terms rather naturally not relaying on any fine
tuning, e.g. they are suppressed exponentially ∼ exp(−R5M5). The MSSM chiral
supermultiplets are confined to the visible four dimensional brane which are separ-
ated from the fifth dimension by a 5D bulk. One type of model assumes that the
gauge multiplets propagate in the bulk and thus transmit the breaking of SUSY from
the extra dimension. This is often referred to as gaugino mediated SUSY-breaking.

3A theory with local super-Poincaré invariance, similarly to the interpretation of Einstein gravity
as gauge theory of local Lorentz invariance, see [17, Chapter 15]
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In the case that the gauge multiplets are also confined to the MSSM brane, the
SUSY-breaking is entirely governed by supergravity effects leading to AMSB. The
name origins from the fact the MSSM soft terms are linked to the violation of a
local superconformal invariance (extension of scale - invariance). In certain formu-
lations of supergravity, Newton’s - or Planck’s - constant is obtained from the vev
of a non-dynamical scalar field φ, also known as conformal compensator. In the
presence of spontaneous SUSY-breaking, the auxiliary field Fφ of the supermultiplet
of φ also obtains a vev 〈Fφ〉 ∼ m3/2. Now, there is an anomalous symmetry break-
ing due to the non-vanishing beta functions and anomalous dimensions which break
the superconformal invariance and ultimately lead to the soft breaking terms in the
MSSM.

The free parameters are then the universal scalar mass m0 (necessary in order to
prevent tachyonic sleptons), the gravitino mass m3/2, tanβ and sgnµ.

3.5.3 GMSB
In the gauge mediated supersymmetry breaking (GMSB) scenario, SUSY-breaking
is mediated via gauge interactions from the hidden sector to the observable. Thus
scalars with the same quantum numbers obtain the same soft mass in LSOFT irre-
spective of their flavor. The minimal version assumes that the messenger (super-)
fields form complete representations of SU(5) which is the simple Lie group with
lowest rank containing all SM fields. Since in GMSB the LSP is usually the gravitino,
this model is not considered here.
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Chapter 4

The Anapole Moment

This chapter focuses on the one-loop induced anapole moment, characterizing the
only allowed interaction between a Majorana fermion and a photon.

Many calculations in this chapter have been done with the help of (semi-) auto-
matic computational tools in the Mathematica environment. For the SM, diagram
generation has been done using FeynArts [32] and further analyzed using Feyn-
Calc [33–35]. The expressions have been translated into Passarino-Veltman func-
tions and then analytically simplified using Package-X [36] which can be linked to
the previously mentioned packages using FeynHelpers [37]. Feynman diagrams
are mostly drawn with the help of TikZ-Feynman [38].

4.1 Electromagnetic Interactions of Fermions
The effective interaction between fermions ψi, ψj and a photon γ can schematically
be expressed via the diagram in fig. 4.1. In this sense also off-diagonal (transition)
interactions are allowed in which ψi 6= ψj . In this work however, after discussing
the general case briefly, we will assume diagonal interactions with ψi = ψj .

p1

p2

q

ψi

ψf

γ

Figure 4.1: Schematic representation of the effective interaction between a fermion
and photon
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For now, lets assume that ψi and ψf are massive Dirac fermions, and discuss the
Majorana case later. The corresponding effective interaction is described by the
matrix element [39]

〈ψi| jeff
µ (0) |ψf 〉 = uf (pf )M

fi
µ (pi, pf )ui(pi) (4.1)

where jeff
µ (x) is the effective current and

Mfi
µ (q) = (γµ − qµ/q/q

2)
[
ffiQ (q2) + ffiA (q2)q2γ5

]
− iσµνq

ν
[
ffiM (q2) + iffiE (q2)γ5

]
(4.2)

is the only decomposition of linearly independent terms in the basis

Γi = {1, γµ, iγ5, γµγ5, σµν ≡ i [γµ, γν ] /2} (4.3)

for which
Γ†
i = γ0Γiγ

0. (4.4)

Additionally the matrix element satisfies the hermitian condition

Mfi
µ (q) = γ0[M if

µ (−q)]†γ0. (4.5)

The coefficients fQ(q2), fM (q2), fE(q2) and fA(q2) are the charge-, dipole magnetic-
, dipole electric- and anapole form factor respectively. In the limit of an on-shell
photon, q2 ≡ (pf − pi)

2 → 0, these form factors reduce to the following quantities:

ffiQ (0) = qfi charge,

ffiM (0) = µfi magnetic moment,
ffiE (0) = εfi electric moment,
ffiA (0) = afi anapole moment.

Due to the hermitian property of the matrix element in eq. (4.1), also the form
factors have to be hermitian, e.g. ffiΩ = (f ifΩ )∗ for Ω = Q,M,E,Q. Assuming, that
the theory is invariant under a CP transformation, one obtains further constraints
on the form factors, namely

ffiΩ = f ifΩ = (ffiΩ )∗ for Ω = Q,M,A (4.6a)
ffiE = −f ifE = −(ffiE )∗. (4.6b)

In the presence of an external electromagnetic field the non-relativistic Hamiltonian
for the diagonal interaction reads (see also appendix A)

H ∼ −µ(σ ·B)− ε(σ ·E)− a(σ · ∇ ×B). (4.7)
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Note that the form factors in eq. (4.2) do not necessarily correspond to the coeffi-
cients in the classical multipole expansion. In particular the anapole moment does
not have a classical counterpart, but coincides with the toroidal moment in the
on-shell limit with mi = mf instead, see appendix A.

If the particles ψi and ψf are not Dirac fermions, but Majorana fermions instead,
even more constraints on the amplitudeM if

µ emerge. The Majorana nature manifests
itself in the condition

ψk = ψck ≡ CψTk , (4.8)

viz. the particle is its own anti-particle. Here C is the charge conjugation matrix
satisfying

C† = C−1, CT = −C, C−1ΓiC = ηiΓ
T
i , (4.9)

with

ηi =

{
+1 for Γi = 1, iγ5, γµγ5

−1 for Γi = γµ, σµν .
(4.10)

In this case, the matrix element takes the form

〈ψf | jeff
µ (0) |ψi〉 = uf (pf )M

fi
µ (pi, pf )ui(pi)− vi(pi)M

if
µ (pf , pi)vf (pf ) (4.11a)

= uf (pf )
[
Mfi
µ (pi, pf ) + C[M if

µ (pi, pf )]
TC†
]
ui(pi), (4.11b)

where the second term in eq. (4.11a) originates from the antifermion contribution.
With

M̃fi
µ :=Mfi

µ + C[M if
µ (pi, pf )]

TC† (4.12)

one obtains the matrix for the effective Majorana vertex interaction

M̃µ = (γµ − qµ/q/q
2)
[
f̃Q(q

2) + f̃A(q
2)q2γ5

]
− iσµνq

ν
[
f̃M (q2) + if̃E(q

2)γ5

]
(4.13)

with matrices f̃Ω satisfying

f̃Ω =− f̃TΩ = −f̃∗Ω for Ω = Q,M,E (4.14a)
f̃A =f̃TA = f̃∗A. (4.14b)

In particular this means that for a Majorana fermion the only non-vanishing diagonal
form factor is the anapole form factor. Since in this work we are mainly interested
in the diagonal form factors, we will only consider i = f from now on.

In order to obtain a certain form factor from a given amplitude, it is useful to
make use of the fact that the Γi make up a basis. For this, we follow the vertex
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conventions of [36, 40] and reparameterize eq. (4.2) in terms of the dimensionless
coefficients Fi and Gi as

Mµ(q) = F1(q
2γµ − γµ/q) + F2

iqνσ
µν

2m
+ F3

2qµ
2m

+G1(q
2γµ − γµ/q)γ5 +G2

iqνσ
µνγ5

2m
+G3

2qµγ5
2m

, (4.15)

where p1 (p2) is the momentum of the incoming (outgoing) fermion and m is their
mass. Comparing this equation to eq. (4.1), note that the anapole form factor is
given by

fA(q
2) ≡ G1. (4.16)

We can define a projection operator

Pµ := (/p1 +m)

(
(f1 + g1γ5)γ

µ + (f2 + g2γ5)
(p1 + p2)

µ

2m
+ (f3 + g3γ5)

qµ

m

)
(/p2 +m).

(4.17)
where the brackets (/pi + m) on the left- and right side substitute for the spinors
u(pf ) and u(pi) respectively, enforcing e.g. /pu(p, s) = mu(p, s). In order to obtain
the coefficients fi and gi, we calculate

tr [PµMµ]
!
= {a Fi or Gi}. (4.18)

and solve the resulting set of equations. For the anapole moment we obtain

Pµ
G1

= (/p1 +m)

(
− mqµγ5
(D − 2)q4(4m2 − q2)

− γµγ5
2(D − 2)q2(4m2 − q2)

)
(/p2 +m).

(4.19)

Since we work with dimensional regularization in D = 4 − 2ε dimensions, the
trace technique requires a scheme for the treatment of the γ5 appearing. Here,
we mostly used naive dimensional regularization, and checked the expressions with
both the Breitenlohner-Maison-t’Hooft-Veltman scheme (BMHV) [41, 42] and the
Larin scheme [43]. The surrounding problematic and some schemes are discussed in
appendix B.

4.2 The SM Neutrino Charge Radius and Anapole Moment
Historically the calculation of the neutrino charge radius has been faced with various
serious problems regarding its finiteness and gauge independence [44–46]. Before we
address a solution in the context of the Pinch-Technique/Background Field Method
in section 4.3, we will revisit the origin of the issue at hand briefly.
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The electromagnetic vertex of the (massless) SM Dirac neutrino can be para-
meterized using the single Dirac form factor fD(q2) the following way [39, 47, 48]

Mµ(q) = fD(q
2)γµ(1 + γ5) (4.20)

Comparing this expression with eq. (4.2), we can infer for the charge- and anapole
form factor that

fQ(q
2) = fD(q

2), fA(q
2) = fD(q

2)/q2. (4.21)

Alternatively, we can write down the EM vertex directly [49] as

Mµ(q) =
(
γµq

2 − qµ/q
) [
fQ(q

2)/q2 + fA(q
2)γ5

]
, (4.22)

and not introduce the Dirac form factor.
The charge form factor can be associated with the charge density in momentum

space. In particular, in the Breit frame for which q0 = 0 and |q| =
√
−q2, the

following relationship holds [46, 47]

fQ(q
2) =

∫
d3r ρ(r)e−iq·r =

∫
d3r ρ(r)

sin(|q|r)
|q|r

. (4.23)

Taking the derivative and subsequently the limit q2 → 0 we find

lim
q2→0

dfQ(q
2)

dq2
=

∫
d3x ρ(r)

r2

6
=:

〈r2〉
6
. (4.24)

This means, that the charge radius of the neutrino is expressed in terms of the
electric form factor fQ(q) as follows

〈r2νi〉 = 6
dfQ(q

2)

dq2

∣∣∣∣
q2=0

, (4.25)

and parallels the calculation of the anapole moment, since

aνi =
fQ(q

2)

q2

∣∣∣∣
q2=0

=
dfQ(q

2)

dq2

∣∣∣∣
q2=0

(4.26)

and thus
〈r2νi〉 = 6aνi . (4.27)

Naively speaking, one would project out the Lorentz structure corresponding to the
Dirac form factor from the vertex νiγ → νk at e.g. one loop level and then extract
the charge radius. The contributing diagrams are shown in fig. 4.2. For the sake of
simplicity we will only look at the diagonal case i = k from now on.

41



Chapter 4 The Anapole Moment

νi

γ

νk
ei

G

ek

1

νi

γ

νk
G

ei

G

2

νi

γ

νk
ei

W

ek

3

νi

γ

νk
G

ei

W

4

νi

γ

νk
W

ei

G

5

νi

γ

νk
W

ei

W

6

νi

γ

νk
Z

G
7

νi

γ

νk
Z

W
8

νi

γ

νk

Z

el

el

9

νi

γ

νk

Z

ul

ul

10

νi

γ

νk

Z

dl

dl

11

νi

γ

νk

Z

G

G

12

νi

γ

νk

Z

u-

u-
13

νi

γ

νk

Z

u+

u+
14

νi

γ

νk

Z

G

W

15

νi

γ

νk

Z

G

W

16

νi

γ

νk

Z

W

W

17

νi

γ

νk

18

νi

γ

νk

Z

19

Figure 4.2: Diagrams used for the naive calculation of the SM neutrino anapole
moment

The counterterms appearing in diagram 18 and 19 of fig. 4.2 are needed in order
to render the amplitude UV-finite when all particles are taken to be on-shell. One
way this can be achieved is by using the on-shell renormalization scheme, which is
mathematically formulated in terms of certain renormalization conditions [50]. In
the case here, the field renormalization constants δZAZ and δZZA appear, which are
the off diagonal elements in the renormalization matrix of the neutral gauge bosons,(

Z0

A0

)
=

(
Z

1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
AA

)(
Z
A

)
=

(
1 + 1

2δZZZ
1
2δZZA

1
2δZAZ 1 + 1

2δZAA

)(
Z
A

)
, (4.28)

connecting the bare fields Z0 and A0 to their renormalized counterparts Z and A
respectively. The on-shell renormalization conditions involving δZAZ and δZZA read

Re Γ̂AZµν (k)ε
ν(k)

∣∣∣∣
k2=m2

Z

= 0, Γ̂AZµν (k)ε
ν(k)

∣∣∣∣
k2=0

= 0, (4.29)

or, equivalently
Re Σ̂AZT (M2

Z) = 0, Σ̂AZT (0) = 0. (4.30)
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Here, ΣAZT is the transverse part in the renormalized (hatted quantities) irreducible
two point function, e.g.

k

Aµ Zν ≡ Γ̂AZµν (k)

= −i
(
gµν −

kµkν
k2

)
Σ̂AZT (k2)− i

kµkν
k2

Σ̂AZL (k2). (4.31)

Then the renormalization constants can be calculated in terms of the unrenormalized
(unhatted) self energies as

δZAZ = −2Re
ΣAZT (M2

Z)

M2
Z

, δZZA = 2
ΣAZT (0)

M2
Z

. (4.32)

With these renormalization constants the amplitude corresponding to the sum of the
diagrams in fig. 4.2 is indeed finite and well defined in the on-shell limit. Explicitly
the counterterm diagrams evaluate to

(CTs) = e
qµ/qPL

[
(q2 − ξZm

2
Z)δZAZ + (q2 −m2

Z)δZZA
]
+ γµPLq

2(m2
Z − q2)δZAZ

4cwsw(q2 −m2
Z)(q

2 − ξZm2
Z)

,

(4.33)
While the UV-part of of the amplitude Mµ

ν→γν is vanishing in the on-shell limit,
the appearing Lorentz structure allows for a non-zero contribution to the anapole
moment:

fA(0)

∣∣∣∣
UV

= e3
(27ξw − 185)m2

W − 85m2
Z

3456π2c2ws
4
wm

4
Z

1

εUV
. (4.34)

This inevitable means that the anapole moment is not physical and not measurable
since it is not only explicitly gauge parameter dependent, but also UV-divergent;
both non-physical properties. This has also been realized in the literature and
lead to many attempts to solve the issue of an unphysical neutrino anapole mo-
ment/charge radius [45, 51–57]. In particular it was discovered that similar UV-
divergent and gauge dependent expression are found when embedding the vertex
into a ψ1ψ2 → ψ1ψ2 process (e.g. neutrino-electron scattering) and looking at other
topologically distinct diagrams, e.g. box diagrams. Since the overall amplitude does
behave physical, the question was if this cancellation between vertex- and box dia-
grams can be formalized and ultimately if proper, physical off-shell vertex functions
can be defined in a non ad-hoc manner. The answer turns out to be yes and the
fundamentals are going to be addressed in the next section.

4.3 The Pinch-Technique and the Background Field Method
Before we examine the anapole form factor and anapole moment further, it is im-
portant to investigate the Pinch-Technique (PT) and the Background Field Method
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(BFM) in order to understand the historical issues surrounding the calculation of
the anapole moment [45, 51–60]. In particular the calculation of the neutrino charge
radius (and thus the anapole moment) within the Standard Model lead to serious
issues finding a subamplitude satisfying simultaneously gauge-invariance, finiteness
and target-independence as demonstrated in the previous section.

Following the arguments of [58], it is well known that in the standard QFT proced-
ure, one starts with a quantized Lagrangian including a gauge fixing term to remove
redundant degrees of freedom. This gauge fixing term allows a proper mathematical
treatment of the theory, in the sense, that Feynman rules can be derived consist-
ently. However, this method introduces new redundancies, e.g. individual off-shell
Green functions may explicitly depend on the gauge fixing parameter, have unphys-
ical thresholds etc. It is clear however from the Becchi-Rouet-Stora-Tyutin (BRST)
invariance that for physical quantities, like the S matrix, these unphysical effects will
eventually be absent due to internal cancellations. A related topic are the relatively
recent developments in the context of on-shell scattering amplitudes [61], in which
the calculation of Feynman diagrams can be avoided altogether. Thus intermediate
cancellations of unphysical terms stemming from different contributions are absent
to begin with. Nevertheless for the calculation of individual sub-amplitudes and
form factor one has to deal with unphysical redundancies.

The PT is a diagrammatic algorithm which allows the construction of off-shell
Green functions in non-Abelian gauge theories which are gauge-invariant and inde-
pendent of the gauge-fixing parameters [58, 62]. Furthermore, these Green functions
satisfy ghost-free Ward identities similar to Green functions in Abelian theories.
The PT makes use of certain longitudinal momenta inside box- and vertex dia-
grams whose structure is propagator-like and thus can be reassigned to self-energy
diagrams. It was noticed that effective Green functions satisfying QED-like Ward
identities can also be constructed in the context of the Background Field Method
(BFM). In fact, the PT coincides with the BFM for a special choice of the quantum
gauge fixing parameter: ξQ = 1 [58, 59, 63, 64]. Thus, it is not necessary to use
the diagrammatic algorithm of rearranging certain terms, and can work with the
BFM instead in order to calculate gauge invariant off-shell quantities. In particular,
for the calculation of the anapole moment in a non-Abelian theory, only a minimal
alternation of the standard Feynman rules has to be carried out, see appendix C.2.

4.4 General Anapole Moment for Majorana Fermions
In this section we will derive two contributions to the anapole moment stemming
from scalar and vector fields present in the one-loop Feynman diagrams. Sub-
sequently, this general result will be applied to the SM neutrino anapole moment in
section 4.5 and we will find a gauge independent and finite expression. A further
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numerical evaluation is presented in chapter 6. For the calculation, the conventions
of [25, 65] are used, supplemented by the treatment of Feynman rules involving
fermion-number-violating interactions by Denner et. al. [66, 67] which are summar-
ized in appendix C.1.

For a generic Majorana fermion, all diagrams as shown in fig. 4.3 may contribute to
the anapole form factor. Note that γ̂ is the background field photon due to the fact
that we work in the background field gauge with quantum gauge parameter ξQ = 1.
The Majorana fermion interaction vertices are parameterized via the Lagrangians

LFFS = χ [cLPL + cRPR] f̃
∗f + h.c., (4.35a)

LFFV = V −
µ χ γµ [vLPL + vRPR]χ

+ + h.c., (4.35b)

where χ is a neutralino-like Majorana fermion, f and χ+ are Dirac fermions, f̃ is a
scalar and V −

µ is a vector field. The symbols are chosen in accordance to the later
application within the MSSM, in which χ is the lightest neutralino, serving as DM
candidate, f are SM fermions, f̃ their respective supersymmetric spin-0 partners and
V −
µ = W−

µ is the weak gauge boson. The field χ+ is identified with the chargino,
the mass eigenstate of the mixed charged gauge- and Higgs bosons, see chapter 3.

As mentioned before, since the underlying theory may be non-Abelian, one has to
either use the PT or the BFM replacing the quantum photon with the background
photon in the background Feynman gauge. Here, the latter approach is used ren-
dering the form factor gauge independent and finite. Effectively, the triple gauge
vertex and the neutralino - Goldstone - gauge boson vertex are replaced by their
respective background counterparts. The Feynman rules are listed in appendix C.2
and are based on the BFM SM rules by Denner et. al. [60]

Applying the Feynman rules to the diagrams in fig. 4.3 and using the momentum
assignment of fig. 4.1, we obtain for the scalar contributions

(a) = i6
∫

(cLPL + cRPR) [/k + /p2 +mf ] [−eQfγµ] [/k + /p1 +mf ] [c
∗
LPR + c∗RPL](

(k + p2)2 −m2
f

)(
(k + p1)2 −m2

f

)(
k2 −M2

f̃

) + rev.

(4.36)

(b) = i6
∫ (cLPL + cRPR) [/k + /p2 +mf ] [c

∗
LPR + c∗RPL] [−eQf̃ (2k + q)µ](

(k + p2)2 −m2
f

)(
(k + q)2 −M2

f̃

)(
k2 −M2

f̃

) + rev.

(4.37)

and similarly for the vector contributions

(c) = i6
∫

γβ[vLPL + vRPR][/k + /p2 +mf ][−eγµ]
((k + p2)2 −m2

χ+)((k + p1)2 −m2
χ+)(k2 −m2

V )
×

× [/k + /p1 +mχ+ ]γα[v
∗
LPL + v∗RPR][−gαβ] + rev. (4.38)
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Figure 4.3: Fermion-Fermion-Scalar (FFS), Fermion-Scalar-Scalar (FSS), Fermion-
Fermion-Vector (FFV) and Fermion-Vector-Vector (FVV) contributions to the ana-
pole form factor. The red arrow defines the fermion flow. 01.02.2022: the fermions
in the scalar diagrams also have to be positively charged to be consistent with the
defined fermion flow

and

(d) = i6
∫
γβ[vLPL + vRPR][/k + /p2 +mχ+ ]γα[v

∗
LPL + v∗RPR][−gαρ]

((k + q)2 −m2
V )((k + p2)2 −m2

χ+)(k2 −m2
V )

×

× [−e] [gνρ(−2k − q)µ − 2gµνqρ + 2gρµqν ] [−gνβ ] + rev. (4.39)

where rev. symbolizes the respective second diagram in fig. 4.3 which has reversed
propagators and vertices due to the fact that the fermion flow has opposite direction
to the charge flow. The integration sign is shorthand for

∫
≡
∫

d4k
(2π)4

. Then, after
multiplication with the anapole projector, taking the trace, setting Qf̃ = Qf and
q2 → 0, we obtain the following scalar- and vector contribution to the anapole
moment: 20.12.2022 this is in accordance with Ryo’s result; compare the definition
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of FS in the resulting paper of this thesis: here FS was redefined. This however
gives the opposite sign compared to Kopp et al. Sandick’s notation is a little weird
though (additional factor of i?))

AS ≡ a(a)+(b) =
e

96π2m2
χ

Qf

[
|cL|2 − |cR|2

]
FS(µ, η) (4.40a)

AV ≡ a(c)+(d) = − e

48π2m2
χ

[
|vL|2 − |vR|2

]
FV (µ, ηV ) (4.40b)

where the functions FS/V are defined as

FS(µ, η) =
3

2
log

(
η2

µ2

)
− (3η2 − 3µ2 + 1)f(µ, η), (4.41a)

FV (µ, ηV ) =
3

2
log

(
µ2

η2V

)
+ (3η2V − 3µ2 − 7)f(µ, ηV ), (4.41b)

with µ = mf/mχ, η =Mf̃/mχ, ηV = mV /mχ and

f(µ, η) =
1

2

1∫
0

dx

xη2 + (1− x)µ2 − x(1− x)

=


1√
∆

arctanh
( √

∆
µ2+η2−1

)
∆ > 0

1√
|∆|

arctan
( √

|∆|
µ2+η2−1

)
∆ < 0

2
(µ2−η2)2−1

∆ = 0

(4.42)

with ∆ ≡ ∆(µ, η) = (µ2 + η2 − 1)2 − 4µ2η2. The mass mf is understood to be the
mass of the circulating fermion, e.g. SM fermion-like for the scalar- and chargino-
like for the vector contribution respectively. Note that the limit q2 → 0 is only
applicable if q2 � m2

f . In particular for direct detection experiments in which the
typical momentum transfer from DM to nucleus is

√
|q2| ≈ 50MeV and the mediator

couples to the light fermions such as electrons, this limit is not justified [68].
For cases, in which the incoming Majorana fermion is massless, we can expand

eqs. (4.40a) and (4.40b) around mχ = 0 and obtain in leading order

AS(mf ,Mf̃ ) = eQf

(
|cL|2 − |cR|2

) (m2
f + 2M2

f̃
) log

(
m2
f/M

2
f̃

)
+ 3(M2

f̃
−m2

f )

96π2(m2
f −M2

f̃
)2

,

(4.43a)

AV (mf ,mV ) = e
(
|vL|2 − |vR|2

) (5m2
f − 2m2

V ) log
(
m2
f/m

2
V

)
+ 3(m2

V −m2
f )

48π2(m2
f −m2

V )
2

.

(4.43b)

47



Chapter 4 The Anapole Moment

As before, for AV the fermion mass is given by the chargino-like particle mf = mχ+ .
Further, we can take the limit in which the fermion and boson are mass-degenerate
(MR 2021/09/13 there seems to be a factor of 7 missing):

lim
Mf̃→mf

AS(mf ,Mf̃ ) = −eQf
(
|cL|2 − |cR|2

) 1

192π2m2
f

, (4.44a)

lim
mV →mf

AV (mf ,mV ) = e
(
|vL|2 − |vR|2

) 1

96π2m2
f

. (4.44b)

Although this limit does not play a role for the studies of DM, it is relevant for
checking the supersymmetric limit of the MSSM, in which the anapole moment is
expected to vanish.

4.5 The SM Neutrino Charge Radius: Revisited
With the general results for the anapole moment of a Majorana fermion with (non-
Abelian) vector- and scalar couplings derived in the last section, we can revisit
the calculation of the neutrino charge radius of section 4.2. Note that the anapole
moment of a Dirac fermion can be calculated using the previous results due to the
fact that aDirac = 1

2aMajorana [69]. For this, we set χ (χ+) to be the SM neutrino νi
(lepton `i) with i = e, µ, τ and vanishing mass. Vµ =Wµ is identified with the weak
gauge Boson, G+ the charged Nambu-Goldstone Boson and γ̂ is the (background)
photon. In the BFM framework, most of the diagrams in fig. 4.2 do not contribute.
In particular, only diagrams of the type shown in fig. 4.3 have to be calculated which
are inherently UV-finite. The necessary interactions are inferred from [50, 70] and
read

W−
µ

νi

`+i

= −i g√
2
γµPR, W−

µ

νi

`−i

= i
g√
2
γµPL

(4.45)

with Goldstone vertex similarly. The left vertex shows the interaction as used in the
derivation for the anapole expression, while the right vertex is typically used in the
literature. Thus the left/right couplings read:

W+ν̄i`j : vL = 0, vR = − g√
2
δij (4.46a)

G+ν̄i`j : cL = 0, cR = − g√
2

m`i

mW
δij (4.46b)
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where g = e/ sin θW . As apparent, it is expected that the Goldstone diagrams are
phenomenologically suppressed1 due to the ∼ m`i/mW dependency of the coupling.

The vector contribution to the anapole moment reads

AiV = − eg2

96π(m2
`i
−m2

W )2

[
3(m2

W −m2
`i
)− (2m2

W − 5m2
`i
) log

m2
`i

m2
W

]
(4.47a)

= − eg2

96π2m2
W

[
3− 2 log

m2
`i

m2
W

]
+O

(
m2
`i

m2
W

)
(4.47b)

= − eGF

12
√
2π2

[
3− 2 log

m2
`i

m2
W

]
+O

(
m2
`i

m2
W

)
(4.47c)

while the Goldstone (scalar) contribution reads

AiS = − eg2

192π(m2
`i
−m2

W )2
m2
`i

m2
W

[
3(m2

W −m2
`i
) + (2m2

W +m2
`i
) log

m2
`i

m2
W

]
(4.48a)

= − eg2

198π2
m2
`i

m4
W

[
3 + 2 log

m2
`i

m2
W

]
+O

(
m4
`i

m4
W

)
(4.48b)

= − eGF

24
√
2π2

m2
`i

m2
W

[
3 + 2 log

m2
`i

m2
W

]
+O

(
m4
`i

m4
W

)
(4.48c)

with Fermi constant GF =
√
2g2

8m2
W

. The anapole moment of the (massless) SM neutrino
is the sum of these contributions,

Aνi = AiV +AiS (4.49a)

= − eGF

12
√
2π2

[
3− 2 log

m2
`i

m2
W

]
+O

(
m2
`i

m2
W

)
(4.49b)

This result has been crosschecked with the semi-automatic calculation using the
Mathematica packages FeynArts [32], FeynCalc [33–35], Package-X [36] and
FeynHelpers [37] using the distributed Background SM model file for FeynArts
which is based on [60]. The result is in full agreement with the literature (e.g. [39]),
taking into account the factor of 2 due to the Dirac nature of the neutrino, the
conversion factor between charge radius and anapole moment as in eq. (4.27), and
lastly a factor of −e due to a different vertex parametrization. Then, the anapole
moment in terms of charge radius reads

Aνi = 2× 1

6
× (−e)× 〈r2νi〉lit. (4.50)

1Note that this is model-dependent
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The relative sign between anapole moment and charge radius varies in the literature,
since the definition of the interaction vertex is ambiguous. In particular, the relative
position of γµ and γ5 and thus indirectly the definition/sign of the anapole form
factor can alter.

Coincidentally, this non-standard interaction has recently been studied in the
context of the low-energy recoil excess of the XENON1T experiment [71]. Based on
this excess, bounds for the magnetic moment, charge radius, milicharge and anapole
moment have been derived [72] under the assumption, that only one of the multipoles
is present at a time.
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Chapter 5

Connection to Direct Detection
Experiments

In this section an introduction to direct detection (DD) experiments is given and
the connection to the anapole moment is drawn.

5.1 Experiments and Constraints
There are several different approaches and environments where properties of a DM
particle can be probed. Apart from indirect searches like gamma-ray and neutrino
detection of the Large Area Telescope (LAT) [73] and IceCube [74] respectively,
earth based experiments have been build to directly probe traces of DM particles
scattering with nuclei. These type of experiments are called direct detection (DD)
experiments. Searches at colliders like the Large Hadron Collider (LHC) look for
missing energy in the spectrum, hinting at states escaping the detector.

Some current- and next-generation DD experiments include PandaX-II [75], LUX
[76–78], LUX-ZEPLIN (LZ) [79] and XENONnT [80–83], of which the latter recently
observed an excess in the low energy recoil spectrum [71], whose origin is still under
debate (see for example [72, 84, 85]).

Baker and Thamm analyzed simplified models of WIMPs on the relic surface with
n uncolored slepton-like coannihilation partners ηi with magnetic dipole and anapole
couplings to the nuclei and found that for both direct- and indirect detection exper-
iments the limits on the parameter space depend strongly on whether the WIMP is
a Dirac- or Majorana fermion [69]. In contrast to the Dirac WIMP scenario, whose
parameter space is excluded for mχ < 2TeV and separately for mη/mχ − 1 < 0.1
by XENON1T and can be tested fully with DARWIN [86] prospects, the parameter
space for the Majorana WIMP is unconstrained and only ∼ 10% is expected to be
probed by DARWIN. However, these estimates strongly dependent on the coannihil-
ation process, both via the number of partners ηi and the mass splitting between the
DM particle and ηi. Enhancing coannihilations either by increasing the number of
partners or by decreasing the splitting makes DD a favorable framework for probing
the parameter space particularly for small mass splittings.
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Current indirect detection experiments are sensitive to Dirac WIMPs only due
to velocity suppression of the Majorana annihilation cross section. The strongest
constraints are expected from CTA [87] probing masses mχ . 5TeV for 0 .
mη/mχ − 1 . 0.4.

Future collider searches (like the HE-LHC with
√
s = 27TeV) on the other

hand are insensitive to the nature of the WIMP and can probe a significant
part of parameter space for mχ ∼ 1TeV and comparably large mass splittings
0.2 . mη/mχ − 1 . 0.4 (see also [88]).

The work by Baker and Thamm focuses on scalar mediators generating the ne-
cessary electromagnetic interactions for DD experiments in the form of dipole and
anapole moments. For additional vector couplings, the anapole moment may get
sizeably enhanced via the novel calculation of AV in this work such that the prospects
of future direct detection experiments become stronger, particularly for Majorana
WIMPs.

5.2 Basics of Direct Detection Experiments
As discussed in chapter 2, there is numerous evidence that DM exists on many
different scales; in particular on the scale of galaxies. Thus, we can expect that
DM also surrounds us and - if it interacts with visible matter in some way - should
be detectable. Since we are studying the interactions between a WIMP and the
nucleus, we need local information about the WIMP: the local DM density and
velocity distribution.

On the scale of galaxies, there are several different models describing the DM halo,
including the Navarro-Frenk-White (NFW) profile [89]

ρ(r) =
4ρs

(r/rs) [1 + (r/rs)]
2 (5.1)

and the Einasto profile [90]

ρ(r) = ρs exp

(
− 2

α

[(
r

rs

)α
− 1

])
, (5.2)

where rs is a scale radius (defined as being the radius, at which the the density
profile has a logarithmic slope of −2 [91]), ρs = ρ(r = rs) and for the latter α is the
shape in the region r ≈ rs.

There are roughly two approaches to determine the local density [92]: (a) local
measurements, where the kinematics of nearby stars are taken into account, and (b)
global measurements, where the DM density profile is extracted from measurements
of galactic rotation curves, and then extrapolated to the earth’s location in the Milky
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5.2 Basics of Direct Detection Experiments

Way. We will work with the well motivated value for the local DM density of [93]

ρ0 = 0.4 GeV/cm3. (5.3)

The DM velocity distribution is typically assumed to follow a Maxwell-Boltzmann
shape [91]

f(v) =

{
N−1(πv20)

−3/2 exp
(
−|v|2/v20

)
|v| < vesc

0 |v| > vesc
(5.4)

where v0 ≈ 220km/s is the most probable speed, e.g. the speed of objects follow-
ing circular orbits in the Galactic center, vesc ≈ 550km/s is the escape velocity of
the Milky Way: WIMPs with higher velocities are not expected to appear in DD
experiments. The normalization constant reads

N = erf
(
vesc
v0

)
− 2vesc√

πv0
exp

(
−v

2
esc
v20

)
. (5.5)

Then, from the perspective of the earth, the velocity distribution reads

f⊕(v, t) = f(vobs(t) + v), (5.6)

with the velocity of the earth with respect to the halo reading [94]

vobs(t) = vLSR + v�,pec + V ⊕(t) (5.7)

where v�,pec ≈ (11, 12, 7)km/s denotes the peculiar velocity of the sun [95], vLSR =
(0, vrot, 0) ≈ (0, 220km/s, 0) is the Local Standard of Rest and V ⊕(t) is the velocity
of the earth with respect to the sun with magnitude V⊕ ≈ 30km/s [94]. The latter
is expected to inherit an annual modulation due to earth’s movement, which gives
corrections of ∼ 3% to the rate [96] and is here not considered.

The typical set-up of a DD experiment involves the measurement of the recoil
energy of heavy nuclei caused by elastic scatterings χN → χN with corresponding
differential rate of scattering events [97]

dR

dER
=

ρ0
mχmN

∞∫
vmin

d3v
dσχN
dER

vf⊕(v, t), (5.8)

where dσχN

dER
is the differential cross section. The scattering rate is usually given in

terms of counts per day, per kg of target material, per keV recoil energy. The overall
expected events are then given by [98],

Np =MT

∞∫
0

dER φ(ER)
dR

dER
, (5.9)
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where M , T and φ(ER) are respectively the detector mass, exposure time and de-
tector response function and depend on the experiment.

The (differential) cross section is usually classified by a combination of a spin
dependent (SD) and a spin independent contribution (SI) corresponding to the type
of effective WIMP-nucleus interaction vertex. Subsequently the differential cross
section in terms of q2 = 2mAER can be written as [97]

dσχN
dq2

(v, q2) =
dσSD

χN

dq2
(v, q2) +

dσSI
χN

dq2
(v, q2). (5.10)

Here we will focus on elastic scattering only.

5.3 Standard SI and SD Contributions
Typical types of interaction models are the axial-vector coupling χγµχ q̄γ

µq and
scalar coupling χ̄χq̄q representing a SD and SI cross section respectively (see [99]
for a full list and [100] for a selection of differential cross sections).

For the scalar- and axial-vector coupling the differential cross section for elastic
scattering can be separated into a spin-independent (SI) and spin-dependent (SD)
part [101, 102],

dσχN
dER

=
mN

2µ2Av
2

(
σSI
0 · F 2

SI(ER) + σSD
0 · F 2

SD(ER)
)
, (5.11)

where µA is the reduced mass of the WIMP-nucleus system, mN the nucleus mass
and σSI/SD

0 is the cross section at zero momentum transfer. For the SI contribution,
this cross section reads

σSI
0 = σp

µ2A
µ2p

[Z · fp + (A− Z) · fn]2 , (5.12)

where fp(n) are the relative couplings to the proton (neutron) of the nucleus and
µp is the reduced mass of the WIMP-nucleon system. In many cases, the scalar
coupling to the neutron and proton are very similar, viz. fn ≈ fp is often assumed
(sometimes called isospin conservation). Then, the SI cross section reads

σSI
0 = σp

µ2A
µ2p
A2. (5.13)

As evident, the SI cross section scales with the square of the number of nucleons A,
such that heavier target materials like 129,131Xe are expected to have comparatively
high cross sections. The SI form factor can be taken to be the Helm form factor [96,
101, 102]

FSI(ER) = 3e−q
2s2/2[sin(qr)− qr cos(qr)]/(qr)3, (5.14)
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with q =
√
2mNER, s = 1 fm, r =

√
R2 − 5s2, R = 1.2A1/2 fm with A the nuclear

mass number.
The SD cross section on the other hand can be expressed as

σSD
0 =

32µ2AG
2
F

π

J + 1

J
· [ap〈Sp〉+ an〈Sn〉]2 (5.15)

with the Fermi constant GF , the coupling to the proton (neutron) ap (an), the total
nuclear spin J and 〈Sp(n)〉 being the average spin contributions due to the proton
(neutron). The SD form factor FSD(ER) is given by [103]

FSD(ER) =

{
sin(qRs)/(qRs), qRs < 2.55, qRs > 4.5

0.217, otherwise
(5.16)

with Rs = A1/3.
The current experimental limits on the SI cross section σp and SD cross sections

σn and σp with a 90% confidence level (C.L.) are obtained using DDCalc v2.2.0 [98,
104] and shown in fig. 5.1. The experiment and the respective data set used can be
inferred from the legend; the LZ data corresponds to a projection.
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Figure 5.1: Experimental limits on the spin independent cross section σp (top) and
spin dependent cross sections σn (bottom left) and σp (bottom right) of WIMP-
nucleon scattering on a 90% confidence level

5.4 Magnetic Dipole Interaction
One class of studied interaction models is that of a loop induced electromagnetic
dipole interaction between a Dirac WIMP and the nucleus [103, 105, 106]. The
magnetic dipole coupling is described by the effective Lagrangian

Leff =
d

2
χ̄σµνχFµν , (5.17)

where µ is the magnetic dipole moment. This dimension five interaction is expected
to dominate over a dimension six anapole operator with a differential rate ∼ 5 orders
of magnitudes larger [69] and thus drives the phenomenology. The differential cross
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section reads [103, 107–109]

dσdχN
dER

=
αemZ

2F 2
Z(ER)d

2

ER

[
1− ER

2mNv2

(
1 + 2

mN

mχ

)]
(5.18a)

+ d2d2AF
2
s (ER)

(
J + 1

3J

)
mN

πv2
, (5.18b)

where ER is the recoil energy, Z is the nuclear charge, dA the nuclear dipole moment,
mN the nuclear mass and v the velocity of the incoming DM candidate. Further-
more, FZ(ER) is the nuclear charge form factor and can be taken as the Helm form
factor [68, 102]. This form factor corresponds to the previously encountered spin
independent form factor FSI(ER), while Fs(ER) is the SD form factor FSD(ER) [68].

5.5 Anapole Interaction
Another interaction of this type is given by the anapole moment, which is the only
allowed electromagnetic interaction for a Majorana fermion, see chapter 4. Since we
are mainly interested in Majorana fermion WIMPs like the MSSM LSP neutralino,
this interaction may allow an experimental probe of this candidate and was studied
by various authors in the context of direct- and indirect detection experiments and
collider searches [68, 108, 110–115].

The effective Lagrangian for the WIMP-nucleus interaction reads [68, 110, 113,
115]

Leff =
A
2
χ̄γµγ5χ∂

νFµν + eAµJ
µ, (5.19)

where Jµ is the nuclear current operator. Then, neglecting the q2 dependency of the
anapole moment A, the differential cross section of the scattering event involving
the DM candidate and the nucleus reads [68, 110, 113]

dσAχN
dER

= 4αemA2Z2F 2
Z(ER)

[
2mN −

(
1 +

mN

mχ

)2 ER
v2

]
(5.20a)

+4A2d2AF
2
s (ER)

(
J + 1

3J

)
2ERm

2
N

πv2
, (5.20b)

Since for many target nuclei - including xenon - the dipole moment is comparably
small, it can be neglected and one can focus on the spin-independent interaction
∼ F 2

Z(ER) only.
Due to the fact that the velocity dependency of eq. (5.20) differs from the stand-

ard SI and SD cross sections as in eq. (5.11), the limits for the anapole moment
have to be obtained using fits on the event level and can not be inferred from the
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Figure 5.2: Experimental limit from LUX and projections from XENON1T and
LZ on the anapole moment (red) and expected values for thermally produced DM
coupled to right-handed muons (black) via a scalar η on a 90% confidence limit,
from Garny et. al. [112]

standard SI/SD exclusion curves. For this, one needs to account for the detector
specifics like the response function and detector mass/time as in eq. (5.9) and carry
out the integrals (see for example [116, Appendix B] and [117, Appendix D]). The
resulting experimental limit from LUX and projections from XENON1T and LZ
by Garny et. al. [112] are shown in fig. 5.2, together with predicted anapole mo-
ments stemming from scalar contributions with couplings such that the relic density
constraints are satisfied. As apparent, LUX excludes values A/µN & 10−5 fm for
mχ ≈ (40 − 1000)GeV at a 90% confidence level, while current generation experi-
ments - particularly LZ projections - are expected to be even stronger and can test
theoretically predicted values of A/µN ∼ (10−6 − 10−5) fm soon.
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Chapter 6

Numerical Analysis

In this chapter we will discuss the numerical analysis of the anapole moment in
both a model-independent fashion and in the context of the MSSM. Most figures
here where created using the Python library Matplotlib [118].

The anapole expression as derived in chapter 4 has units of
[
GeV−2

]
. In order to

relate the obtained values to results found in the literature, the anapole moment is
multiplied with the inverse of the nuclear magneton µN = e/(2mp), with mp being
the proton mass, and the conversion GeV−1 ≈ 197.3 × 10−3 fm is applied. Then,
the anapole moment is expressed as A/µN in units of [fm].

Note however that for the anapole moment as calculated here the limit q2 → 0
was taken, such that the results here cannot directly be applied to direct detection
experiments. This is the case if a mass is smaller than the DM-nucleus momentum
transfer, e.g. if m <

√
|q2| ≈ 40MeV [68].

6.1 Model-Independent Analysis
For the sake of convenience we repeat the final results of section 4.4, where the
analytic expressions for the scalar- and vector contribution read respectively

AS ≡ a(a)+(b) =
e

96π2m2
χ

Qf

[
|cL|2 − |cR|2

]
FS(µ, η), (6.1a)

AV ≡ a(c)+(d) = − e

48π2m2
χ

[
|vL|2 − |vR|2

]
FV (µ, ηV ), (6.1b)

with the functions FS/V defined as

FS(µ, η) =
3

2
log

(
η2

µ2

)
− (3η2 − 3µ2 + 1)f(µ, η), (6.2a)

FV (µ, ηV ) =
3

2
log

(
µ2

η2V

)
+ (3η2V − 3µ2 − 7)f(µ, ηV ), (6.2b)
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where µ = mf/mχ, η =Mf̃/mχ, ηV = mV /mχ and

f(µ, η) =
1

2

1∫
0

dx

xη2 + (1− x)µ2 − x(1− x)

=


1√
∆

arctanh
( √

∆
µ2+η2−1

)
∆ > 0

1√
|∆|

arctan
( √

|∆|
µ2+η2−1

)
∆ < 0

2
(µ2−η2)2−1

∆ = 0

(6.3)

with ∆ ≡ ∆(µ, η) = (µ2 + η2 − 1)2 − 4µ2η2. We may assume µ > 1 or η > 1
in order to circumvent the discontinuity in the arctan(h) function. This assump-
tion is phenomenologically well motivated since the LSP DM candidate is usually
mχ ∼ O(100)GeV and thus automatically prevents crossing of the discontinuity in
supersymmetric models. However, for more general cases, the condition

µ2 + η2 ≥ 1 (6.4)

prevents the discontinuity being crossed.
As apparent from eqs. (6.1a) and (6.1b), the anapole moment is strongly depend-

ent on the functions FS/V (µ, η). For this reason, a contour plot of these functions is
given in fig. 6.1. The minimal values µmin, ηmin have been chosen such that points
like (µ, η) ≈ (1, 0) do no lead to a (numerical) singularity of the arctan(h) function.
Nevertheless it is apparent, especially in figs. 6.1a and 6.1b, that around this point
FS/V diverges. The characteristic circular separation in the lower left corner is due
to the discontinuity of the arctan(h) function whose radius is defined by eq. (6.4).
Note that the coloring in figs. 6.1a and 6.1b and figs. 6.1c and 6.1d differs.

The anapole functions themselves are shown in figs. 6.2 to 6.4. The couplings
have been set to cL = 0, cR = 1 for the scalar case and vL = 0, vR = 1 for the
vector contribution. Also, in the scalar case, a colorless fermion with Qf = −1
has been assumed. As apparent from these plots, the size of the anapole moment
depends strongly on the masses involved. In particular the value of the anapole
moment is enhanced if one mass is comparable to the DM mass, while the other
is small, e.g. m1 ≈ mχ and m2 � mχ. This becomes even more noticeable in
fig. 6.4, where the masses of the fermion is chosen as small as mf ∼ 1 MeV. Then,
strong resonances are formed around the vicinity of mχ ≈ mS/V . The vertical green
dashed line highlights the position of the W boson, such that in this case, for DM
masses of mχ ∼ (50−150)GeV, the anapole moment is |A|/µN ∼ (10−6−10−4) fm.
It is noteworthy that related studies of the scalar anapole moment AS have been
conducted in [68, 111] with similar results.
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(a) (b)

(c) (d)

Figure 6.1: Contour plot of FS(µ, η) (left) and FV (µ, η) (right) for µ, η > 10−4 (top)
and µ, η > 10−1 (bottom)
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Figure 6.2: Scalar (left) and vector (right) anapole functions for some chosen masses
of bosonic particles and DM candidates. The dotted lines correspond to negative
values.

Figure 6.3: Scalar (left) and vector (right) anapole functions for some chosen masses
of fermions and DM candidates. The dotted lines correspond to negative values.
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Figure 6.4: Scalar (top) and vector (bottom) anapole moment in terms of η for
cL/R = 0, 1 and vL/R = 0, 1 on a logarithmic y-axis. The vertical green dashed line
in the bottom diagrams stands for the W boson. Dotted lines correspond to negative
values of the anapole moment. The mf ∼ 1 MeV fermion contributes the most.
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6.2 MSSM: General Framework
The numerical part is slightly wrong: a bug in the code caused a factor of 10
enhancement in the sfermion contribution to the anapole moment For the calculation
of the anapole moment of the lightest neutralino χ0

1, all charged fermions and the two
charginos appear in the diagrams of the type shown in fig. 4.3 and thus contribute
to its anapole moment. The scalar- and vector contribution to the anapole moment
are given as

AS =
e

96π2m2
χ

∑
i,a

N i
cQi

[
|ciaL |2 − |ciaR |2

]
FS(µi, ηa) (6.5)

AW = − e

48π2m2
χ

∑
j

[
|vjL|

2 − |vjR|
2
]
FW (µj , ηW ) (6.6)

Here, the indices i(j) are labeling the SM fermions (charginos) and N i
c is the color

factor of the fermion, e.g. Nc = 3 if f = q and Nc = 1 if f = e. Further,
µi = mfi/mχ, ηa = Mf̃a

/mχ, µj = mχ+
j
/mχ and ηW = mW /mχ, with the SM

W-boson mass mW .
The couplings used and some required SM input parameters are summarized in

appendix C.4. Note, that L/R mixing of the third generation only is included. In
order to calculate quantities in the MSSM one inevitable has to use a spectrum gen-
erator to calculate masses and mixing elements appearing in the model. Commonly
used ones include SuSpect [119], SPheno [120] and SOFTSUSY [26]. In this
work, mainly SOFTSUSY 4.1.10 was used since it is easily callable via command-
line input. The spectrum generator writes out in the widely used SLHA format [121]
which then can be imported into the anapole code via PySLHA [122]. The spectrum
generator assumes certain boundary conditions at the GUT scale and calculates all
masses and couplings via renormalization group evolution under the assumption of
correct EWSB (models which do not incorporate correct EWSB are ruled out and
flagged accordingly). All parameter ranges shown here satisfy all internal ’phys-
ical’ checks of SOFTSUSY if not noted differently. Explicitly flags for tachyonic
particles, incorrect EWSB and models in which χ̃0

1 is not the LSP, are inherited from
SOFTSUSY and used in the code here. Furthermore, all masses appearing in the
numerical analysis satisfy

µ2 + η2 > 1, (6.7)

preventing the anapole functions to cross the discontinuity of the arctan(h) function.
This is simply due to the fact, that in all models considered here χ̃0

1 is the LSP.
To the commonly studied and already introduced models belong SUGRA and

AMSB. While the anapole moment may obtain a sizeable value, it is important to
also include current experimental bounds. In particular the LSP neutralino serves as
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6.3 SUGRA

a DM candidate whose relic abundance can be calculated using the micrOMEGAs
code [123, 124] using SuSpect as spectrum generator. The result can be checked
against the literate, e.g. the 9-year data from the WMAP project [9]. The combined
limit from the WMAP+eCMB+BAO+H0 data set gives a cold DM relic density [9,
Table 17] of

Ωχh
2 = 0.1153± 0.0019 (6.8)

Here, we will assume that the neutralino is the LSP and is responsible for the
measured DM relic abundance alone.

As further experimental constrain the mass of the light neutral CP even Higgs h
has been extracted. Its current averaged experimental value according to the PDG
[125] is

mh = 125.10± 0.14, (6.9)

giving strong limits on SUSY models as we will discuss in the next sections.
We checked explicitly that the anapole moment of the lightest neutralino vanishes

in the exact SUSY limit, as it should.
As a side note, a conceptually similar work has been carried out by Cabral-Rosetti

et. al. [126], although they do not employ the BFM (or PT) framework and thus
work with a gauge dependent quantity.

6.3 SUGRA
As first SUSY model lets discuss SUGRA. Unfortunately most of the parameter
space in SUGRA has been ruled out by the discovery of the mass of the scalar Higgs
boson [127–129] under the assumption that the neutralino is the single DM particle.
Nevertheless, for large A0, there is a small strip of allowed parameter space as can
be seen exemplarily in fig. 6.7a. Furthermore, the only region which satisfies all
constraints and is predicted to be detectable at the LHC is the stop co-annihilation
region occurring for some values of A0 [129].

Some masses and the mixing elements of χ̃0
1 and the charginos are shown in

fig. 6.5. For lower m1/2 . 2.6TeV, the lightest neutralino is Higgsino-like while
for m1/2 & 2.6TeV it becomes bino-like. The anapole moment in this model is
shown in fig. 6.6. Note that the contribution from sfermions exhibits comparably
large numeric noise. Within the sfermion sector, the largest contribution stems from
the lightest fermions, e.g. electrons and light quarks. For lower m1/2, the neutralino
is mass degenerate with the lightest chargino, which leads to an amplification of
the chargino-W contribution, since then µ = mχ±

1
/mχ ≈ 1. However, at the same

time, the chargino mixing angles exhibit φL ≈ φR, leading to a cancellation between
vL and vR, suppressing the anapole moment (see appendix C.4 for the couplings)
simultaneously.
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Chapter 6 Numerical Analysis

(a) Mixing Elements of χ̃0
1 (b) Chargino Mixing elements

(c) Some Masses (d) Some Masses

Figure 6.5: Mixing elements of the neutralinos (a), charginos (b) and masses in
SUGRA with parameters m0 = 8TeV, m1/2 ∈ [2, 3]TeV, A0 = 3TeV, tanβ = 10,
sgnµ = +1
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6.3 SUGRA

Figure 6.6: Anapole moment in SUGRA

(a) Relic density in SUGRA (b) Relic density in AMSB

Figure 6.7: Relic density for 100× 100 points in m0 ×m1/2/m3/2 space. The black
contours are showing mh, while the red shaded area highlights the experimental
bounds of Ωχh

2 = 0.1153 ± 0.0019. The striped red area corresponds Ωχh
2 =

0.1153 ± 0.0038. In the gray area, Ωχh
2 > 0.2, and white areas correspond to

models without correct EWSB.
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6.4 AMSB
The second SUSY model discussed here is AMSB. The compelling aspect of this
particular realization of SUSY breaking is, that the neutralino is usually wino-like.
Furthermore, it is mass-degenerate with the lighter chargino χ±

1 , such that a reson-
ance as discussed in section 6.1, for the vector anapole contribution may be expec-
ted. Similar to the previous case, the relic abundance of the neutralino as well as
the model’s predicted Higgs mass is shown in fig. 6.7b. The chosen parameter range
is motivated by the likelihood analysis of Bagnaschi et. al. [130, Table 2]. However,
our m3/2 is approximately 100TeV smaller compared to their best-fit value. As
visible, m0 is hardly constrained by the WMAP data, while the Higgs measurement
restricts its value to m0 ≈ 25TeV. The mass of the neutralino is mainly determined
by m3/2, whose large value drives the DM mass to be in the TeV range. The mixing
elements of χ̃0

1 and the charginos as well as some masses in this model are shown
in fig. 6.8. Similar to the SUGRA case, the anapole moment is dominated by the
sfermion contribution; in particular the light fermions contribute the most. The
chargino contributions are suppressed due to φL ≈ φR.
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6.4 AMSB

(a) Mixing Elements of χ̃0
1 (b) Chargino Mixing elements

(c) Some Masses (d) Some Masses

Figure 6.8: Mixing elements of the neutralinos (a), charginos (b) and masses (c,d) in
AMSB with parameters m0 = 25TeV, m3/2 ∈ [700, 750]TeV, tanβ = 5, sgnµ = +1
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Figure 6.9: Anapole moment in AMSB
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Chapter 7

Summary and Outlook

Summary
Dark matter is one of the biggest unsolved mysteries of particle physics and cos-
mology and plays a major role in the understanding of both the history of our
Universe and the world surrounding us. Much effort is put into gaining knowledge
about its nature and properties both experimentally and theoretically. While there
is strong evidence towards the existence of this additional source of matter, so far
no conclusive signal for it was found.

In this work the anapole moment of a generic Majorana fermion has been cal-
culated in a model-independent fashion allowing a wide range of applications. For
this, the important issue related to the charge radius of the neutrino has been re-
capitulated to highlight the non-trivial steps involved in the calculation of the vector
contribution.

Finally, the anapole moment was studied numerically, both in a naive model-
independent fashion and in the context of the MSSM, in which the lightest neutralino
can serve as a DM candidate. The results have to be considered in the light of DD
experiments and collider searches, where future experiments are expected to be
sensitive enough to probe this loop induced coupling over a wide range in parameter
space. Although the model-independent analysis allows comparatively high values
for the anapole moment, it has to be noted, that the respective couplings cL/R and
vL/R have been set to zero/unity; in general they are strongly model dependent. This
dependency can be directly seen in the MSSM, where the parameters and masses
have common origin and are not independent. There, the scenarios of SUGRA and
AMSB have been considered under the experimental and observational constraints
from the Higgs mass and the relic density (assuming the LSP is the single DM
particle). It was found that for both SUGRA and AMSB, the anapole moment of
the LSP neutralino is not expected to have a sizeable value. While for SUGRA
most of the parameter space considered here is excluded already, the relic density
constraints on AMSB are comparably lenient.
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Outlook
The results and frameworks developed in this work can be used and extended in
many different ways.

The model-independent expressions for the anapole moment obtained here are not
only applicable to DM searches, but also serve as a basis to calculate the anapole
moment of generic Dirac- and Majorana fermions in both the SM, MSSM and all
BSM extensions.

For example, there are applications in neutrino phenomenology. The anapole and
dipole moment can lead to signals in low energy neutrino-electron scattering [131]
and neutrino-nucleus scattering [72]. Furthermore these higher order electromag-
netic moments can have an effect on the solar neutrino flux due to solar flares and
can lead to a depletion of the electron neutrino flux as measured on earth [132].

In the light of DM searches, the results here could be used to calculate up-to-date
experimental limits on the anapole moment for both scalar and vector contributions.
For direct detection experiments where the DM candidate interacts with the nucleus,
one has to account for the fact, that the spin independent cross section appearing
in the interaction via the anapole moment exhibits a different velocity dependency
compared to the conventionally used one, such that the analysis has to be carried
out on the level of expected events instead of cross section.

Higher electromagnetic moments can also induce interactions between sub-GeV
DM and electrons in the detector material, and can help to probe whether DM is a
Majorana- or Dirac fermion [133].

There are also expected consequences for the imprints of DM on cosmological
scales. If the candidate couples via the anapole moment to the visible sector, the
couplings of the scalar- and vector contributions can be related to the relic density
via the thermal production mechanism and is not a free parameter anymore [69,
110, 112]. Furthermore, the non-standard electromagnetic moments can distort the
CMB spectrum due to DM annihilating into fermion pairs during the recombination
epoch [134]. This is particularly important for sub-GeV DM, since direct detection
experiments where DM scatters with a nucleus are not sensitive in this regime [101].

In particularly dense regions of DM, e.g. in the Galactic Center or dwarf spheroidal
galaxies, the same annihilation mechanism can influence the flux of gamma-rays,
cosmic-rays and neutrinos due to the production of high energetic leptons and mono-
energetic photons [69, 112]. Indirect detection experiments may observe signals of
this type depending on whether the DM is a Majorana- or Dirac fermion. For heavy
dark matter, only the latter case is expected to be detectable this way, since the
Majorana annihilation cross section is velocity suppressed [69].

The analysis in the MSSM could be extended such that more experimental con-
straints, like limits on the branching ratio Br(b → sγ), are included. Also, the
anapole moment of the LSP neutralino in particular can be investigated further:
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1. In more general terms within the MSSM without relying on the SUGRA or
AMSB scenario, like the phenomenological MSSM (pMSSM) [135].

2. Giving up the assumption that the LSP neutralino makes up all of the DM
would relax the rather strong constraints from WMAP and PLANCK. That
is, the DM can (partly) be realized in a separate process or model.

3. Scanning over a wider range of the SUGRA/AMSB parameter space, in par-
ticular the stop co-annihilation region of SUGRA may be of interest [129].
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Appendix A

Classical Multipole Expansion and Toroid
Moment

In this section the classical multipole expansion in electrodynamics is discussed and
subsequently related to the anapole moment of relativistic fermions.

In classical electrodynamics the properties of spatially distributed sources can be
described by their moments. Following the review by Dubovik and Tugushev [136],
suppose that the charge density of the system is described by

ρ(r, t) =

∫
d3ξ ρ(ξ, t) δ(3)(ξ − r). (A.1)

Expanding the delta distribution formally

δ(3)(ξ − r) =

∞∑
`=0

(−1)`

`!
ξi · · · ξk︸ ︷︷ ︸

`

∇i · · ·∇k δ(r), (A.2)

results in
ρ(r, t) =

∞∑
`=0

(−1)`

`!
A

(`)
i···k ∂i · · · ∂k δ(r), (A.3)

where
A

(`)
i···k :=

∫
d3ξ ρ(ξ, t) ξi · · · ξk (A.4)

are the moments with A(0) being the charge and A(1)
i being the charge dipole moment

etc. In many cases it is convenient to express these moments in terms of irreducible
tensors of the rotation group SO(3), e.g. in terms of spherical harmonics Y`m.

Similarly the spatial components of the current density j(r, t) can be described
using a multipole expansion with coefficients

B
(`)
ij...k :=

(−1)`−1

(`− 1)!

∫
d3ξ ji ξj · · · ξk︸ ︷︷ ︸

`−1

. (A.5)
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Note, that the current density is related to the charge density due the the conserva-
tion law

∇ · j = −ρ̇, (A.6)

such that a relationship between A
(`)
i···k and B

(`)
ij...k is expected. According to the

Helmholtz theorem, the current can be separated into a longitudinal j‖ and a trans-
versal part j⊥ as

j = j‖ + j⊥ (A.7)

with
j‖ = ∇φ, j⊥ = ∇× f (A.8)

where f satisfies the gauge condition ∇ · f = 0 and φ is a scalar function. Then
eq. (A.6) reduces to

∇ · j‖ = −ρ̇, (A.9)

showing that the multipole expansion of the longitudinal charge current is char-
acterized by the multipole expansion of the charge density only. The transversal
current on the other hand has two degrees of freedom remaining, whose expansions
are independent of the charge moments. They can be expressed via the scalar- and
pseudoscalar functions ψ and χ respectively as

j⊥(r) = Mψ(r, θ, ϕ) +∇×Mχ(r, θ, ϕ), (A.10)

describing toroidal currents flowing parallel on a sphere (first term) and poloidal
currents flowing along the meridian on a torus (second term) respectively. The
vector M is defined as

M ≡ −r ×∇ = iL. (A.11)

Then one can rewrite the current as

j = ∇φ+∇× (rψ) +∇× (∇× (rχ)), (A.12)

reducing the problem to the multipole expansion of three scalar functions φ, ψ and
χ satisfying the gauge constraints.

The interaction energy of a non-relativistic system of point charges with an ex-
ternal electric field is described by

W =

∫
d3r (ρφ− j ·A) (A.13a)

≡W ch +W cur (A.13b)
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with charge- and current density

ρ(r, t) =
∑
α

e(α)δ(3)(r − ξ(α)(t)) =
∑
α

e(α) exp
(
−ξ(α) · ∇

)
δ(3)(r), (A.14a)

j(r, t) =
∑
α

e(α)ξ̇
(α)
δ(3)(r − ξ(α)(t)) =

∑
α

e(α)ξ̇
(α)

exp
(
−ξ(α) · ∇

)
δ(3)(r) (A.14b)

with ξ(α)(t) being the position of the charged particle α. After replacing the expo-
nential with its Taylor series, the interaction energy becomes

W = −
∑
α

∞∑
n=0

e(α)

(n+ 1)!
(ξ(α) · ∇)n

(
ξ(α) ·E(0) + 2

n+ 1

n+ 2
µ(α) ·B(0)

)
(A.15)

with magnetic dipole moment µ = 1
2ξ × ξ̇. Then, one can decompose the terms at

any order according to their symmetry property.
Alternatively, the expansion of the energy corresponding to the charge density

only reads

W ch = qφ+ d · ∇φ+Qij∇i∇jφ+
1

6
r(2)q ∆φ+Qijk∇i∇j∇kφ+ . . .

∣∣
r=0

. (A.16)

with the total charge q =
∫
d3ξ ρ, charge dipole moment d =

∫
d3ξ ξρ, charge

quadrupole moment
Qij =

1

2

∫
d3ξ (ξiξj −

1

3
ξ2δij)ρ, (A.17)

octupole moment

Qijk =
1

6

∫
d3ξ [ξiξjξk −

1

5
(ξiδjk + ξjδik + ξkδij)]ρ (A.18)

and r(2)q =
∫
d3ξ ξ2ρ being the mean-square radius of the charge density. The energy

contribution due to the current reads

W cur =− ḋ ·A−M · (∇ ·A)− 1

2
·Qij(∇iAj +∇jAi)−

1

6

˙
r
(2)
q ∇ ·A

− Q̇ijk∇j∇kAi −Mij∇i(∇ ·A)j −
1

10
(

˙
r
(2)
d · ∇)(∇ ·A)

− T · (∇× (∇×A))− . . .
∣∣
r=0

, (A.19)

with the system’s magnetic dipole moment

M =
1

2

∫
d3ξ ξ × j, (A.20)
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Figure A.1: Toroid dipole moment T generated by a current j along the surface of
a torus, from [137]

magnetic quadrupole moment

Q̇
(2)

=
1

10

˙
r
(2)
d =

1

10

∫
d3ξ (2ξ(ξ · j) + ξ2j), (A.21)

with mean-square radius of the dipole density r
(2)
d =

∫
d3ξ ξξ2ρ. Finally, the toroid

dipole moment (TDM) is given by

T =
1

10

∫
d3ξ (ξ(ξ · j)− 2ξ2j) (A.22)

This toroid moment can classically be generating using a solenoid folded into a torus,
see fig. A.1.

There is no classical analog to the anapole moment as being part of a multipole
expansion. Instead, it is related to the toroid dipole moment T . The axial part of
the electromagnetic interaction vertex of chapter 4, eq. (4.2) can be rewritten as
[138]

Γµ(q) ∼ iεµνρσP
νqλγσγ5T (q

2) + σµνq
νD(∆m2) (A.23)

− q2Pµ − (q · P )qµ
q2 −∆m2

[
D(q2)−D(∆m2)

]
(A.24)

with Pµ := p′µ + pµ, ∆m = mi − mf and D(∆m2), D(q2) and T (q2) the charge
dipole moment, charge dipole and toroid dipole form factor respectively for which a
one-to-one correspondence to their counterparts in the multipole expansion exists.
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Then, the anapole form factor can be identified as

A(q2) = T (q2) +
m2
i −m2

f

q2 −∆m2

[
D(q2)−D(∆m2)

]
, (A.25)

coinciding with the toroid moment for mi = mf on the mass-shell. For a Majorana
field, the toroid moment in the rest frame is proportional to the spin direction (there
is no other vector quantity characterizing the system) and can be defined as

Tµ = eT (0)ū(0)γµγ5u(0), T = eT (0)ϕ†σϕ (A.26)

with the Pauli spinor ϕ and T as in eq. (A.22) and T (0) its magnitude. The inter-
action Hamiltonian reads

Hint = eT (q2)ψ̄γµγ5ψ ∂νF
µν (A.27)

and in the non-relativistic limit in the rest frame

Hint = −T · Jext (A.28)
= −T (0)ϕ†σϕ · (∇×B − Ė) (A.29)

which is invariant under time reversal T , but not under parity P and charge con-
jugation C separately [139].
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Appendix B

Treatment of γ5

Since the anapole moment itself is characterized by the Lorentz structure γµγ5 in
the vertex, the discussed projection technique inevitability will lead to traces over a
number of regular γ-matrices accompanied by γ5. In dimensional regularization, the
appearance of γ5 in D 6= 4 dimensions leads to inconsistencies [140] and one needs
to pay special attention. In particular, a γ5 in D = 4 − 2ε dimensions satisfying
both the anticommutativity property,

{γ5, γµ} = 0, (B.1)

and the cyclicity of the trace,

tr(γµγνγργσγ5) = 4iεµνρσ, (B.2)

cannot exist and calculations assuming both of these conditions simultaneously may
be plagued with inconsistencies.

Many different approaches have been investigated and different schemes have
been developed to solve this problem [141–146]. However, up to today, there is
no "one size fits all" solution, and one has to decide on a case-by-case basis which
scheme is appropriate [35, and references within]. Some commonly used schemes
include: Naive Dimensional Regularization (NDR), Dimensional Reduction (DRed)
[145], Breitenlohner-Maison-t’Hooft-Veltman scheme (BMHV) [41, 42] and the Larin
scheme [43]. Following Buras and Weisz [147], we will describe some of them here
briefly.

The arguably easiest treatment is the NDR, in which it is assumed, that a γ5 exists
satisfying both conditions above. In particular, one introduces the D-dimensional
metric tensor with

gµν = gνµ, gµρ g
ρ
ν = gµν , gµµ = D, (B.3)

and γ-matrices satisfying the Clifford algebra

{γµ, γν} = 2gµν . (B.4)
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The γ5 appearing in calculations satisfies

{γµ, γ5} = 0. (B.5)

In many cases, this does lead to correct results, while in other cases, things
like the axial anomaly cannot be reproduced [147]. In particular expressions like
tr(γµγνγργσγ5) can not be evaluated.

Regularization by DRed is a interesting scheme, since it does not only manage to
offer a treatment for the γ5 issue, but also preserves global SUSY [145]. Here, the
γ-matrices are not extended to D dimensions but kept 4-dimensional instead. These
4-dimensional Dirac matrices are written as γ̃ and satisfy

{γ̃µ, γ̃ν} = 2g̃µν . (B.6)

The 4-dimensional metric tensor satisfies

g̃µν = g̃νµ, g̃µρ g̃
ρ
ν = g̃µν , g̃µµ = 4, (B.7)

and its contraction with the D-dimensional metric tensor gµν follows the rule

g̃µρ g
ρ
ν = gµν . (B.8)

While this scheme involves some field theoretical subtleties [148] and has some al-
gebraic inconsistencies, it still has lead to correct results [147].

The BMHV scheme leads to an algebraic consistent treatment of the diagrams.
Here, the metric tensors comes in three separate copies g, g̃ and ĝ, living in D-, 4-
and −2ε- dimensions respectively. The D- and 4 dimensional metric tensor satisfy
eq. (B.3) and eq. (B.7) respectively. The −2ε dimensional metric satisfies

ĝµν = ĝνµ, ĝµρ ĝ
ρ
ν = ĝµν , ĝµµ = −2ε. (B.9)

However, contrary to before, the contraction between metric tensors of different
dimensions is given by

g̃µρ g
ρ
ν = g̃µν , ĝµρ g

ρ
ν = ĝµν , ĝµρ g̃

ρ
ν = 0. (B.10)

Also, the D-dimensional Dirac matrices γµ are split into pieces γµ = γ̃µ + γ̂µ living
in 4- and −2ε- dimensions respectively. The γµ and γ̃µ satisfy Clifford algebras as
introduced previously in the context of NDR and DRed, while for γ̂µ the relation

{γ̂µ, γ̂ν} = 2ĝµν (B.11)

holds. Furthermore,
{γ̂µ, γ̃ν} = 0. (B.12)
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In this scheme, γ5 is introduced satisfying

γ25 = 1, {γ5, γ̃ν} = 0, [γ5, γ̂ν ] = 0. (B.13)

This scheme, although algebraic consistent, leads to rather cumbersome calculations,
and more importantly, some results may suffer from non-conservation of currents.

Finally, in Larin’s scheme, before evaluating any traces, the substitution

γµγ5 −→ − i

6
εµνρσγνγργσ (B.14)

is made. All indices are D dimensional.
In the context here, terms involving four Dirac matrices and a γ5 can always be

reduced to be of the form

pµ1p
ν
2q
ρpσ1,2 tr(γµγνγργσγ5), (B.15)

which vanishes in both BMHV and Larin’s scheme, since

pµ1,2p
ν
1,2 tr(γµγνγαγβγ5)

anti sym.
= 0, (B.16)

due to the antisymmetry of the trace in any pair of Lorentz indices, here ν ↔ µ.
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Appendix C

Feynman Rules

C.1 Majorana Fermion Interactions
Following the treatment of Majorana fermions in [66, 67], we summarize the Feyn-
man rules for interactions involving Majorana fermions. Without loss of generality
the interaction Lagrangian between Majorana fermions χa, Dirac fermions ψb and
bosonic fields Φc can be written as

L ⊃ 1

2
giabcχaΓiχbΦc + kiabcχaΓiψbΦ

∗
c + ki∗abcψbΓiχaΦc + hiabcψaΓiψbΦc, (C.1)

where giabc, kiabc and hiabc are couplings and the Dirac matrices Γi are as introduced
in section 4.1. Fermion chains are assigned a fermion flow, diagrammatically repres-
ented by red arrows, which resolves the usual sign ambiguities arising in Majorana
rules. The resulting vertices and propagators are shown in eqs. (C.5) to (C.10). This
fermion flow is set globally for a given amplitude and fixes the relative signs between
diagrams. The Feynman rules for interaction vertices in eq. (C.5) are formulated
using the shorthand notation for the interactions in eq. (C.1), in which e.g.

χΓψ ≡ kiabcχaΓiψbΦ
∗
c , (C.2)

suppressing the bosonic field. In this notation, one defines the reversed vertex

Γ′ := CΓTC−1, (C.3)

which replaces the ordinary vertex whenever the fermion flow - represented by the
red arrow - is opposite to the charge flow of a Dirac fermion. The reversed propagator
is defined similarly as

S′(p) := CSTψ (p)C−1 =
1

−/p−m
= Sψ(−p). (C.4)

The application of the Feynman rules works as in the normal case, apart from setting
this (arbitrary) fermion flow for each fermion chain. Thus one starts at an external
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leg or - for loops - at any propagator and applies the rules in opposite to the fermion
flow.

Φ

χ

χ

= iΓ Φ

χ

χ

= iΓ (C.5)

Φ

χ

ψ

= iΓ Φ

χ

ψ

= iΓ′ (C.6)

Φ

ψ

χ

= iΓ Φ

ψ

χ

= iΓ′ (C.7)

Φ

ψ

ψ

= iΓ Φ

ψ

ψ

= iΓ′ (C.8)

= iSψ(p), = iSψ(−p), = iSψ(p) (C.9)
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C.2 Background Field Vertices

Although only indirectly relevant in this work, for the sake of completeness the rules
for the external states are shown in eq. (C.10).

= u(p, s)

= v(p, s)

= u(p, s)

= v(p, s) (C.10)

C.2 Background Field Vertices
In the calculation of the anapole moment the background field versions of the triple
gauge vertex Γ̂µνρAWW and the gauge-gauge-Goldstone vertex Γ̂µνAWG appear. Their
Feynman rules are shown in eq. (C.11) with explicit values in the BFM Feynman
gauge (e.g. with ξQ = 1) given in eqs. (C.12) and (C.13).

k1

k2

k3

Âµ

W+
ν

W−
ρ

= iΓ̂µνρAWW,

k1

k2

k3

Âµ

W+
ν

G−

= iΓ̂µνAWG (C.11)

Explicitly, the triple gauge vertex reads

iΓ̂µνρAWW(k1, k2, k3) = −ie [gνρ(k3 − k2)µ + gµν(k2 − k1 + k3)ρ + gρµ(k1 − k3 − k2)ν ]
(C.12)

and the gauge-gauge-Goldstone vertex reads

iΓ̂µνAWG(k1, k2, k3) = 0. (C.13)

The other vertices do not differ from the conventional rules [60].
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C.3 Supersymmetric Vertices
The Feynman rules used for the calculation of the anapole moment in the MSSM
are based on the notation and conventions of [25]. Furthermore, since we are only
interested in the lightest neutralino in this work, the abbreviation χ ≡ χ̃0

1 is used.
The interaction Lagrangian can be split into two "prototypes", in which the exact
couplings and fields depend on the exact scenario at hand. The sfermion-fermion-
neutralino interaction can be written as

Lf̃fχ = χ (cLPL + cRPR) ff̃
∗ + h.c., (C.14)

whereas the W-neutralino-chargino Lagrangian reads

LWχχ+ =W−
µ χ g

j
kΓ

j
µ χ

+
k + h.c., (C.15)

with
gjkΓ

j
µ = γµ

[
vkLPL + vkRPR

]
. (C.16)

The corresponding Feynman rules, taking into account the special treatment intro-
duced in appendix C.1, are summarized in fig. C.1.
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Aµ

f

f

= −ieQfγµ,

pf

pi

Aµ

f̃

f̃

= −ieQf̃ (pi + pf )
µ

f̃

χ

f

= i (c∗LPR + c∗RPL) , f̃

f

χ

= i (cLPL + cRPR)

W−
µ

χ

χ+
k

= igjkΓ
j
µ, W+

µ

χ

χ−
k

= igjkC
(
Γjµ
)T C−1

W+
µ

χ

χ+
k

= igj∗k Γjµ, W−
µ

χ

χ−
k

= igj∗k C
(
Γjµ
)T C−1

Figure C.1: Feynman rules based off the MSSM. The fields χ are Neutralino-like
Majorana fermions, χ+

k chargino like charged Dirac fermion, f is a Dirac fermion
like lepton or quark and f̃ its spin-0 superpartner. The red arrow corresponds to
the fermion flow in order to treat the Majorana vertices consistently, see text for
details. 01.02.2022: wrong momentum arrow of pf of the scalar-photon interaction

C.4 Vertices in the MSSM
In this section all vertices of the MSSM are listed which are needed for the calculation
of the anapole moment of χ̃0

1. They are based on [25].

89



Appendix C Feynman Rules

Chargino - Higgs - Neutralino
The Lagrangian describing the interaction between charginos, charged Higgs and
neutralino is given by

L ⊃ −gH−χ
[
QiLPL +QiRPR

]
χ+
i + h.c. (C.17)

with

QiL = cosβ

[
N∗

14V
∗
i1 +

1√
2
V ∗
i2(N

∗
12 + tan θWN

∗
11)

]
= −ciHL /g, (C.18a)

QiR = sinβ

[
N13Ui1 −

1√
2
Ui2(N12 + tan θWN11)

]
= −ciHR /g (C.18b)

and corresponding vertices

H−

χ

χ+
i

= i
[
ciHL PL + ciHR PR

]
, (C.19a)

H+

χ+
i

χ

= i
[
ciH∗
L PR + ciH∗

R PL
]
. (C.19b)

The couplings are written in the generic way of appendix C.3 and take the form

c1HL = −g cosβ
[
N∗

14 cosφR +
1√
2
sinφR(N

∗
12 + tan θWN

∗
11)

]
, (C.20a)

c2HL = −εRg cosβ
[
−N∗

14 sinφR +
1√
2
cosφR(N

∗
12 + tan θWN

∗
11)

]
, (C.20b)

c1HR = −g sinβ
[
N13 cosφL − 1√

2
sinφL(N12 + tan θWN11)

]
, (C.20c)

c2HR = −g sinβ
[
−N13 sinφL − 1√

2
cosφL(N12 + tan θWN11)

]
. (C.20d)

for real chargino mixing matrices as in section 3.4.4.
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Chargino - NGB - Neutralino
Since the charged Nambu-Goldstone boson (NGB) and the charged Higgs are re-
lated via eq. (3.83), the couplings between the chargino and charged NGB can be
inferred from the chargino - charged Higgs vertex (explicit rules can be found in
[149, Appendix A.7]) via (cosβ, sinβ) → (sinβ,− cosβ). Thus the couplings read:

c1GL = −g sinβ
[
N∗

14 cosφR +
1√
2
sinφR(N

∗
12 + tan θWN

∗
11)

]
, (C.21a)

c2GL = −εRg sinβ
[
−N∗

14 sinφR +
1√
2
cosφR(N

∗
12 + tan θWN

∗
11)

]
, (C.21b)

c1GR = g cosβ

[
N13 cosφL − 1√

2
sinφL(N12 + tan θWN11)

]
, (C.21c)

c2GR = g cosβ

[
−N13 sinφL − 1√

2
cosφL(N12 + tan θWN11)

]
. (C.21d)

Chargino - W - Neutralino
Here the relevant part of the Lagrangian is

L ⊃ gW−
µ χ γµ(C

i
LPL + CiRPR) χ

+
i + h.c. (C.22)

with couplings

CiL = N12V
∗
i1 −

1√
2
N14V

∗
i2 = viL/g, (C.23a)

CiR = N∗
12Ui1 +

1√
2
N∗

13Ui2 = viR/g (C.23b)

and vertices

W−

χ

χ+
i

= iγµ
[
viLPL + viRPR

]
, (C.24a)

W+

χ

χ+
i

= −iγµ
[
vi∗RPL + vi∗L PR

]
. (C.24b)
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The expression for the second vertex has the left- and right projectors interchanged
due to the fact that the reversed vertex as in [66, 67] was used. Explicitly the
couplings are

v1L = g

[
N12 cosφR − 1√

2
N14 sinφR

]
, (C.25a)

v2L = εRg

[
−N12 sinφR − 1√

2
N14 cosφR

]
, (C.25b)

v1R = g

[
N∗

12 cosφL +
1√
2
N∗

13 sinφL

]
, (C.25c)

v2R = g

[
−N∗

12 sinφL +
1√
2
N∗

13 cosφL

]
. (C.25d)

with real chargino mixing matrices as in section 3.4.4.

Sfermion - Fermion - Neutralino
The interaction including charged sfermions and fermions is described by the Feyn-
man rules

f̃s

χ

fi

= i
(
GfL∗is PR +GfR∗

is PL

)
, (C.26a)

f̃s

fi

χ

= i
(
GfLis PL +GfRis PR

)
. (C.26b)

The explicit couplings for the squark - quark1 interactions are deduced from the
Lagrangian

L = χ
[
(GuLis PL +GuRis PR)ũ

†
sui + (GdLis PL +GdRis PR)d̃

†
sdi

]
+ h.c. (C.27)

1The quark states are mass eigenstates here
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with

GuLis = GuLW ũ∗
j,sU

uL
ji − g√

2mW sinβ
muiN

∗
14W

ũ∗
j+3,sU

uR
ji , (C.28a)

GuRis = GuRW ũ∗
j+3,sU

uR
ji − g√

2mW sinβ
muiN14W

ũ∗
j,sU

uL
ji , (C.28b)

GdLis = GdLW d̃∗
j,sU

dL
ji − g√

2mW cosβ
mdiN

∗
13W

d̃∗
j+3,sU

dR
ji , (C.28c)

GdRis = GdRW d̃∗
j+3,sU

dR
ji − g√

2mW cosβ
mdiN13W

d̃∗
j,sU

dL
ji , (C.28d)

where q̃s, s = 1, . . . , 6, are six component squarks as in section 3.4.5, j, i = 1, 2, 3
being a generation index and GqL and GqR as in

GfL = −
√
2g
[
T f3LN

∗
12 + tan θW (Qf − T f3L)N

∗
11

]
, (C.29a)

GfR =
√
2g tan θWQfN11, (C.29b)

where Qf and T f3L are the EM charge and third component of the weak isospin of the
fermion f respectively. The mixing between sfermions is described by the matrices
W f̃ . Here we will adopt the assumption that only L/R mixing is allowed, such that
they simplify to (no summation implied)

W f̃
i,i =W f̃

i+3,i+3 = cos θf̃i , (C.30a)

W f̃
i,i+3 = −W f̃

i+3,i = − sin θf̃i . (C.30b)

The matrices U qL and U qR are unitary matrices diagonalizing the mass matrix of
the quark q via a biunitary transformation, e.g.

(UuL†muU
uR)ij ≡ muiδij , (UdL†mdU

dR)ij ≡ mdiδij . (C.31)

We will take the approximation in which

U qL = U qR = 1. (C.32)

This means that the interactions are "diagonal", e.g. only interactions between a
squark - quark pair of the same flavor is allowed. Before writing down the couplings
for quarks explicitly, lets discuss the slepton interactions first. The Lagrangian for
charged leptons read

L = χ [GeLis PL +GeRis PR] ẽ
∗
sei + h.c. (C.33)

with

GeLis = GeLW ẽ
i,s −

g√
2mW cosβ

meiN
∗
13W

ẽ
i+3,s (C.34a)

GeRis = GeRW ẽ
i+3,s −

g√
2mW cosβ

meiN13W
f̃
i,s (C.34b)
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Type e u d
Qf −1 +2

3 −1
3

T f3L −1
2 +1

2 −1
2

Table C.1: Charge and Weak Isospin of SM fermions (excluding ν)

Mass [GeV] e-Type u-Type d-Type
1st Generation 0.51× 10−3 2.16× 10−3 4.67× 10−3

2nd Generation 105.65× 10−3 1.27 93× 10−3

3rd Generation 1.78 4.18 172.76

Table C.2: Masses of the SM fermions (excluding ν)

and GeL , GeR and W ẽ as before. Contrary to the quark case, for leptons the mass-
and gauge eigenstates are identical already, e.g.

(me)ij = meiδij , (C.35)

such that no generation-mixing matrices appear.
Due to the simplification we made in the quark sector, both leptons and quarks

exhibit a very similar structure of the couplings. Summing over the sfermion index
s, while suppressing the fermion index i, e.g. fi → f , we can express the interaction
Lagrangian for sfermion - fermion - neutralino as

L =
∑
f

χ
[
(Gf̃L cos θf̃ +H f̃R sin θf̃ )PL + (Gf̃R sin θf̃ +H f̃L cos θf̃ )PR

]
f̃ †1f

+
∑
f

χ
[
(−Gf̃L sin θf̃ +H f̃R cos θf̃ )PL + (Gf̃R cos θf̃ −H f̃L sin θf̃ )PR

]
f̃ †2f

+h.c. (C.36)

with Gf̃L and Gf̃R as above and

H f̃L = − g√
2mW

mf ×

{
N14/ sinβ, f = u

N13/ cosβ, f = d, e
(C.37a)

H f̃R = H f̃L∗ (C.37b)

The charge and weak isospin of the fermions are listed in table C.1, while the SM
fermion masses of the PDG [125] are listed in table C.2.
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