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Abstract

Big Bang Nucleosynthesis (BBN) describes a crucial period in the early stages
of our Universe. According to this theory, in a matter of minutes, the primordial
distribution of light nuclei is determined and was instrumental in the development of
modern Cosmology due to its success in predicting the observational abundances of
light nuclei. Since its birth, striking progress has been made, both from a theoretical
point of view leading to a prediction of light nuclei abundances with an accuracy at
the percent level, as well as on the experimental side, mainly due to equally precise
measurements of the primordial abundances.

Remarkably, BBN theory still broadly agrees with observations and, highly non-
trivially, with the rest of the Standard Model of Cosmology as a whole, so any ele-
ments of new physics that influence the primordial nucleosynthesis are very severely
constrained. Thus, BBN has become one of the most powerful cosmological probes
and can be used to test theories beyond the Standard Model, opening up a window
into the Universe at the earliest time and highest energies presently accessible to us.

The goal of this thesis is to do precisely that. First, given the strong sensitivity
of the Helium abundance on the Neutron lifetime τn and the long standing Neutron
Lifetime anomaly (NLA), we will derive constraints on τn providing an independent
measurement competitive with other current experiments. Additionally, we will
derive BBN constraints on dark decays of the neutron proposed to resolve the NLA.

Furthermore, motivated by a novel measurement of the Helium abundance by
the EMPRESS collaboration, which is in tension with the standard prediction from
BBN theory by about 3σ, we will focus on elements of new physics which might be
able to alleviate it. Concretely, we will perform an exhaustive global analysis using
different sets of BBN and CMB data, both independently and combined, for three
different scenarios.

First, we allow for a non-standard expansion history of the Universe by allowing
the effective number of neutrino species Neff to deviate from its SM value, which
will require ∆Neff < 0. We will provide a possible interpretation of this as a hint
of a time variation of the gravitational constant GN . Motivated by this hint, we
will also explore how a time variation of the Higgs vacuum expectation value affects
BBN, updating and improving upon previous constraints. However, we will argue
that perhaps the simplest explanation for the tension is the presence of a lepton
asymmetry several orders of magnitude larger than the baryon asymmetry, so we
will derive current constraints and explore the future sensitivity of BBN and CMB
data on primordial lepton asymmetries.
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Chapter 1

Introduction

In the seminal book, ”The Structure of Scientific Revolutions”, published in 1962
by Thomas S. Kuhn [1], science is described as a collaborative endeavour where
progress is made in a cumulative fashion within an established framework, also
known as a ”paradigm”, in a process he denominated ”normal science”. This period
of rapid development within a given framework aims at exploring the boundaries of
the paradigm.

As a result of this exploration, inconsistencies and problems are revealed over
time, both from a theoretical and an experimental point of view. At first, it is
uncertain whether these merely demonstrate the community’s lack of understanding
or if they indicate a problem within the paradigm itself. Generally, these paradigms
have previously shown great success during the period of normal science, so only
when these inconsistencies start to accumulate and become more significant does
this get taken seriously as a problem.

Science enters a state of crisis, normal science continues to accumulate anoma-
lies, and faith is lost in the previously well-established paradigm. The search for
a new framework within which to conduct research, the endeavor of ”revolutionary
science”, begins. During this period, the paradigm is scrupulously reevaluated and,
with the anomalies and tensions as guideposts, new theories are put forward. Once
one of these theories emerges as successful, a ”paradigm shift” in that field of science
takes place and the winner establishes itself as the new framework future develop-
ment will be based upon. One could argue that the fields of Cosmology and Particle
Physics are currently on the verge of precisely this period of crisis.

In Particle Physics, the Standard Model (SM) has established itself as the most
precise theory in the history of physics ([2]), its culmination being the discovery
of the Higgs Boson in 2012 ([3]), the last particle missing to complete the particle
spectrum of the theory. It is the paradigm within which most research in Particle
Physics is conducted.

The Standard model of Cosmology (ΛCDM), on the other hand, assumes an
isotropic and homogeneous Universe expanding according to the laws of General
Relativity (GR) comprised of the particle content of the SM and two additional (and
dominant) ingredients: a large component (73%) of Dark Energy Λ and 23% of cold,
non-baryonic dark matter. This model has been extremely successful up to now, its
crowning achievements being the prediction and description of an isotropic and

1



Probing New Physics with Big Bang Nucleosynthesis

homogeneous Cosmic Microwave Background [4] and the synthesis of light elements
during Big Bang Nucleosynthesis (BBN).

Despite their respective successes, both models face severe challenges from lab-
oratory experiments as well as Cosmological Observations and are theoretically in-
consistent in certain ways. Some of them need to be addressed by modifying the
SM or the ΛCDM, while some may be addressed by both.

The SM cannot accommodate the fact that neutrinos are massive and, especially,
that their masses are so light. Additionally, there are some long-standing and more
recent experimental anomalies ([5]) that challenge the SM, like measurements of the
anomalous magnetic moment of the muon and the mass of the W bosons, as well as
theoretical inconsistencies, most notably the problem of naturalness [6].

The ΛCDM model, too, is extremely challenged by some very precise measure-
ments, most notably the Hubble [7] and the S8 [8] tensions and, in the context of
BBN the Lithium Problem [9]. Additionally, while the ΛCDM model can manually
add the Dark components, it does not explain them in any way, they are simply
treated as variable parameters, the SM does not contain a consistent candidate for
Dark Matter, and the only way to produce a constant vacuum energy via the Higgs
Vacuum Expectation Value is many orders of magnitude away from the observed
magnitude of this constant.

Last, but definitely not least, we know that we are living in a Universe with
slightly more matter than antimatter. This is either a problem that highlights the
incompleteness of the SM, as the amount of CP violation generated in the SM is
not enough to generate the Baryon Asymmetry of the Universe (BAU) within the
current cosmological framework, or that the rather simple picture of the ΛCDM
model is incorrect.

Thus, while the claim of Particle Physics and Cosmology being in crisis may be
too bold for some, there is irrefutable evidence, and a wide consensus, that these
theories need to be modified and extended. The time for revolutionary science has
come.

The aim of this thesis, however, is not to revolutionize our understanding of the
world. Rather, it aims at highlighting the importance and usefulness of Big Bang
Nucleosynthesis as a probe of new physics. Concretely, this means how anomalies
and constraints derived from this crucial epoch in the development of our Universe
can be used as guideposts for developing new paradigms and challenge those who
modify the physics during this epoch, both for the field of particle physics as well
as Cosmology.

This is motivated by a novel measurement of the Helium abundance by the EM-
PRESS collaboration [10], which, using an extended catalogue of extremely metal
poor systems, reported a value which is in a 3σ tension with the standard BBN
scenario. However, in order not to be wholly dependent on just one measurement,
the standard PDG value [11] will also be used, highlighting the importance of this
choice on the constraints derived.

In light of this, the structure of the thesis will be as follows. First, in Ch. 2 we
will review the experimental status of the observations of primordial abundances and
introduce the statistical methods, as well as the different measurements, we will use
throughout the thesis. Then, in Ch. 3, we will review the Standard theory of BBN
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(SBBN) with the aim of presenting it in such a way that the different assumptions
that go into it become apparent, so that we may later relax them when studying
elements of new physics.

After having reviewed the Standard paradigm (Ch. 4), we will begin to analyze
the different constraints usually derived from BBN, starting with the, in principle,
only free parameters of the theory, the baryon density, as well as the neutron lifetime,
which is generally treated as an input to the theory, but given the sensitivity of
the Helium abundance to this value, can also be constrained from BBN directly,
providing an independent measurement on τn, perhaps crucial in order to resolve
the long standing Neutron Lifetime Anomaly. We will then depart from SBBN and
allow for a non-standard expansion history of the Universe, as parametrized by the
effective number of neutrino species Neff , a topic of intense study in the context of
Nucleosynthesis in the last years.

For the EMPRESS prior we find that a resolution in terms of a modification of
Neff requires it to be smaller than its SM prediction. A possible explanation of this
is a time variation of the gravitational constant, GN , which is why in Ch. 5 we
will focus on this topic and study the impact of a time variation of GN , as well as
the Higgs vacuum expectation value v, on Nucleosynthesis and derive constraints
on their respective time dependence.

After having studied the effects of a non-standard expansion history of the Uni-
verse, we shift our attention to modifications of the weak rates. A possible solution
to the NLA, proposed in [12] is the existence of a dark sector to which the neutron
can decay. First, in Ch. 6, we derive a model-independent constraint on the neutron
lifetime and its branching ratio to dark sector particles.

Lastly, after a study of general modifications to the weak rates, we find (Ch.7)
that the simplest modification allowing for the low value of the primordial Helium
abundance measured by the EMPRESS survey is the presence of a large lepton asym-
metry at the epoch of BBN. In light of that, we undertake a comprehensive analysis
of primordial lepton asymmetries using BBN and CMB data, deriving constraints
for current experiments and determining the reach of future experiments.
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Chapter 2

Experimental Status

Nucleosynthesis describes the process whereby in a very short period of time
at about 300 s after the supposed beginning of the Universe all nuclei that will
eventually form the matter that we are made of and surrounded by were formed from
an initial abundance of neutrons and protons. As we will see in the next chapter,
after this process was complete, the Universe was mostly composed of protons and
Helium-4, with trace amounts of Deuterium, Helium-3, Tritium, and Lithium-7. As
carbon-based lifeforms, who breathe oxygen obtained from an atmosphere mostly
made of nitrogen, it is not hard to see that this cannot be the full story, and, indeed,
this was only beginning.

As the Universe cooled down, the nuclei were able to form electrically neutral,
stable, bound systems with free electrons, also known as atoms, at the era of re-
combination about 380 000 years after the formation of these primordial nuclei. As
the Universe continued to cool down and structure began to form, these primor-
dial atoms became the fuel for the first generation of stars that lit up the Universe
about 100 million years later. These stars burnt their fuel comparatively quickly
and ejected their contents back to the Universe in a violent explosions, releasing the
heavier stable elements that had been created in the stellar burning process into the
Universe once again only to be used as fuel by further stars. This cycle of the life
and death of stars has been ongoing ever since.

Thus, as time passes and the Universe expands, ever more stars are formed that
continuously pollute the pristine gas of protons and Helium comprising most bary-
onic matter in the Universe after nucleosynthesis with astrophysical metals, that is
elements heavier than Helium-4. While this pollution is essential for our existence, it
also raises a crucial question we need to answer before concerning ourselves with the
actual theory of nucleosynthesis. Can we even measure the primordial abundances?

Sadly, the answer is no, we cannot measure them directly, but we can infer it
from different astrophysical observations. This, generally consists of finding the
youngest systems possible, measuring the abundance of different nuclei in these
systems and hope that we can accurately extrapolate to even younger systems until
we eventually reach a plateau that corresponds to the primordial abundances. We
will now highlight the most important aspects of these measurements that will be
of importance for us later on, but refer to, e.g. [13, 11] for reviews on this topic.
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2.1 Helium

Helium is one of the first elements that can be produced in stars from Hydrogen
burning. Additionally, stars can also use Helium as a fuel to produce heavier nuclei.
Thus, Helium is both copiously produced and destroyed during stellar evolution al-
ready very early on. In order to obtain the primordial abundance, we therefore need
to find regions that are only marginally chemically evolved. Since nucleosynthesis
does not abundantly produce metals, a proxy for the age or amount of chemical
evolution of a certain galactic region can be obtained by measuring its metallicity,
that is, essentially the amount of oxygen or nitrogen it contains. By measuring the
Helium abundance for a large amount of galaxies and extrapolating to zero metal-
licity, one can obtain the primordial abundance. This is actually the most common
method to determine the primordial helium abundance [14, 15, 16, 17, 18].

Obtaining the abundance of Helium, by itself, regardless of the metallicity of
the system, is already a challenge. Generally, this requires measuring the intensity
of emission lines caused by the recombination of Hydrogen and Helium ions, from
which the neutral hydrogen and Helium column densities can be inferred. The
presence of further ionized nuclei not visible through this method is accounted for
by running photo-ionisation simulations. From this, we can now obtain the full
Helium-to-Hydrogen ratio y. From this, the ”primordial” Helium mass fraction at
the given metallicity can be obtained:

Y =
4y

1 + 4y
(2.1)

All that is left now is to plot the different values for Y as a function of metallicity
obtained from as many systems as possible and extrapolate to the primordial helium
abundance present at zero metallicity. This is shown on the left panel of Fig. 2.1.
As we can see, the determination of both metallicity and primordial Helium mass
fraction leaves a lot to wish for. In fact, this approach has been historically prone
to many different sources of systematic errors, so that different groups obtain many
different results.

As an example, the authors of [19] find YP = 0.2551 ± 0.0022, whereas the
authors of [14] find YP = 0.2453± 0.0034, which amounts to a 2.5σ tension. Recent
measurements appeared to be converging toward this lower determination of the
Helium abundance, as can be seen on Fig. 2.1, causing the PDG to recommend the
following weighted average[11]:

YP = 0.245± 0.003 [PDG− 22] (2.2)

which from now on we will refer to as the PDG-22 determination of YP . On the other
hand, fairly recently the EMPRESS survey [10] increased the sample of extremely
metal poor galaxies (EMPGs). Assuming these measurements are correct, this would
imply that the extrapolation to zero metallicity from this experiment is more reliable,
as it includes in principle more pristine systems that are closer to the primordial
state of the Universe. Interestingly, the inclusion of these EMPGs lead them to
report a value of the Helium abundance:

YP = 0.2370± 0.0034 [EMPRESS] (2.3)
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Figure 2.1: Left: Determinations of the Primordial Helium mass fractionY as a
function of the oxygen to hydrogen ratio. The grey line shows the best fit of the data,
with the grey band corresponding to the 68% CL. Figure from [23] Right:Current
status in the measurements and the theoretical determinations of the primordial
helium abundance, and forecasts for the upcoming Simons Observatory and CMB-
S4, Figure from [24]

This measurement is only mildly in tension with previous measurements, but is 3σ
smaller than the value predicted by the Standard Model [20]. In the absence of a
systematic error in the measurement, such a low value hints at the presence of new
physics modifying the expansion of the Universe at the epoch of BBN.

While this method is the most common and precise, it is not the only method
by which to infer the primordial Helium abundance. As shown in [21], the helium
abundance could be inferred from the absorption lines of the light of a background
quasar when passing through a near-pristine intergalactic gas cloud. This method
yields:

Y = 0.250+0.033
−0.025 (2.4)

which is in agreement with both the EMPRESS and PDG-22 proposed values, but
is not nearly as precise. However, this measurement is currently dominated by
statistics and has the potential of reaching a sensitivity that is competitive with
them, providing an invaluable independent measurement of YP .

Additionally, much like most processes in the Early Universe, primordial Helium
affects the power spectrum of the CMB. Ionized Helium, at the time of recombi-
nation, affects the number of free electrons, thus leaving an imprint in the CMB
temperature and polarization power spectra at small angular scales. An analysis of
Planck observations of the CMB [4, 22] yields:

YP = 0.245± 0.018 (2.5)

which improves upon measurements of [21], but is still not competitive with mea-
surements of the emission line spectra in metal poor galaxies. A summary of recent
determinations is shown in Fig. 2.1, and show a fairly good agreement with the
Standard Model expectations.
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Figure 2.2: Determinations of the Deuterium to Hydrogen ratio from measurements
of the absorption lines of pristine interstellar gas clouds fulfilling the criteria from
[25] as a function of the oxygen to hydrogen ratio. The red dashed (dotted) lines
correspond to the 68% (95%) CL from the weighted mean of all the data, whereas
the grey line shows the Standard BBN prediction assuming a CMB prior on the
baryon density at the same CLs. Figure from [26]

2.2 Deuterium

Deuterium is also very efficiently burned during the stellar process. Unlike He-
lium, though, it is much less abundant and there are in principle no astrophysical
sources capable of significantly producing Deuterium [13]. Thus, in principle, any
detection of deuterium is of primordial origin, but since it can be burned in stars, it
is only a lower limit on its primordial abundance and, the more pristine the target
of the observations, the more likely this is to correspond to the actual primordial
abundance.

The most common method to determine the Deuterium abundance is to measure
the absorption lines of pristine gas clouds against a source of background light, typi-
cally quasars. If these systems fulfil certain additional criteria, as pointed out in [25],
many of the systematic uncertainties limiting the precision of previous experiments
can be avoided and extremely precise measurements can be made.

Currently, only 7 such systems have been detected [26], whose abundance as a
function of metallicity is shown on Fig. 2.2. As we can see, the inferred deuterium
abundance from these systems are all in very good agreement with each other and
exhibit a clear plateau, hinting at its primordial origin. Largely based on these mea-
surements, the PDG recommends a value for the Primordial Deuterium abundance,
usually quoted as the ratio of primordial deuterium to primordial hydrogen[11]:

D/H|P = (2.547± 0.025)× 10−5 [PDG− 22] (2.6)

with a precision of 1%, comparable to the precision of the Helium abundance. Unlike
Helium, this precision is mainly controlled by statistics, as we only have 7 systems
fulfilling the strong requirements from [26], but there is very little disagreement on
the precision of this measurement, unlike with Helium.

2.3 Lithium

Lithium has three main astrophysical sources. It can be created during BBN,
through nuclear reactions between cosmic rays and the intergalactic medium and in
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Figure 2.3: Observations of the Lithium to Hydrogen (blue points) ratio as a function
of metallicity showing the features of the Spite plateau compared to the Standard
model prediction (green band). Figure form [20]

stars. Thus, Lithium can both be produced and destroyed as the Universe expands.
Interestingly, some of the best sources from which to infer the Lithium abundance
are extremely old stars in the halo of our own galaxy. Already in the 1980s the
first measurements appeared [27] from precisely such stars, reporting a metallicity
independent plateau, the ”Spite Plateau”, which just like with Deuterium can be
interpreted as a strong indication for a primordial origin of the measured abundance.

More recent results are shown on Fig. 2.3, along with a green band corresponding
to the prediction from cosmology. Needless to say this is a severe problem, as the
measured abundance is lower than the predicted one by a factor of 3! This so-called
Lithium problem is one of the biggest challenges the standard theory of nucleosyn-
thesis faces and needs to be addressed. Indeed, a lot of work has gone into resolving
this issue, both from the experimental side trying to find any systematic errors in
the measurement, as well as from the theoretical side with different proposals as to
what type of new physics could yield such a low value of Lithium.

However, there is still no consensus as to what is the solution to this long-standing
problem, whether it is a theoretical problem or an astrophysical one. In light of
that, in what follows we choose not to use a prior on the Lithium abundances to
constrain new physics with BBN. This is unfortunate, as this reduces slightly the
predictive power of BBN as we can now constrain one parameter less, but it avoids
the introduction of unnecessary tension into the data. Nonetheless, one should
always keep in mind that this is still a problem when praising the beautiful agreement
between standard nucleosynthesis and data on the observational abundances.

While in principle one can predict the primordial abundance up to even different
isotopes of nitrogen, measurements, astrophysical observations on their primordial
abundances either cannot be made or they are too inaccurate. The most promising
candidate in this respect is Helium-3, but currently measurements only provide an
upper limit on the Primordial abundance.
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2.4 Statistical Methods

Motivated by the recent result by the EMPRESS survey, we will undertake a
comprehensive study of current constraints on standard nucleosynthesis, as well as
different scenarios of new physics through its effect on the production of primordial
abundances by comparing the predictions to the observational abundance from BBN
and CMB data independently and combined. For the statistical analysis, we will
adopt a freqeuentist approach using a χ2 statistic, instead of a Bayesian one1. Since
we only really have one Universe to test our theories, the latter may perhaps be
the more consistent approach, but it has been shown that when data dominate the
analysis, both methods yield the same results, which is the case here.

Regardless of the actual dataset, we will proceed in an analogous way for all
analyses. Let us assume that we have N parameters θi in our theory, whose in-
terpretation will depend on the actual cosmological scenario we are testing. We
will assume Gaussian distributions for all measurements we include in the analysis.
Assuming that ~y corresponds to our measurements, we can simply build our χ2 as
follows:

χ2(~θ) = (~y − ŷ(θ1, ..., θN)) · Σ−1 · (~y − ŷ(θ1, ..., θN)) (2.7)
where Σ is the Gaussian covariance matrix for the measurements. Since the actual
dependence of ~y(θ1, ..., θN) is highly non-trivial, in order to minimize this distribution
we will simply generate an N -dimensional grid Θ for a given range of each parameter2

and calculate χ2(θ1, ..., θN) for each point on that grid. The best fit estimate of our
parameters θ̂ is then simply found as

θ̂ = argmin
~θ∈Θ

χ2(~θ) (2.8)

and the minimal value of χ2 is obtained analogously. Subsequently, one can construct
the ∆χ2 = χ2(~θ) − χ2

min. This is now a multi-dimensional χ2 distribution centered
around the best-fit value. From this distribution, we construct isocontours that
correspond to different confidence levels. Assuming that there is only one parameter
θ, then ∆χ2 = n2 corresponds to a n · σ confidence level. In that case, by finding
the values of θ corresponding to ∆χ2 = 1, we find an estimator for the uncertainty
on our best fit parameter. If we are constraining two parameters at once, then we
obtain isocontour ellipses for a given confidence level. Generally, we will only be
interested in the 1σ and 2σ contours, corresponding to ∆χ2 = 2.3 and ∆χ2 = 6.18
respectively.

However, there are cases where we have more than two parameters and even
for two we want to be able to find an estimator for the uncertainty on our best-fit
parameters. Thus, we need to be able to treat nuisance parameters in some way.
For this purpose, we will use the profile likelihood ratio, which is actually quite
simple. Let us say that we are only interested in one parameter θ and the other
N − 1 parameters are just nuisance parameters νi, such that ~θ = (θ, ν1, ..., νN−1).

1We will only briefly cover the most important aspects of our analysis, but we very closely
follow the methods described in [11]

2This grid needs to be sufficiently fine grained. Depending on the number of parameters, this
may pose a computational challenge, but we have made sure that the spacing between points is
at least ten times as small as the uncertainty on that parameter, so that this will not affect any
conclusions.
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In order to obtain the χ2 distribution as a function of only θ, we will simply choose
values for νi that minimize the χ2. We will call this process marginalizing over the
parameter νi. The marginalized distribution is then simply defined as:

χ2(θ) = min
~ν

χ2(θ, ~ν) (2.9)

This can be used to find the uncertainty for any parameter in the same way as
discussed before. This procedure will likewise allow us to obtain confidence-level
ellipses for distributions with more than two parameters.

BBN Data

All that is left now is to discuss the different priors and combinations we will
use in the analysis. We will mainly focus on the implications of the recent helium
measurement by EMPRESS [10]:

YP|EMPRESS = 0.2370± 0.0034 . (2.10)

However, we will also consider, for comparison and in order to simply update some
constraints that have only been obtained previously with outdated measurements of
the observational abundances, the recommended PDG-22 value [28]:

YP|PDG−22 = 0.245± 0.003 . (2.11)

We will also include the measurement of the primordial deuterium abundance, which
is typically used to constrain the baryon energy density. The PDG recommended
value reads [28]:

D/HP|PDG−21 = (2.547± 0.025)× 10−5 , (2.12)

which is largely based on the analysis of [26]. Apart from the experimental un-
certainty, the theoretical prediction also has some uncertainties from the value
of the neutron lifetime, as well as the nuclear reaction rates. We also take this
theoretical uncertainty into account by, quite simply, adding in quadrature to
the observational and theoretical uncertainties. Concretely, for helium we take
σTheo(YP) = 0.00017 [20]. For Deuterium, as we will see later on, different groups
obtain different results, depending on some, in theory, trivial choices that should
yield equivalent results, but given poor data actually do not. For the deuterium to
hydrogen ratio we take σTheo(D/H|P) = 0.07× 10−5 when using the nuclear reaction
rates from [29] (PArthENoPE rates), and σTheo(D/H|P) = 0.04 × 10−5 when using
those from [30] (PRIMAT rates).

We will assume that these measurements are statistically independent, so that the
covariance matrix of the BBN prior is just the sum of the respective χ2 distributions,
namely:

χ2(~θ) = χ2(~θ)|YP
+ χ2(~θ)|D/H|P

=

(
Y obs
P − Y th

P (~θ)
)2

σ2
Y, obs + σ2

Y, th

+

(
D/H|obsP −D/H|thP (~θ)

)2
σ2
D/H, obs + σ2

D/H, th

(2.13)

where for YP we can either choose the EMPRESS prior (Eq.2.10) or the PDG-22
prior (Eq. 2.11).
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CMB Data

Lastly, we will also use results from Planck CMB observations [4]. These provide
independent determinations of the baryon density, Ωbh

2, YP, and the effective num-
ber of neutrino species Neff , which we will introduce later on. Concretely, assuming
the standard cosmological model, the Planck collaboration reports a baryon energy
density

Ωbh
2|Planck = 0.02242± 0.00014 , (2.14)

from combining the full temperature and polarization data, together with CMB
lensing and baryon acoustic oscillations. Since Ωbh

2 is one of the parameters that
determine the final abundance, we can quite simply construct the χ2 distribution
as:

χ2(Ωbh
2) =

(
Ωbh

2 − Ωbh
2|Planck

σΩbh2

)2

(2.15)

However, the baryon density measurement from the CMB is actually correlated
with YP , as the primordial Helium abundance will affect the CMB power spectrum
through its effect on the number of free electrons at recombination. Therefore, the
Planck collaboration has also made an analysis of the CMB data allowing for a
non-standard primordial helium abundance, so it is more consistent to use this as a
prior when combining BBN and CMB data to constrain the primordial abundances.
Thus, we need to use the full correlation matrix to define the Planck χ2 in Eq. 2.7,
which requires the knowledge of the correlation parameter ρ between YP and Ωbh

2,
as well as the uncertainty on each parameter individually, which reads [22]:

Ωbh
2|Planck = 0.02239± 0.00018 , (2.16a)

YP|Planck = 0.242± 0.012 , (2.16b)
ρ(Ωbh

2, YP) = 0.663 . (2.16c)

Lastly, we will also look at the situation where we will allow the effective number
of neutrino species Neff to vary, which allows us to constrain scenarios with a non-
standard expansion history of the Universe with one simple parameter, which makes
it a very important piece of evidence for Cosmology. The Planck collaboration has
analyzed the CMB data allowing also for variations in Neff . For this scenario, the
determination of Ωbh

2, YP and Neff with their corresponding correlation coefficients
read:

Planck

Ωbh
2|Planck = 0.02238± 0.00019 , (2.17a)

YP|Planck = 0.245± 0.018 , (2.17b)
Neff = 2.97± 0.29 , (2.17c)

ρ(Ωbh
2, YP) = +0.273 , (2.17d)

ρ(Ωbh
2, Neff) = +0.270 , (2.17e)

ρ(Neff , YP) = −0.686 . (2.17f)

In order to combine BBN and CMB measurements, we will assume that they are
statistically independent and simply add the χ2 distributions for different priors
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together. In principle, we now have all the information we need to constrain the
observational abundances except for one slight detail, namely how the primordial
Helium and Deuterium abundances depend on the parameters we would like to
constrain.
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Chapter 3

Theory of Big Bang
Nucleosynthesis

Before introducing elements of new physics, we need to first understand the
standard picture of Big Bang Nucleosynthesis that has established itself as one of
the pillars of modern Cosmology. It describes an extremely important moment in the
evolution of our Universe, crucial to our own personal existence, a process whereby,
within the Hot Big Bang theory of our Universe, the earliest nuclei were formed. It
is from this primordial matter that the first stars were made, eventually leading to
the formation of all the baryonic matter that surrounds.

If things had happened ever so slightly differently, we may not even exist. Thus,
nucleosynthesis answers, at least partly, a question that is innate to our human
curiosity, namely where the matter we are made of actually comes from. As such,
it is not a wonder that the theory of nucleosynthesis marks one of the earliest
developments in what we could today consider modern Cosmology.

3.1 A Brief History of Big Bang Nucleosynthesis

Although the history of how this theory came to be is rather confusing [32],
it is clear that the idea emerged in the mid 1940s, with G. Gamow being widely
credited as the first to take a step in the right direction. He was concerned with
explaining the observed abundances of all nuclear elements in the Universe, as shown
in Fig. 3.1. Previously, it had been proposed that the exponential decrease in the
observed abundance should be due to an equilibrium process taking place in the
Early Universe, only dependent on the temperature of the Universe at that time
and the qualities describing a nucleus like binding energy and mass number.

In a paper published in 1946 [33], however, Gamow argued that this would not
explain the plateau the curve on Fig. 3.1 exhibited for larger mass nuclei and,
perhaps more importantly, that the conditions required for this equilibrium state
were only present for too short a period of time. Instead, he stated that a much
more likely explanation involved ”some kind of unequilibrium process taking place
during a limited interval of time”[33].

This process required a dense gas of neutrons as primordial matter which, by
virtue of the rapid expansion of the Universe, at some point stopped interacting with
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Figure 3.1: Logarithm of the observed relative abundance of the chemical elements
as a function of their nuclear mass number compared to the predicted abundance by
R.A. Alpher, H.A. Bethe and G. Gamow according to their neutron-capture theory
of the formation of elements [31].

each other and decayed freely into protons and electrons through β-decay. Protons
and neutrons then present in ≈ 1 : 7 ratio combined first to deuterium, then to
heavier nuclei successively through neutron capture, with the neutron to proton
ratio inside the nuclei being regulated through beta decays of neutrons inside the
nucleus over time towards stable isotopes.

A refined treatment of this idea, developed as part of R.A. Alpher’s doctoral dis-
sertation [34], is put forward in the seminal ”α-β-γ-paper”[31]. This paper is widely
credited as one of the central papers in the development of the theory of Primordial
Nucleosunthesis and Big Bang Cosmology, which is a fair assessment. Nonetheless,
it made several very crucial and incorrect assumptions that differ from the standard
picture nowadays: the authors of this paper assumed a matter dominated Universe
and that the entire baryon density was made up of neutrons.

The first assumption led to one big problem, as was pointed out in [34]. Alpher
and Herman determined the initial neutron density required to explain the observed
relative abundance curve and found that value to be extremely low. A Universe
contains only such a tiny amount of primordial matter, as was assumed to be the
case, expands very slowly, so that this energy density, according to the Friedman
equation, is only reached at a time much larger than the neutron lifetime. In such
a scenario, the production of elements through neutron capture would fail as there
would be no Hydrogen, the most abundant of the elements. This was solved by
requiring the presence of radiation at a temperature of T ∝ O(109K) that dominated
the energy density of the Universe, accelerating the expansion and shifting the time
at which the neutron capture occurs to be smaller than the neutron lifetime.

This is the first mention of an overwhelmingly large presence of radiation in the
early Universe at the time of BBN. In fact, as a correction to a paper published
in 1948 by Gamow in Nature [35], Alpher and Herman predicted the Temperature
that this background radiation, which we now know as the Cosmic Microwave Back-
ground (CMB), should have today to be TCMB = 5K, which is remarkably close to
the present determination TCMB = 2.73K. It was this early prediction along with
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the discovery of the CMB by A. Penzias and R. Wilson [36] in 1965, as well as its
correct prediction of the observed Helium abundance and its conceptual simplicity,
that cemented the ideas developed in these years as an integral part of any model
of the Early Universe.

Furthermore, the second assumption was incorrect, or at least extremely unlikely,
as was later pointed out by C. Hayashi in 1950 [37], namely that in a Universe at such
high temperatures, where electrons, neutrinos and their respective antiparticles are
necessarily present, neutrons and protons undergo weak reactions that interchange
them. Thus, they reach an equilibrium state for temperatures higher than at least
the mass of the electron in which the ratio of neutrons to protons is determined by
their mass difference Q and the temperature of the plasma, namely np/nn ∝ eQ/T ,
which is quite close to unity for the temperature range of interest.

While at first sight this might look like a big problem, it actually helped the
theory which otherwise would have inevitably struggled. There are no stable nuclei
with mass number 5 or 8, which meant that no elements with a mass number higher
than 4 would be created. A larger presence of protons, however, allowed for an
increased presence of, for example, Helium 3 which upon combination with tritium
could create heavier nuclei. On the flipside, however, this realization indicated
the need for the inclusion of different nuclear reaction rates, not only the neutron
capture, anymore. This meant that the already complicated set of equations, that
up to now had only been solved under extremely simplifying assumptions1 , would
need to be complicated further.

Alpher and Herman, along with J.W. Follin incorporated these results into the
theory, summarizin them in a paper published in 1953 [39]. They focused mainly
on improving the calculation by Hayashi [37] of the induced β-process rates and
predicting the neutron to proton ratio In doing so, they very precisely described a
timeline of events between ≈ 100MeV and the end of nucleosynthesis at ≈ 1 keV.
The picture presented in this paper is that of a highly relativistic gas of photons,
electrons, neutrinos, mesons and baryons, in equilibrium with each other, which
cools down as the Universe expands. Neutrons and protons are kept in equilibrium
through induced β-processes. Heavier nuclei are instantly dissociated because of
the large amount of extremely high energy photons. The temperature continues
dropping and neutrons and protons decouple from the thermal bath, so neutrons
essentially decay freely now. Shortly after, nucleosynthesis begins and the process
is essentially done after a couple of minutes. The crucial aspect of the formation
of elements by thermonuclear reactions is left for future study in this paper, as a
detailed study required correct measurements of the reaction rates and advancements
in numerical computation methods.

Progress halted for a little while after this, as the theory seemed to fail in its
original endeavor of explaining the genesis of all observable elements in favour of
stellar production mechanisms. However, the underproduction of Helium through
such mechanisms combined with the discovery of the CMB revived the theory. The
first calculation of the evolution of the light elements according to the theory of

1For example, in all of the calculations in [31, 38, 33, 35], the effect of the expansion of the
Universe, of paramount importance as it provides the destabilizing force that allows this process
to depart from equilibrium, had been ”neglected because of computational difficulties”, as Alpher
and Herman wrote in [38].
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Figure 3.2: Evolution of Nuclear Mass fractions as a function of Temperature in an
expanding isotropic and homogeneous Universe with low matter density, taken from
[40].

Primordial Nucleosynthesis described in [39] followed shortly after, in a paper by R.
Wagoner, W. Fowler and F. Hoyle in 1967, which included a full numerical treatment
with more than 60 nuclear reactions and the expansion of the Universe taken into
account. The result of this calculation for a Universe with similar conditions as the
ones we currently believe we are living under is shown on Fig. 3.2.

3.1.1 The Current Picture

The modern theory of Primordial Nucleosynthesis is essentially based on these
two papers ([39, 40]). Even though there have been significant quantitative improve-
ments, which will be detailed throughout this chapter, the overall picture has not
changed too much qualitatively:

• We start with an isotropic, homogeneous flat universe comprised of all SM par-
ticles. At the temperature range relevant for BBN (10−10−3MeV), radiation,
in the form of photons, electrons, neutrinos and their respective antiparticles,
dominates the energy density.

• Neutrons and protons are being interconverted through weak reactions and are
roughly equal in number, with their equilibrium getting exponentially biased
towards protons as temperature drops. However, at some point, the expansion
rate catches up with the neutron to proton conversion rate and they depart
from equilibrium at about T = 0.8MeV.

• Neutrons are essentially free and start decaying to protons with a lifetime of
τn = (878.4± 0.5) s[11], further diminishing their abundance until nucleosyn-
thesis is fully underway.

• Simultaneously, the formation of nuclei can begin as nuclear reactions now
proceed faster than weak reactions. This happens not only through neutron
capture, as proposed initially by Gamow [33], but through the complex system
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of nuclear reactions described in [20]. Just after neutron proton freeze-out, the
temperature is already below the binding energy of most nuclei,like Deuterium
with BD = 2.23MeV. However, due to the overwhelming overabundance of
photons with respect to nucleons, there are still enough high-energetic photons
in the Wien tail of the Bose-Einstein distribution that the photodissociation
rate is high enough, so that the nuclear abundances remain negligibly small
and neutrons continue decaying.

• The most common pathways in the system of nuclear reactions to get to
higher order nuclei involve at least one deuterium nucleus. Thus, a substan-
tial amount of deuterium is required for BBN to properly begin, even though
the photodissociation rate may be negligible as Temperature drops for heavier
nuclei like Helium. This is commonly known as the Deuterium bottleneck.
Only when this breaks, does the synthesis of heavier nuclei really begin. This
happens at TD ≈ 0.073MeV, or equivalently at tD = 240 s, which is compara-
ble to the neutron lifetime, but small enough that there is still a substantial
amount of neutrons left to be cast into heavier nuclei.

• Nucleosynthesis then proceeds astonishingly quickly. At T . 0.04MeV, that
is only ≈ 600 s after the deuterium bottleneck breaks, all Helium has been
formed and its abundance frozen out. Other nuclei are still changing slightly
by at most one order of magnitude. At T . 0.01MeV, or approximately 3
hours and 40 minutes after the beginning of the Universe, BBN is done.

• After BBN, the Universe is still mainly comprised of protons. Most free neu-
trons present at the onset of nucleosynthesis have been cast into Helium, mak-
ing it the second most abundant nucleus. Most lighter nuclei have likewise
been used up in the process of building Helium, so that only trace amounts of
Deuterium, Tritium and Helium-3 are left over. Heavier nuclei, like Lithium
and Beryllium, require mainly Helium and other light nuclei for their forma-
tion, so that their final abundance is even further suppressed.

After having summarized the qualitative picture of the different stages of BBN
according to the ΛCDM model, we will now develop the tools necessary to describe
this process more quantitatively. This will be structured in the same way as BBN,
beginning with a study of the background evolution of the Universe, followed by a
description of the neutron to proton freeze-out, and ending with an analysis of the
reaction network leading to the formation of all heavier nuclei. Although this is a
standard calculation that may be found in various places, the goal of this section is
to highlight the assumptions made and present the equations in such a way that it
will be clear what aspects may be modified by Beyond the Standard Model (BSM)
physics and their effect on the standard outcome of BBN.

3.2 Background Evolution and Thermodynamics

The key insight that Gamow made in his first paper on the neutron capture theory
[33] was recognizing that explaining the observed abundances required a departure
from equilibrium. However, initially, all particles are in equilibrium. It is only due
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to the expansion of the Universe that they are able to depart from it, allowing the
formation of nuclei. Thus, it plays a key role in determining the final abundances
and it is crucial to accurately describe it. Here, we will only summarize the most
important results, with the reader being referred to appendix B for more details.

We will start by considering an expansion according to the ΛCDM model. Thus,
the Universe will be assumed to be isotropic, homogeneous and flat, so that it may
be described by a Friedman-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a(t)2
(
dr2 + dΩ

)
(3.1)

with the scale factor a(t) and cosmic time t. Einstein’s General Relativity then
predicts that the Universe must expand according to the Friedman equation, which
can be cast into the convenient form:

H2 =

(
ȧ

a

)2

=
8πGN

3
ρtot (3.2)

with H(t) the Hubble parameter and Newton’s constant G = 6.72 ·10−39GeV−2 and
ρtot(t) the energy density of the Universe. At the early stages of the Universe of
interest for nucleosynthesis, ρtot(t) and Ptot contain contributions from radiation in
the form of photons, electrons, positrons, neutrinos and antineutrinos, trace amounts
of mesons and baryons, as well as dark matter and dark energy. In order to continue,
we therefore need to find a framework that will allow us to describe the contribution
of each particle species to the quantities of the cosmic fluid as a function of time in
an expanding Universe where particles are constantly interacting with each other.

The best way to do this is by defining the phase-space distribution fi(q, p) for each
particle species i, where q and p are its generalized coordinates. In a homogeneous
and isotropic universe, these reduce to t and p ≡ |~p|. Essentially, f is a probability
distribution function that describes the probability of the system being in a specific
microstate. The macroscopic observables of interest here (see App. A.6 for more
details) are obtained by taking the expectation value of specific combinations of
energy and momentum in the following way:

ni(t) = gi

∫ ∞

0

4πp2dp

(2π)3
· fi(t, p)

ρi(t) = gi

∫ ∞

0

4πp2dp

(2π)3
· fi(t, p) · E(p) (3.3)

Pi(t) = gi

∫ ∞

0

4πp2dp

(2π)3
· fi(t, p) ·

p2

3E(p)

As for the time dependence of these quantities, they can be obtained from the
Boltzmann equation, which describes the time dependence of the phase space distri-
bution. In its most general form, the Boltzmann equation can be written as follows:

L[f ] = C[f ] (3.4)

The operator on the left-hand side is the Liouville operator, which describes the
time-dependence of f . The operator on the right-hand side is the Collision operator.
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In general, f is a vector that contains an entry for all particle species, so that this
equation describes a complex system of coupled differential equations.

Essentially, what this equation is telling us, is that the change in time of the
phase-space distribution of a particle is given by its collisions and interactions with
other particles. We will leave the Collision term as it is for the moment and specify
it later on. The Liouville operator, on the other hand, can easily be simplified2, so
that the equation 3.4 takes on the following form:

∂fi
∂t
−Hp

∂fi
∂p

=
C[f ]

E(p)
(3.5)

Obtaining the differential equations describing the time dependence of any macro-
scopic observable related to the phase-space density is now straightforward: you
simply multiply the Boltzmann eq. with the combination of kinetic variables and
phase-space density that relate f to the variable of interest and integrate over the
entire phase-space. For the number density, this amounts to integrating over phase-
space only:

ṅi + 3Hni = gi

∫ ∞

0

4πp2dp

(2π)3
· C[f ]

E(p)
≡ Ji(t) (3.6)

where J plays the role of a source/sink term for the particles of the species i. The
significance of this is best understood if the left hand side is rewritten by multiplying
it with V = a3 as:

d(Ni)

dt
=

d(nia
3)

dt
= Ji(t) (3.7)

If particles do not interact and the collision term vanishes, so does the source term.
Then, there is essentially no creation or destruction of particles and they are constant
inside a comoving volume V = a3 and their density only gets diluted ∝ 1/V ∝ a−3.
If particles start to interact, then the collision term will lead to the source term
being non-zero as well. Particle number is no longer constant and the amount by
which they change is additionally dictated by their interactions with other particles.

A similar relation can be derived for the energy density as well, namely that:

ρ̇i + 3H(ρi + Pi) = gi

∫ ∞

0

4πp2dp

(2π)3
· C[f ]

E(p)
E(p) ≡ q̇i (3.8)

where q̇i is defined as the volume heating rate. This equation can easily be inter-
preted if we recast the equation in a similar way to 3.7 with V = a3:

d(ρiV )

dt
= −Pi

dV

dt
+ q̇iV (3.9)

In the absence of collisions, q̇ vanishes and this equation simply gives the first law of
thermodynamics in an adiabatic system dE+PdV = 0. This implies that the fluid’s
energy density not only gets diluted, but actually further decreases as the universe
expands proportional to the fluid’s pressure. For relativistic particles, this is the
well known effect of redshift, whereas for non-relativistic matter, whose pressure is
negligible, it means that its energy density only gets diluted.

2See App. C.3 for details on this and all further calculations
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This result should not come as a surprise, as from the conservation of the energy
momentum tensor T µν , we get a condition that

dρtot
dt

+ 3H(ρtot + Ptot) = 0 (3.10)

where the subscript tot means that we are looking at the total quantities that de-
scribe the cosmic fluid, not at those of one particular species. The only difference
between the two equations is the volume heating rate q̇i. This quantity is related to
the collisions of particles and describes the heat transfer between different particle
species through their interactions, which will be crucial later on. Eq. 3.10 thus
implies that: ∑

i

q̇i
!
= 0 (3.11)

One quantity that we have not talked about for now but which is of crucial impor-
tance is the entropy. Entropy density can be related to the phase space distribution
as follows[41]:

si = −
∫ ∞

0

4πp2dp

(2π)3
· S±(fi),

S±(fi) = [fi ln fi ± (1∓ fi) ln (1∓ fi)]

(3.12)

with the upper signs holding for bosons, the lower ones for fermions. Multiplying
eq. Boltzmann equation 3.5 with S±(fi), integrating over phase-spaces and using
the identity:

∂S±(fi)

∂p
= ln

(
f

1∓ f

)
∂f

∂p
(3.13)

it can be shown that the entropy density evolves as follows:

ṡi + 3Hsi = −
∫ ∞

0

4πp2dp

(2π)3
· C[f ]

E(p)
ln

(
f

1∓ f

)
(3.14)

Its interpretation is similar to that of the evolution of number density. Again,
if the particle species does not interact, its entropy inside a comoving volume is
conserved! Interactions with other species, however, lead to a net entropy production
or destruction 3 which is described by the source term on the right-hand side of the
equation.

All of the above formulae are valid for an arbitrary phase-space distribution. In
principle, in order to move forward, we would now need to solve the coupled system
of differential equations to obtain the phase-space distribution as a function of time
from which all other quantities can be derived, which generally requires a highly
costly numerical calculation.

At the beginning of BBN, however, interactions between the relevant particles
are so fast, that they are in kinetic and chemical equilibrium and can thus be de-
scribed by their temperature and chemical potential, which will be crucial later on

3Since we are talking about one species that interacts with others, the system is not closed so
that entropy may be destroyed, so long as the total entropy of the Universe remains constant or
increases.

20



Probing New Physics with Big Bang Nucleosynthesis

but neglected for now. In that case, particles can be described by a Bose-Einstein
(Fermi-Dirac) distribution depending on their nature as bosons (fermions). Regard-
less of its quantum nature, if the particle’s mass is much lower than temperature,
i.e. the species is non-relativistic, these distributions approximate the Maxwell-
Boltzmann distribution. After that, by relating the temperature of the Universe
and the time since its beginning, we will obtain the time-evolution of any quantity
we are interested in.

This greatly simplifies matters, and even analytical calculations are possible.
The energy density of highly relativistic particles follows the Stefan Boltzmann law
ρ ∝ T 4, whereas in the non-relativistic regime it is Boltzmann suppressed ρ ∝ e−m/T .
The exact solution interpolating these two regimes can only be obtained by numerical
integration, and can contribute significantly until the temperature drops well below
the particle’s mass, which is very important for electrons and positrons, as shall
be seen later. As for the dark sector, within the ΛCDM model, the density at
that time is negligibly small as well, so their influence purely through gravitational
interactions4 can safely be ignored.

Therefore, it is enough to take into account those particles which are relativistic
when BBN begins, namely photons, electrons, neutrinos and their respective antipar-
ticles. Thus, the energy density can be parametrized using the photon temperature
T as follows:

ρtot(T ) = geeff (T )ργ(T ) =
π2

30
· geeff (T ) · T 4 (3.15)

where we have defined ργ(T ) as the energy density of a boson with one degree of
freedom and the effective degrees of freedom geeff (T ) as:

geeff (T ) =
∑
i

15

π4
gi

(
Ti

T

)4 ∫ ∞

xi

dzi
z2i
√
z2i − x2

i

ezi ± 1
, (3.16)

where xi = mi/T , and gi the internal degrees of freedom of the particle i.
The effective degrees of freedom take into account the effect of particles becoming

non-relativistic at T ≈ m , as well as the possibility that the different particles may
contribute to the energy density with different temperatures. In general, the index
i runs over all relativistic particles present at the beginning of BBN, which in the
standard picture are just photons, electrons, positrons, neutrinos and antineutrinos.
Thus, with eq. 3.2 and 3.15, the Hubble parameter may be written as:

H(T ) = 1.66 ·
√

geeff (T )
T 2

MPl

, (3.17)

with MPl = G−1/2 = 1.22 · 1019GeV.
If the system is in thermodynamic equilibrium, further simplifications can likewise

be made for other quantities. Of great importance is entropy, which we will focus
on now. This will allow us to relate the definition of entropy density to other ther-
modynamic quantities, as well as the conditions under which entropy is conserved.
As a first step to derive these, it is useful to rewrite the first term of the identity

4Specific models of dark matter can have strong impacts on Nucleosynthesis through their
interactions with the SM particles, but it will be assumed for now that these interactions are
negligibly small.
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in eq. 3.13 for the case of a Fermi-Dirac (FD) (Bose-Einstein (BE)) distribution as
follows:

∂S±(fi)

∂p
= ln

(
f

1∓ f

)
∂f

∂p
=

µi − Ei

T
(3.18)

After integration by parts of eq. 3.12, the identity can directly be inserted. One
further integration by parts to get rid of the partial derivative of the phase-space
distribution, and the integrand can be identified with those of eq. 3.3. This leads to
the following expression for the entropy of a species in thermodynamic equilibrium:

si =
ρi + Pi − µini

T
(3.19)

Thus, we recover a well known result, as this is equivalent to the Gibbs-Duhem
relation for a homogenous system divided by the volume.

Additionally, if the chemical potential is assumed to be negligible and we insert
the equation of state for the species wi = Pi/ρi, we find that:

s = (1 + wi)
ρi
T

(3.20)

so that entropy is ∝ ρi/T . Thus, even though the scaling is slightly different, this
equation implies that there is an equally strong hierarchy between relativistic and
non-relativistic particles in the entropy as there was for the energy density at the
relevant temperatures. This allows us to make a similar parametrization of entropy
in terms of the effective degrees of freedom, namely:

stot =
2π2

45
gseffT

3 (3.21)

with the effective entropy degrees of freedom defined as:

gseff =
∑
i

ρi =
∑
i

15

π4
gi

(
Ti

T

)3 ∫ ∞

xi

dzi
z2i
√

z2i − x2
i

ezi ± 1
(3.22)

The entropy degrees of freedom have a similar interpretation than those for the
energy density and, for the most part, they are interchangeable. However, they
have a different scaling in terms of the temperature ratio of the particle species
i and the photons, so if there is a relativistic species that is decoupled from the
plasma, the two will differ.

We can now also insert the identity from eq. 3.18 into the equation for the
time evolution of entropy, eq. 3.14, from which we can easily derive the following
equation:

ṡi + 3Hsi =
q̇i
T
− µi

T
(ṅi + 3Hni) (3.23)

or, equivalently for the entropy inside a comoving volume S:

T Ṡi = q̇iV − µiṄi (3.24)

This means that entropy inside a comoving volume for one particle species is con-
served if there is either no heat exchange q̇i = 0, i.e. there are no interactions, if
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the chemical potential vanishes or if particle number is conserved, either because
there are no interactions or the particle is in equilibrium and source and sink terms
cancel each other. As entropy is an extensive quantity, the total entropy is the sum
of the individual entropies for each species. From the conservation of the energy
momentum tensor we know that there is no absolute heat generation, i.e.

∑
i q̇i = 0.

Thus, for the total entropy we have that:

T Ṡtot = −
∑
i

µiṄi (3.25)

Thus, the total entropy density is conserved in thermodynamic equilibrium if the
chemical potentials vanishes or the particle number is conserved for all species. If
we assume that chemical potentials are neglected, and insert the parametrization
for the entropy density from eq. 3.21, the conservation of total entropy gives us:

a3 · gseff (T ) · T 3 = const. (3.26)

This allows us to obtain the scale factor as a function of temperature a(T ). All
that is needed for that is a reference temperature for which we know the scale
factor and the assumption that entropy is conserved until that moment. Taking, for
example, the temperature of the CMB today T0 = 2.73K and the scale factor today
a0 = 1, we get:

a(T ) =

(
gseff (T0)

gseff (T )

) 1
3

· T0

T
(3.27)

If the entropy for a single particle species is conserved, then a similar relation holds,
although T then corresponds to the species’ temperature, not necessarily equal to
that of photons and the effective degrees of freedom vanish. This should not come
as a surprise as this is simply the well known effect of redshift.

While this relation is extremely useful and important, there is one crucial element
still missing in our considerations, namely the relation between time and temper-
ature, which is of extreme importance as it directly influences the amount of time
the neutrons are allowed to free-stream and decay. However, we already have all the
necessary ingredients to derive it. We start with the derivative of time with respect
to temperature, which using the chain rule can be rewritten as:

dt

dT
=

dt

da
· da
dT

(3.28)

From the definition of the Hubble parameter, we know that:
dt

da
=

1

a(T )H(T )
(3.29)

while the derivative of eq. 3.27 is:

da

dT
= −a(T )

T
·

(
1 +

1

3

T

gseff (T )

dgseff (T )

dT

)
(3.30)

Thus, we find that:

dt

dT
= − 1

HT

(
1 +

1

3

T

gseff (T )

dgseff
dT

)
≡ −1 + ∆

HT
(3.31)
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In order to obtain t(T ), we now only need to integrate this equation from a
starting time t0 until t. However, as the Universe expands and cools down extremely
quickly at the beginning, if we choose t0 early enough, the integral between t = 0
and t = t0 will contribute very little to the result and we can put it to 0 in the
integral. If, additionally, the effective degrees of freedom remain constant during
the interval, then the integral can be obtained analytically:

t =
1

2H(T )
' 0.3 · MPl√

geeff (T )
· 1

T 2
(3.32)

However, electrons and positrons become non-relativistic shortly after neutrons
and protons freeze-out, so that it is incorrect to assume that the effective degrees of
freedom remain constant, leading to corrections to the relation of ≈ 20 − 30%.On
top of that, this happens during the time where neutrons are free-streaming, so that
BBN is especially susceptible to any change in the time-temperature relation. Thus,
while eq. 3.32 is extremely useful for an order of magnitude estimate and we will
indeed use it, for precise calculations a numerical integration of 3.31 is necessary.

3.2.1 Neutrino Decoupling

With this, we now have essentially all the tools to describe the expansion of
the Universe. A key assumption in our description is the fact that we only need
to take into account the particles that are relativistic at the beginning of BBN,
namely photons, electrons, positrons, neutrinos, and antineutrinos. This allows
us to solve for the expansion of the Universe first and then solve the equations
describing the abundane of nuclei assuming with the cosmolofical evolution to be
in the background and greatly influence BBN, but not vice-versa. This amounts
to neglecting the energy density in the form of baryons and the entropy produced
in weak reactions in the form of neutrinos. This is all justified because of the
overwhelming overabundance of photons, namely that ηB � 1.

The description of electrons and photons is actually quite simple, since they
are very tightly coupled because of electromagnetic interactions up to temperatures
T . 1 eV� TBBN and can be described as a plasma in equilibrium at a temperature
T using the simple techniques of equilibrium thermodynamics described in section
A.6. The only challenge comes from the fact that that pair production stops being
efficient at Temperatures close to the electron mass and thus all of the energy and
entropy stored in e± gets converted into photons, slowing down the cool-down of the
Universe, although more commonly referred to as reheating. This effect, however,
is taken into account in the effective degrees of freedom and the time temperature
relation of eq. 3.31, so that no further adjustments are necessary to first order.
There are, of course, corrections to this from finite temperature QFT, for example
QED corrections for the plasma thermodynamics like a shift of the electron and
photon mass dependent on temperature. These effects have been calculated and
taken into account in the up-to date BBN-codes used throughout this thesis[20, 42,
43, 44, 45].

Already to first order, the situation is more involved for neutrinos. At higher
temperatures, they are kept in thermodynamic equilibrium with the plasma mainly
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through the following neutral as well as charged current weak force interactions:

ν + ν̄ ←→ e+ + e−

ν + e± ←→ ν + e± (3.33)
ν + ν̄ ←→ e+ + e−

Neutron to proton conversion is also mediated by the weak force, so the reaction
rate is comparable to those above. Thus, already from this consideration, we see that
the moment when neutrinos decouple from the plasma will be around the same time
when neutrons and protons do so. Neutrinos being additionally directly involved in
the conversion reactions, this inevitably means that neutrino decoupling will greatly
influence the events that lead to the formation of nuclei.

In order to determine when the decoupling happens, we can first assume that the
process happens instantaneously at the moment when the reaction rate drops below
the expansion rate of the Universe, namely:

Γ . H (3.34)

In order to obtain the reaction rate, we need to look at the electroweak sector
of the SM after the Higgs phase transition. As the energies relevant for BBN T .
O(10MeV) are orders of magnitude below the electroweak scale, the effective field
theory where the degrees of freedom of the massive bosons have been integrated out is
a good approximation given our precision goal. The coupling constant that regulates
the strength of interactions is, then, Fermi’s constant GF = 1.16 · 10−5GeV−2.

The reaction rate Γ has to be ∝ G2
F , which has dimensions of GeV−4, which

has to be compensated by a dependence on E5 ≈ T 5. Thus, a simple dimensional
analysis gives that the rate for these reactions is:

Γ ' G2
FT

5 (3.35)

Compared to the Hubble rate from eq. 3.17 with geeff = 10.75, this gives:

Tν,f '

(
1.66

√
geeff

G2
FMPl

) 1
3

' 1.5MeV (3.36)

The assumption of instantaneous decoupling is that the particles follow their
equilibrium distribution until this point, after which interactions are set to zero
and particles free-stream. This implies that the source term Ji in eq. 3.6 and the
heating rate q̇i from eqs. 3.8 vanish. Particle Number is conserved inside a comoving
volume and energy only gets redshifted because of the expansion after this point.
Additionally, this also leads to entropy being conserved. Thus, for Tν ≤ Tν,f :

nν(Tν) = nνa
3
∣∣
Tν,f
· a(Tν)

−3

ρν(Tν) = ρνa
4
∣∣
Tν,f
· a(Tν)

−4 (3.37)

sν(Tν) = sνa
3
∣∣
Tν,f
· a(Tν)

−3
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In principle, this is also the same dependence on the scale factor they would
have if they had remained in equilibrium. We can therefore define a brightness
temperature for the neutrinos Tν , which is the temperature neutrinos would have if
they were still described by a FD distribution. This implies that:

a(Tν,f )Tν,f = a(Tν)Tν (3.38)

which is similar to the relation between scale factor and photon temperature we
obtain from total entropy conservation 3.26. In fact, as long as the effective degrees
of freedom do not change, that is, as long as there is no reheating due to pair
production freezing out, the two equations are equivalent and neutrinos evolve with
the same temperature as photons.

After the temperature drops below T ≤ me, electron-positron pairs annihilate
producing a constant stream of photons with E > T . These slow down the cooling
of the plasma with the expansion. Neutrinos, however, are not produced, so they
do not partake in the reheating and their brightness temperature becomes smaller
than that of photons.

This effect is already taken into account in the definition of the effective degrees of
freedom, since we have allowed the different species to contribute to the energy and
entropy density with different temperatures. All we need is to find the ratio between
the two temperatures. In order to avoid confusion when deriving it, we will explicitly
write which species the temperature corresponds to. We define T = Tγ = Tν > Tν,f

and T ′
γ, T

′
ν < Tν,f . All we need now is to relate these two regimes using conservation

of entropy for the entire Universe (eq. 3.26) and for neutrinos separately3.38, which
may be rewritten as:

gseff (Tγ)a(Tγ)
3T 3

γ = gseff (T
′
γ)a(T

′
γ)

3T ′3
γ

a(Tν)Tν = a(T ′
ν)T

′
ν

(3.39)

Both T ′
ν and T ′

γ refer to the same moment in the expansion of the Universe and,
thus, to the same scale factor a(T ′

ν) = a(T ′
γ). For the temperature range relevant

here, the effective degrees of freedom are simply:

gseff (Tγ) = gγ +
7

8
(ge−(Tγ) + ge+(Tγ)) +Nν ·

7

8
(gν + gν̄)

(
Tν

T

)3

(3.40)

where Nν = 3 stands for the number of neutrinos in the SM. We can now solve the
equation to obtain:

T ′

T ′
ν

=

(
gs, no νeff (Tγ)

gs, no νeff (T ′
γ)

) 1
3

(3.41)

The superscript noν indicates that the neutrino degrees of freedom are not taken into
account. The e± degrees of freedom ge−(T ) = ge+(T ) are temperature dependent
and change from 2 to 0 over the course of BBN, so that gs, no νeff (Tγ) = 2+ 7

8
·4 = 11

2
and

after e±-annihilation gs, no νeff (T ′
γ) = 2, leading to the canonical value for the neutrino

to photon temperature ratio:

T

Tν

=

(
11

4

) 1
3

' 1.401 (3.42)
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which is only valid for temperatures far below the electron mass. Eq. 3.39 is valid
for all temperatures, so that we may define Tν

T
as a function of T , in order to bridge

the gap between the two regimes, taking into account the fact that the contribution
of electrons varies with temperature.

3.2.2 Baryon to Photon Ratio

A similar relation can be derived for the Baryon to photon ration ηb. This is,
as we will see, a crucial quantity for BBN and, in the standard picture, its only
unconstrained parameter. As indicated by its name, it is defined as:

ηB =
nB

nγ

(3.43)

The baryon number is conserved inside a comoving volume, so n ∝ a−3, just like
for photons, which we can recast in terms of Temperature using Eq. 3.27. For
temperatures� 1MeV, the baryons in the form of nucleons are in equilibrium with
the photons, such that TB = Tγ. As we will see, baryons decouple from the plasma
at T ≈ 0.8MeV. Thus, they do not partake in the reheating of the bath and, just
like with neutrinos, the ratio of baryon to photon temperature departs from one.
The derivation of the temperature ratio is analogous to the case of neutrinos, so we
find:

T ′

T ′
B

=

(
gseff (Tγ)

gseff (T
′
γ)

) 1
3

(3.44)

or, defining η0B as the baryon to photon ratio at T0 = TCMB:

ηB
η0B

=
gseff (Tγ)

gseff (T0)
(3.45)

This implies that, for higher temperatures, the baryon to photon ratio increases by
a factor of ≈ 2.75 compared to the CMB measured value. However, for T = TBBN ≈
0.073MeV, the ratio is almost one, so that we expect the CMB and BBN to measure
the same baryon to photon ratio or, equivalently, the same baryon density.

3.2.3 Incomplete Neutrino Decoupling

Even though the treatment of neutrino decoupling presented above is quite sim-
ple, it does allow for a description of the background thermodynamics which leads
to predictions accurate to ∝ 2− 3%. With current measurements of the primordial
helium abundance having reached sub-percent precision [18], a better treatment of
this crucial aspect of nucleosynthesis has become imperative. This topic has there-
fore been extensively studied in the last 40 years and seen substantial improvements.
Discussing all of these aspects in detail lies beyond the scope of this thesis. However,
the most important effects will briefly be reviewed with the reader being referred to
[46] and references therein for more details.

The first modification to our treatment is, of course, the simplest and most im-
portant one. We have assumed that neutrino decoupling happens instantaneously at
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temperatures much higher than the electron mass, when it is clear neither of those
assumptions is correct. In reality, neutrino decoupling is a gradual process which
extends far beyond the temperatures where electron positron annihilation begins.
Thus, in a way, not all neutrinos have decoupled from the thermal bath at temper-
atures when e±-reheating begins, so that a part of neutrinos get reheated, leading
to an increase in the neutrino energy density and modifying the ratio of photon
to neutrino temperature to be slightly below the standard value. Additionally, this
leads to spectral distortions in the phase-space distribution of neutrinos that modify
the weak rates.

Also the QED corrections to the pressure discussed before influence the neutrino
energy density evolution as well, as solving for the neutrino evolution requires a
solution of the full coupled Boltzmann equation.

Furthermore, we have treated neutrino species as if they had no flavour and were
indistinguishable from each other in their interactions. We also know that neutrinos
are not massless and undergo oscillations. From the measured values of the mass
differences and the mixing angles, one obtains that neutrinos start oscillating at
T ∝ 5− 10MeV. Both of these effects can be taken into account in the solution of
the Boltzmann equation. Even though they further enhance the energy density of
neutrinos, the main contribution of neutrino oscillations is to equilibrate the phase
space distributions of the different flavours and thus weak rates.

Lastly, the key reactions that dictate the process of neutrino decoupling 3.33 have
up to now only been calculated at tree level in most computations of BBN. A recent
study [46], however, calculated them at NLO and found that this actually decreases
the energy density of neutrinos by an amount similar to neutrino oscillations.

All of these effects influence nucleosynthesis in two ways, namely it affects the
energy density, and with it the neutrino temperature, and it distorts the phase-space
distribution, so that it departs from a FD distribution. The latter effect was found
in [20] to be negligible with the current precision aim, while the former effect is the
dominant one. It affects the weak reaction rates while simultaneously enhancing
the energy density and thus the expansion rate. The increase in the expansion rate
means that the Universe is younger when nucleosynthesis starts, so that neutrons
have less time to decay, leading to an increased 4He abundance. However, the weak
rates are likewise modified in two ways. An increase in the neutrino energy density
means tyhat there are simply more neutrinos for neutrons and protons to interact
with, leading to an enhancement of the weak rates, so that particles decouple at
a lower temperature. With a Boltzmann suppressed distribution, this implies that
there are less neutrons available at the end of nucleosynthesis, which comes with a
decrease in Helium production. Nevertheless, the increase in neutrino energy comes
from a decrease in the plasma energy, which allows nucleosynthesis to happen at
higher temperatures, which counteracts the aforementioned effect. It was actually
found in [47] that these two effects cancel out, so that the main influence on nucle-
osynthesis from this is actually purely the change in the time temperature relation
from partial neutrino reheating.

It is useful, for a number of reasons that shall become clearer over the course of
this thesis, to attribute this increase in energy density to the presence of a non-integer
effective number of neutrinos Neff . Since this parameter will be time-dependent and
it influences the CMB, it is customary to define it by its value at T0 = TCMB.
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Without taking incomplete neutrino decoupling into account, the neutrino energy
density in Standard Big Bang Nucleosynthesis (SBBN) is:

ρν(T0) =
7

8
· 2 ·Nν

(
4

11

) 4
3

ργ(T0) (3.46)

The effective description proposed here is obtained by simply allowing Nν to be
different from three by substituting it with Neff . From this, it is simple to define
Neff . We will write it in a slightly more cumbersome, yet more widely applicable
way as follows:

Neff =
8

7

(
11

4

) 4
3
(
ρrad − ργ

ργ

) ∣∣∣∣
T0

(3.47)

In SBBN, the only form of radiation present other than photons are neutrinos. If
we further assume that spectral distortions are negligible, their energy density can
be characterized by the temperature only, so that Neff may be written as:

Neff = Nν

(
11

4

) 4
3
(
Tν

T

)4 ∣∣∣∣
T0

(3.48)

In the case of instantaneous neutrino decoupling, this will give us the expected
result Neff = Nν = 3, whereas incomplete decoupling effects will modify the neutrino
to photon temperature ratio to be above the standard value and increase Neff . Its
value for SBBN has been extensively studied and the most precise calculation to
date [46] gives:

Neff = 3.043 (3.49)

This value, as expected, is quite close to three, but nevertheless differs from it by
more than 1% and indeed appreciably modifies BBN.

3.3 Neutron Proton Freeze-Out

Now that we know how to describe the expanding Universe in the background
and how it affects the events of BBN, we have laid out our canvas and can begin to
paint the picture of nucleosynthesis. This picture, of course starts with a description
of the first baryons from which all nuclei are formed: neutrons and protons.

In the very early stages of the Universe, the primordial plasma contains essentially
free quarks and gluons. As the temperature drops to TQCD ∼ 160MeV, these quarks
and gluons hadronize to produce all sorts of baryons and mesons, including nucleons.
These are kept in equilibrium with the plasma and each other through weak reactions
that interchange neutrons and protons, namely:

ν + n←→ p+ e−

e+ + n←→ p+ ν̄

n←→ p+ e− + ν̄

(3.50)

As long as these reactions are fast enough, no elements can form from neutrons
and protons as they are not free for a long enough period of time. Thus, the first
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step in describing the formation of elements is the freeze-out of the weak reactions
interconverting nucleons. A precise treatment of this non-equilibrium process will
necessarily involve a study of the Boltzmann equation 3.4. In general, this would
require us to solve a coupled system of equations for all particles involved. Never-
theless, we know from the previous section the phase-space distribution of electrons
and neutrinos, and the reactions conserve the overall number of neutrons and pro-
tons, so it suffices to only look at the Boltzmann equation for neutrons and from
conservation of baryon number obtain the proton density. For concreteness, we will
focus first on the forward reaction n+ ν −→ p+ e−.

Our starting point is the Boltzmann equation in the following form:

ṅn + 3Hnn =
gn

(2π)3

∫
d3~pn
En

C[f ] (3.51)

which in appendix C.3 is shown to be equivalent to:

ṅn + 3Hnn = −
∫

dΠe

∫
dΠν

∫
dΠn

∫
dΠp (2π)

4δ4(pn + pν − pp − pe)

|M |
2
· fnfν(1− fp)(1− fe) (3.52)

We have suppressed the dependencies of the phase-space distribution and used
the shorthand notation for the integral over the lorentz invariant phase-space dΠi =

d3~p
(2π)32Ei

. In general, f is function of Energy, temperature and chemical potential in
equilibrium f = f(Ei, Ti, µi). In SBBN, the chemical potential is assumed to be
negligible, as both µν , µe depend on the baryon chemical potential, whose value can
be related to the Baryon Asymmetry making it negligibly small compared to the
Energy of the particles. We will relax that assumption later on and explain why
that is justified, but for now we will assume both to be zero.

Before BBN begins, the nucleons are in equilibrium, and their abundances
Boltzmann-suppressed. Thus, the Pauli-blocking factor (1 − fp) ≈ 1, which al-
ready simplifies the equation. As for the blocking factor for electrons and neutrinos,
the following identity for a FD distribution:

1− f(E) = f(−E) (3.53)

is helpful to simplify the expression. Additionally, we can now integrate over the
proton phase-space using the delta distribution for three-momentum, which amounts
to simply enforcing in the following expressions that:

~pp = ~pn + ~pν − ~pe (3.54)

With these simplifications and making the dependencies of the phase-space densities
explicit, the equation now looks as follows:

ṅn + 3Hnn = −
∫

dΠe

∫
dΠν

∫
dΠn

π

Ep

δ(En + Eν − Ep − Ee)

|M |
2
· fn(En, µn)fν(Eν)fe(−Ee) (3.55)
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3.3.1 Fermi Theory of the Weak Rates

In order to continue, we need to have a closer look at the matrix element |M |
2
,

which for the energies of interest can be calculated to satisfactory precision from
Fermi theory, which is the low-energy Effective Field Theory (EFT) of the elec-
troweak interaction with protons and neutrons, not quarks and gluons, as the fun-
damental one-particle states. The Fermi theory describes how nucleons interact with
the standard model leptons. The interaction Lagrangian contains the V-A structure
of the SM weak sector, with a term that describes the neutral current interactions
mediated by the Z-boson, as well as charged current interactions mediated by the
W-bosons. The latter is the reaction we will focus on now as the weak reactions
interchanging nucleons are of this type.

The interaction Lagrangian for this theory has the following form:

LI = −
GF√
2

([
JCC
ij

]†
µ

[
JCC
lk

]µ) (3.56)

where there is one charged current associated to each SU(2)-doublet of the Standard
model. Of interest for us will be those of the nucleons as well as electrons and
neutrinos, which look as follows:[

JCC
np

]µ
= cos θc · n γµ

(
1− gAγ

5
)
p[

JCC
νe

]µ
= ν γµ

(
1− γ5

)
e

(3.57)

where, as expected, the neutrino charged current exhibits full parity violation,
whereas the charged current of the nucleon doublet is only partially violated as
parametrized by the axial coupling gA. Additionally, the Cabbibo angle cos θc from
the CKM matrix appears, accounting for the fact that the u, d valence-quarks that
make up the nucleons are not the states that interact with the W bosons.

The interaction of interest is then described by the following Lagrangian:

LI = −
GF√
2
cos θcp γµ

(
1− gAγ

5
)
nν γµ

(
1− γ5

)
e (3.58)

from which we can obtain the following rule for the four fermion interaction:

n

e ν

p

=
iGF cos θc√

2

[
γµ
(
1− gAγ

5
)]

αβ

[
γµ
(
1− γ5

)]
γδ

(3.59)

All that is left to obtain the matrix-element for the process is to multiply this vertex
with the correct initial and final state polarization spinors u(s, p), v(s, p) that come
from the general solution to the free Dirac equation, depending on which reactions
are of interest. For the case of n+ ν ←→ p+ e−, we therefore find:

M =
iGF cos θc√

2

[
upγµ

(
1− gAγ

5
)
un

] [
ueγ

µ
(
1− γ5

)
uν

]
(3.60)

The quantity that enters the collision term is the spin-averaged absolute value
squared of the matrix element, which in our case, since neutrinos only have one spin
polarization, gives:
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|M |
2
=

1

2

∑
si

|M |2 = 1

2

∑
si

G2
F cos2 θc

2

[
upγµ

(
1− gAγ

5
)
un

] [
unγν

(
1− gAγ

5
)
up

]
[
ueγ

µ
(
1− gAγ

5
)
uν

] [
uνγ

ν
(
1− gAγ

5
)
ue

]
(3.61)

where the sum is over the spins of all particles. Using the completeness relation
for a particle of mass m and momentum p:∑

s

uα(p, s)uβ(p, s) = /p+m (3.62)

and with some standard manipulations, we find that:

|M |
2
=

G2
F cos2 θc

4
Tr
[
γµ
(
1− gAγ

5
) (

/pn +mn

)
γν
(
1− gAγ

5
) (

/pp +mp

)]
· Tr

[
γµ
(
1− γ5

)
/pνγ

ν
(
1− γ5

) (
/pe +me

)]
(3.63)

All that is left now is to simplify the trace using some straight-forward, yet slightly
tedious, algebra with gamma matrices, which can also be left to a computer algebra
system, giving:

|M |
2
= 16G2

F cos2 θc
[(
g2a − 1

)
mnmp (pν · pe) + (ga − 1)2 (pn · pν) (pp · pe)

+ (ga + 1)2 (pn · pe) (pν · pp)
]

(3.64)

which, without specifying the momentum of the particles is the best we can do. This
result can now be inserted into eq. 7.9.

This has been derived only for one specific reaction, namely n + ν → p + e−.
However, all six reactions in eq. 3.50 have the same matrix element. The reason is
that, first of all, forward reactions involving a neutron can be obtained from crossing
symmetry of electrons and neutrinos. Crossing symmetry, in this case [48], amounts
to pν → −pν and an overall minus sign in the matrix element for neutrinos, and the
same for electrons. Inserting this into eq. 3.64, it is trivial to see that the matrix
element is invariant under this symmetry. Additionally, the backward reaction is
obtained through time reversal or, equivalently, through CP conjugation. CP is
conserved at this level, so the matrix element likewise remains invariant for the
proton reactions. Thus, all that changes are the kinematics of the integral in the
Boltzmann equation as well as the weighting by the phase-space distribution.

3.3.2 Born Approximation

We return to eq. 7.9. In principle, all that is left is to perform the integration,
which is not easy for a 9-D integral. It may be reduced to 8-D with the Dirac
distribution, and isotropy of the neutrino and electron distribution functions allows
us to perform the integral over all angular dimensions but one, leaving us with an,
overall, 5-D integral in the end. This is the method followed in, e.g. [49]. However,
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it is simpler and faster to make use of the special kinematic situation at hand. Let
us assume we are in the rest frame, so that

mn + Eν = Ep + Ee

We have an interaction that involves nucleons with mass mn ∼ 939MeV and thermal
neutrinos whose energy is E ∼ T � mn, Expanding the proton energy in the non-
relativistic limit, one finds:

p2p
2mp

. Q+ T − Ee ∼ O(1MeV)� mp

That is, the maximal momentum transferred to the proton will be orders of magni-
tude smaller than its rest mass, so Ep ≈ mp or, equivalently:

Ee − Eν ' mn −mp = Q

This allows us to significantly simplify the integral. One can, as a next step, make
a Fokker-Planck expansion of the energy difference in terms of T

mN
and calculate

corrections to this approximation. For now, we will start with the lowest order and
postpone a discussion of the impact of these corrections to later on and stay in the
so-called Born approximation.

This allows us to significantly simplify eq. 3.64, as the momentum of nucleons
can be neglected compared to their mass. Thus, the dot-products involving nucleons
simplify to:

pn/p · pν/e = mn/pEν/e (3.65)
such that the matrix element becomes:

|M |
2
= 16G2

F cos2 θc
[(
1 + 3g2A

)
mnmpEνEe +

(
g2a − 1

)
mnmpEνpe cos θ

]
(3.66)

with θ the angle between the incoming neutrino and the outgoing electron momen-
tum. This is already a massive simplification, as now the matrix element contains
two terms: one that is only dependent on Eν and Ee and another that also has
an angular dependence. Nevertheless, it is an odd function of cos θ, which will be
integrated over a symmetric interval, so the contribution vanishes. Now, we can
insert this into the Boltzmann equation to find:

ṅn + 3Hnn = −
∫

dΠe

∫
dΠν

∫
dΠn

π

mp

δ(Ee − Eν −Q) · 16G2
F cos2 θc

(
1 + 3g2A

)
mnmpEνEe · fn(En, µn)fν(Eν)fe(−Ee) (3.67)

The factor mnmpEνEe cancels with the normalization of dΠi, so the only dependence
on the neutron momentum is in the phase-space density, which integrated over phase-
space gives the number density (eq. 3.3). Thus, we find:

ṅn + 3Hnn = −nnΓnν→pe (3.68)

where we have defined the reaction rate Γnν→pe as everything that remains after
factoring out nn, that is:

Γnν→pe ≡ 2πG2
F cos2 θc

(
1 + 3g2A

) ∫ d3~pe
(2π)3

∫
d3~pν
(2π)3

δ(Ee−Eν−Q)·fν(Eν)fe(−Ee)

(3.69)
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We can now proceed to writing the differential in spherical coordinates d3~p = p2dpdΩ
and integrate over the solid angle, which for a homogeneous function gives simply a
factor of (4π)2 leaving us with:

Γnν→pe =
G2

F cos2 θc
2π3

(
1 + 3g2A

) ∫ ∞

0

p2edpe

∫ ∞

0

p2νdpν δ(Ee−Eν−Q)·fν(Eν)fe(−Ee)

(3.70)

We now have a double integral over the momenta of the electron and neutron over
a functions whose natural variable is actually the energy, rather than momentum.
Thus, it is sensible to make a change of variables using the energy-momentum rela-
tion E2 = m2 + p2, which gives pdp = EdE and adjusting the limits of integration.
This leaves us with:

Γnν→pe =
G2

F cos2 θc
2π3

(
1 + 3g2A

) ∫ ∞

me

dEe

∫ ∞

0

dEν δ(Ee−Eν−Q)·peEeEνEν ·fν(Eν)fe(−Ee)

(3.71)
It is trivial now to perform the integral over the neutrino energy because of the
Dirac distribution by simply setting Eν = Ee − Q whenever the condition inside it
is met, i.e. when Ee ≥ Q. This leaves us with:

Γnν→pe =
G2

F cos2 θc
2π3

(
1 + 3g2A

) ∫ ∞

Q

dEe (Ee −Q)2Ee

√
E2

e −m2
e ·fν(Ee−Q)fe(−Ee)

(3.72)
In principle, this is as far as we can go, since this integral does not have an analytic
solution. In order to simplify the numerical integration, it is best to work with
dimensionless variables. We therefore define:

ε =
Ee

me

, q =
Q

me

(3.73)

which after performing the change of variables gives us the final version of the
reaction rate :

Γnν→pe =
G2

F cos2 θc
2π3

(
1 + 3g2A

)
m5

e

∫ ∞

q

dε ε (ε− q)2
√
ε2 − 1 · fν(ε− q)fe(−ε) (3.74)

This is only one of the six weak reactions that maintain neutrons and protons
in equilibrium with the bath. Nevertheless, all other reactions can be obtained in
an analogous matter with the result for the Boltzmann equation being a sum of all
contributions. We will start with the reactions involving a neutron in the initial
state. The matrix element is the same for all reactions, so only two modifications
to do with the thermal average of the energies and the conservation of energy are
necessary, concretely:

1. The phase-space density of e±, assuming a thermal distribution, only gets
modified as fe = fe(αeE), where αe = 1 for an e+ initial state and αe = −1
for an e− final state. The same holds for neutrinos if their chemical potential
is negligible.
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2. The second modification is to the kinematics. Using the same definitions for
αν , αe, it is easy to show from energy conservation that, in the Born approx-
imation, Q + αeEe + ανEν = 0, which is the condition the δ-distribution
enforces, dictating the neutrino energy upon integration as well as the limits
of integration for Ee.

With these two modifications, the Boltzmann equation has the same form for all
reactions and we just have to sum over them, so it now looks as follows:

ṅn + 3Hnn = −nn (Γnν→pe + Γne→pν + Γn→peν) (3.75)

with the reaction rates taking the following form:

Γnν→pe = K

∫ ∞

q

dε ε (ε− q)2
√
ε2 − 1 · fν(ε− q)fe(−ε)

Γn→peν = K

∫ q

1

dε ε (ε− q)2
√
ε2 − 1 · fν(ε− q)fe(−ε)

Γne→pν = K

∫ ∞

1

dε ε (ε+ q)2
√
ε2 − 1 · fν(−(ε+ q))fe(ε)

(3.76)

with K ≡ G2
F cos2 θc (1 + 3g2A)m

5
e

2π3

We define the sum of all reaction rates converting neutrons to protons, since it
will be useful later on, as:

Γn→p = K

∫ ∞

1

dε ε
√
ε2 − 1

[
(ε− q)2 fν(ε− q)fe(−ε) + (ε+ q)2 fν(−(ε+ q))fe(ε)

]
(3.77)

It is now quite straightforward to obtain the reaction rates for backward reactions.
Nothing changes in the derivation except that we factor out the proton number
density and the fact that the signs of the energy in the neutrino and electron phase-
space densities flip, leading to:

Γpe→nν = K

∫ ∞

q

dε ε (ε− q)2
√
ε2 − 1 · fν(−(ε− q))fe(ε)

Γpeν→n = K

∫ q

1

dε ε (ε− q)2
√
ε2 − 1 · fν(−(ε− q))fe(ε)

Γpν→ne = K

∫ ∞

1

dε ε (ε+ q)2
√
ε2 − 1 · fν(ε+ q)fe(−ε)

(3.78)

One can likewise define the sum of all rates converting protons to neutrons as
Γp→n. It is easy to see by comparing eqs. 3.77 and 3.78 that the two are related by:

Γp→n = Γn→p(−q) (3.79)

One thing we have not paid too close attention to is the factor in front of the
rates. This factor is determined by the numerical value of Fermi’s constant and
the Cabbibo angle. These can be related to the value of the neutron lifetime as
measured in experiments. It turns out that the precision on τn is greater than the
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combined error that would come from using the independent measurement of both
quantities. Thus, it is customary to write K in terms of τn instead of GF and cos θc.
The inverse of the neutron lifetime corresponds to Γn→peν at zero temperature:

1

τn
= K

∫ q

1

dε ε (ε− q)2
√
ε2 − 1 ≡ Kλ0 (3.80)

where λ0 ' 1.636. From this, one can obtain that

K =
1

λ0τn
(3.81)

It should be noted that this calibration through the neutron lifetime has a caveat,
namely that there is currently an unresolved tension in the experimental value mea-
sured in two different types of experiments by more than 4σ, see [50] for a review of
this problem and its influence for BBN. We will postpone a discussion to the end of
this chapter and, throughout the thesis, use the mean value proposed by the PDG
τn = (878.4± 0.5) s [28] unless explicitly stated otherwise.

With this, we have now derived the contribution to the Boltzmann equation
governing the evolution of neutrons and protons in the early Universe in the Born
Approximation at early times as:

ṅn + 3Hnn = Γp→nnp − Γn→pnn (3.82)

One can factor out the dilution effect due to the expansion of the Universe by
defining the quantity Xn,p =

nn,p

nB
, where we have used the fact that Baryon number

is conserved. Additionally, since at the early stages of BBN neutrons and protons are
the only abundant baryons, we have that nB = nn+np, or equivalently Xn+Xp = 1.
Equation 3.82 can therefore be recast as:

Ẋn = Γp→n (1−Xn)− Γn→pXn (3.83)

The final result has the simple form of a master equation that one would have
naively expected from such a process; that is, the net change in particle number
inside a comoving volume is only dependent on the difference between the creation
and destruction rate.

There is one aspect that is not apparent in this equation, namely the role the
expansion of the Universe plays in this, which we know should be crucial. The phase-
space distributions are a function of temperature, whereas we are integrating over
time. The expansion is disguised in the time-dependence of the photon temperature.
Temperature, or rather its inverse ratio y = me

T
with respect to a reference value (here

the electron mass), is a better quantity to describe the evolution of the Universe,
so we will solve for Xn(y) and then, if needed, find its time dependence through eq.
3.32. All we need to do is rewrite the differential using the chain rule and eq. 3.31,
which results in:

dXn

dy
=

1 +∆

Hy
[Γp→n (1−Xn)− Γn→pXn] (3.84)

Thus, as expected, the ratio between the reaction and expansion rate dictates
the evolution of the neutron abundance, especially when the particles depart from
equilibrium, that happens when Γ/H � 1.
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Figure 3.3: Evolution of the neutron to proton ratio obtained as a solution of eq.
3.84, highlighting the contributions from different reactions. The solid red line is the
full numerical solution, the dashed blue line is the equilibrium distribution, while the
dash-dotted green line describes the free neutron decay ∝ e−t/τn of the asymptotic
value of nn/np if the neutron would not decay, which is also shown as the grey-
dashed line.

This equation can be solved numerically to obtain the evolution of the neutron
mass fraction Xn, from which the neutron-to-proton ratio can be obtained. The
evolution of nn

np
as a function of y is shown as the red line on Fig. 3.3. This figure is

extremely useful to explain the three stages that neutrons and protons go through
before being cast into nuclei and explain to what their ratio is most sensitive.

At high energies, the reaction rate is much larger than the expansion rate. The
system is extremely responsive and very quickly adapts to a change in temperature to
remain in thermodynamic equilibrium following a Maxwell Boltzmann distribution.
As we have assumed that the neutrino and electron chemical potentials are negligible,
this implies that µn = µp. If we neglect effects ∼ OQ

T
, the neutron to proton ratio

is then:
nn

np

= e−
Q
T (3.85)

which is what is shown as the blue dashed line on fig. 3.3. We can clearly see
that Xn indeed follows an equilibrium distribution for high temperatures. Here, the
only important quantity is the mass difference and how long they actually remain
in equilibrium.

This is dictated by the n ←→ p-scattering reactions. As the Universe expands
and cools down, the scattering reactions freeze-out. The ratio between reaction and
expansion rate drops below unity at

Tf ' 0.8MeV (3.86)

Before that moment, neutrons essentially follow an equilibrium distribution and the
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neutron to proton ratio has the following value:
nn

np

∣∣∣∣
Tf

= e
− Q

Tf ' 0.16 (3.87)

Thus, the n-p ratio at this stage is exponentially sensitive to any change in the
strength of the interactions, either through modifications of the of e, ν phase-space
distributions, the normalization of the overall rates, effectively modifying the neu-
tron lifetime, or simply by adding corrections to the weak rates calculated here.

After decoupling, neutrons are free and only efficiently decay, so that the evolution
follows an exponential decay:

nn

np

(t) =
nn

np

∣∣∣∣
Tf

e−
t
τn (3.88)

This evolution is shown as the green dash-dotted line, while the grey dashed line
shows the asymptotic value of Xn = 0.16. This indeed very closely approximates the
numerical solution for later times. There is an interval between those two regimes
where only the numerical solution gives the right behavior. However, it is safe to say
that the qualitative picture presented here and that helped develop nucleosynthesis
in the early 1950s is quite accurate for this epoch of BBN.

If this were the whole story, we would not be here today. At some point, nucle-
osynthesis begins. The time between the onset of BBN and the freeze-out determines
how many neutrons are available to be cast into nuclei. There are, therefore, two
main effects that influence the ratio here: the neutron lifetime and the time dif-
ference between the onset of nucleosynthesis and the decoupling. This last part
is dictated by the t-T relation, that is, by the thermodynamics of the Universe’s
background expansion. Additionally, the onset of nucleosynthesis is influenced by
the rate of dissociation of heavier nuclei. In principle, this would mean that, once
we drop below the binding energy formation begins. However, there are way too
many photons present. Thus, it is at this stage where the importance of the baryon
to photon ratio shows up for the first time.

All in all, this highlights the complex interplay of particle physics and cosmology
that makes the accurate prediction already of the neutron to proton ratio only
such an amazing accomplishment and the potential it has to constrain new physics
because of its extreme sensitivity to any effect that modifies either aspect in the
chain of events presented here.

3.3.3 Corrections to the Weak Rates

The treatment presented here in the Born Approximation at tree level is already
accurate to a few percent. However, just as with the decoupling of neutrinos and
the background evolution in general, in order to obtain a prediction that matches
the accuracy of experiments, we must predict the neutron to proton ratio with much
better precision. Likewise, extensive research has been undertaken to correct the
above treatment of the neutron to proton decoupling. Calculating these corrections
lies beyond the scope of this thesis, but the reader is referred to [20] for a review on
this topic. Additionally, in the state of the art codes PRIMAT and PArthENoPE
used in this thesis, these corrections have been implemented.
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Figure 3.4: Diagram of a simplified nuclear reaction network for nuclei up to 7Be
including the most important reactions only. The arrows indicate the direction of the
reactions. The brackets, along with the nuclei at the beginning and the end of the
reaction are commonly used as a shorthand notation, where X(a,b)Y is equivalent
to X+a→ Y + b. Some photodissociation reactions that are important at the early
stages only are missing. Figure from [23]

3.4 Nuclear Reactions

Once neutron to proton conversion rates freeze out, nucleons are finally free
and can be cast into heavier nuclei. This happens through a complex network of
nuclear reactions. A significantly simplified version of this, involving only the most
abundant nuclei D, T, 3He, 4He, 7Li, 7Be, is shown on Fig. 3.4. We can see that
even the formation of Helium requires the presence of lighter nuclei, particularly of
deuterium. However, the overwhelming presence of highly energetic photons causes
the few nuclei that are able to form to dissociate almost instantly. Through these
reactions, baryons reach a state of equilibrium for high energies, called Nuclear
Statistical Equilibrium Nuclear Statistical Equilibrium (NSE).

3.4.1 Nuclear Statistical Equilibrium

In principle, once nuclei are in kinetic equilibrium, that is a type of equilibrium
that is maintained only through elastic scattering processes of the type a + i ←→
a + i, they follow a Maxwell Boltzmann distribution. We will assume that kinetic
equilibrium is maintained throughout the entire process of nucleosynthesis for nuclei
as well as for neutrons and protons. This means that the abundance of an isotope
i has the following form

ni = gi

(
miT

2π

) 3
2

e
−
(

mi−µi
T

)
(3.89)

with gi = 2si + 1 and si the particle’s spin. Additionally, for Nuclear Statistical
Equilibrium (NSE) to obtain, the photodissociaton reactions must be in equilibrium.
These reactions are of the type:

Z · p+ (A− Z) · n←→ A
ZX + γ (3.90)
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where A is the mass number of the isotope, Z its atomic number, that is the number
of protons, and the photon is emitted or absorbed with the nucleus’ binding energy
Eγ = Bi . Thus, these reactions change the nature of particles and lead to chemical
equilibrium being obtained, which implies, with N = A− Z, that:

µi = Zµp +Nµn (3.91)

so that we can obtain the chemical potential for i from that of nucleons, which we
can obtain from the neutron and proton abundances, that are ∝ e

µ
T as well. Thus,

we find the equilibrium abundance of a nucleus i in terms of the neutron and proton
abundances can be rewritten as:

ni =
gim

3/2
i

2A

(
np

m
3/2
p

)Z (
nn

m
3/2
n

)N (
2π

T

) 3(A−1)
2

e
Bi
T (3.92)

where we used the following definition of the binding energy:

Bi = Zmp +Nmn −mi (3.93)

Just like we did for the neutron to proton abundances, we will now define a comoving
quantity where the dilution due to the expansion of the Universe cancels out, the
baryon fraction

Xi =
ni

nB

(3.94)

Using nB = ηBnγ and inserting the explicit definition for nγ from Eq. A.17, it is
straight-forward to show:

XNSE
i = giζ(3)

A−12
3A−5

2 π
1−A
2

(
miT

A−1

mZ
p m

N
n

) 3
2

ηA−1
B XZ

p X
N
n e

Bi
T (3.95)

The evolution of the NSE mass fractions Yi = AiXi for the lightest nuclei of
interest for BBN, using the result of eq 3.84 for Xn and Xp, is shown on figure 3.5.
For high temperatures, we see that all abundances are many orders of magnitude
below that of neutrons and protons, so the assumption that has been made in
neglecting heavier nuclei is correct. This is due to the fact that the NSE abundance
is ∝ ηA−1

B , so the heavier the isotope, the further it is suppressed by the baryon-to-
photon ratio, and the higher e

Bi
T has to be to compensate for it.

As temperature drops, the photodissociation rate decreases and the nuclear abun-
dances increase very rapidly to values above 1, which should be impossible because
of baryon number conservation. This is a clear indication that the NSE description
breaks down at some point, which is to be expected, as we have completely neglected
baryon number conservation in the derivation of the NSE abundances. Thus, for
example, helium gets produced very rapidly from an endless stock of neutrons and
protons, which is not the case in reality, of course.

´Once the abundances depart from their NSE values and become comparable
to Xn, one can say that BBN begins, as this implies there must be a significant
production of nuclei. A more precise statement can be given if we look at the
simplified reaction network on fig. 3.4. We see that neutrons and protons get cast
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Figure 3.5: Evolution of Nuclear Statistical Equilibrium mass fractions Yi = Ai ·Xi

according to eq. 3.95 for isotopes up to 7Be.

directly into Deuterium. N-body reactions with N > 2 are highly suppressed, so the
production of heavier nuclei requires at least one deuterium nucleus, if not two. BBN
does not really get underway until the abundance of deuterium reaches a significant
amount. This is what is commonly referred to as the deuterium Bottleneck and
it is the second reason, along with the high small value of ηB, that the onset of
nucleosynthesis is set back to lower temperatures and later times, allowing neutrons
to decay for a longer time and decreasing the total abundance of nuclei.

For this reason, Deuterium is the central element dictating when nucleosynthesis
can begin. By estimating when the NSE abundance of deuterium becomes compara-
ble to Xn, NSE breaks down and BBN begins. A good estimate for the corresponding
temperature TD at which ”the deuterium bottleneck breaks” can, therefore, be found
by setting XD ' Xn in eq.3.95. This equation can be solved numerically to find:

TD ' 0.07MeV

⇔ tD ' 260 s
(3.96)

While it is of crucial importance that the value of ηB � 1 in order forTD to be
so low and allow neutrons to decay freely for a significant period of time, it is only
logarithmically dependent on ηB.

After the deuterium bottleneck has been broken, nucleosynthesis proceeds ex-
tremely fast, with most nuclei having been formed only seconds after that. This is
an extremely complex non-equilibrium process that, of course, requires us to look
at the Boltzmann equation again.

3.4.2 Boltzmann Equation for Nuclear Reaction Network

As can be seen on Fig. 3.4, the most relevant reactions for nucleosynthesis are
four-body reactions. We will first look at how to derive the Boltzmann equation for
a general Boltzmann equation for one single four-body reaction a+ b→ j+k. Then
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we will show how the backward reaction may be obtained. The starting point will
be, just like in the previous section, the Boltzmann equation for the nucleus a in
the following form:

ṅa +3Hna = −
∫

dΠa

∫
dΠb

∫
dΠj

∫
dΠk (2π)

4δ4(pa + pb− pj − pk)|M |
2
· fafb
(3.97)

We will assume that nuclei are still in kinetic equilibrium, so that fa = e−
(E−µ)

T ,
since nuclei are highly non-relativistic, so that Pauli-Blocking factors can be ne-
glected. If this is the case, as shown in App. C, this equation can be written in
terms of the thermally averaged cross section times Møller velocity:

〈σv〉ab→jk ≡
1

neq
a neq

b

∫
dΠa

∫
dΠb

∫
dΠj

∫
dΠk (2π)

4δ4(pa+pb−pj−pk)|M |
2
·e−

Ea
T e−

Eb
T

(3.98)
where neq

a,b describes the equilibrium density without a chemical potential. The
Boltzmann equation simplifies to:

ṅa + 3Hna = −〈σv〉ab→jknanb (3.99)

For the backwards reaction, we will assume that CP is conserved, so that the ma-
trix element is the same in both directions. Additionally, due to energy conservation,
we have that:

e−
Ea
T e−

Eb
T = e−

Ea+Eb
T = e−

Ej+Ek
T = e−

Ej
T e−

Ek
T (3.100)

This condition, commonly referred to as detailed balance condition, is fulfilled when-
ever the system is in kinetic equilibrium. An equivalent relation holds for the case
of FD and BE distributions [51], so that the following also holds in one particle is a
photon γ, which is very relevant for BBN as photodissociation rates are of this type.
Detailed balance implies that it does not matter with respect to which distributions
we take the thermal average, only the overall normalization differs. Combined with
CP conservation, it is easy to show that:

〈σv〉jk→ab

〈σv〉ab→jk

=
neq
a neq

b

neq
j neq

k

(3.101)

Let’s look, concretely, at what this means for the backward reaction if all particles
involved are nuclei. Then their equilibrium number density is given by Eq. A.5.
Defining the Q-value of the reaction a+ b→ j + k as:

Qab→jk = ma +mb −mj −mk (3.102)

with the ”forward direction” of the reaction being chosen by convention such that
Qab→jk > 0. Then, the ratio of the forward to backward reaction has the following
form:

neq
a neq

b

neq
j neq

k

=
gagb
gjgk

(
mamb

mjmk

) 3
2

e−
Qab→jk

T (3.103)
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Typically, Qab→jk ∼ O(1MeV), so that the backward reaction becomes exponen-
tially suppressed at the temperature range where BBN begins, so in general they
will not play a major role, regardless of how fast the forward-reaction is. For precise
calculations they, of course, need to be taken into account, but we will neglect them
for now.

Detailed balance, thus, allows us to simply write the term for the backwards
reaction in the Boltzmann eq. as:

ṅa + 3Hna = −〈σv〉ab→jk

(
nanb −

neq
a neq

b

neq
j neq

k

njnk

)
(3.104)

Just as for neutrons and protons, we will rewrite the equation in terms of the Baryon
number fraction Xi:

Ẋi = −〈σv〉ab→jknB

(
XaXb −

Xeq
a Xeq

b

Xeq
j Xeq

k

XjXk

)
(3.105)

This equation is of the same form as eq. 3.83, with the change in the comoving
particle number being equal to a source term J that is just the difference between
the creation and destruction rate of the isotope i. 5 We can now rewrite nB = ηBnγ,
which shows that all nuclear reactions are ∼ ηB � 1. Thus, all nuclear reactions
are suppressed by the extremely small baryon-to-photon ratio. This reaffirms the
conclusion we have come to before from the NSE abundances, that the large over-
abundance of photons sets nucleosynthesis back.

This derivation holds for all four-body reactions on Fig. 3.4, so all that is left
to do in order to obtain the Boltzmann equation that governs the evolution of
the nuclear abundances is to sum over all reactions. Factors of 1/2 appear for
reactions where the initial particle is doubled. Additionally, we have to include the
weak neutron to proton conversion reactions from Eq. 3.50 that, most importantly,
include the neutron decay. All of this, results in the following complex system of
coupled differential equations:

Ẋn = 〈σv〉dγnp nBη
−1
B Xd +

1

2
〈σv〉dd3hen nBX

2
d + 〈σv〉tdαn nBXtXd

− 〈σv〉npdγ nBXnXp − 〈σv〉3hentp nBX3heXn − 〈σv〉7ben7lip nBX7beXn

+ ΓpnXp − ΓnpXn

(3.106a)

Ẋp = 〈σv〉dγnp nBη
−1
B Xd +

1

2
〈σv〉ddtp nBX

2
d + 〈σv〉3hentp nBX3heXn

+ 〈σv〉3hedαp nBX3heXd + 〈σv〉7ben7lip nBX7beXn

− 〈σv〉dp3heγ nBXdXp − 〈σv〉npdγ nBXnXp − 〈σv〉7lipαα nBX7liXp

+ ΓnpXn − ΓpnXp

(3.106b)

Ẋd = 〈σv〉npdγ nBXnXp − 〈σv〉dγnp nBη
−1
B Xd − 〈σv〉dp3heγ nBXdXp

− 〈σv〉dd 3hen nBX
2
d − 〈σv〉ddtp nBX

2
d − 〈σv〉3hedαp nBX3heXd

− 〈σv〉tdαn nBXtXd

(3.106c)

Ẋt = 〈σv〉3hentp nBX3heXn +
1

2
〈σv〉ddtp nBX

2
d + 〈σv〉tα7liγ nBXtXα

− 〈σv〉tdαn nBXtXd

(3.106d)

5See App. C for a more detailed explanation of the pysical interpretation of this form of the
equation.
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Figure 3.6: Formation of the light elements up to 7Be with the nuclear reaction
network from 3.4 for ηB = 6.14 · 10−10 and τn = (878.4 ± 0.5) s [28] obtained as a
solution of Eq. 3.106a.

Ẋ3he = 〈σv〉dd 3hen nBX
2
d + 〈σv〉dp3heγ nBXdXp − 〈σv〉3hentp nBX3heXn

− 〈σv〉3hedαp nBX3heXd − 〈σv〉3heα 7beγ nBXαX3he

(3.106e)

Ẋα = 〈σv〉3hedαp nBX3heXd + 〈σv〉tα7liγ nBXtXα + 2〈σv〉7lipαα nBX7liXp

+ 〈σv〉tdαn nBXtXd − 〈σv〉3heα 7beγ nBXαX3he

(3.106f)

Ẋ7li = 〈σv〉tα7liγ nBXtXα + 〈σv〉7ben7lip nBX7beXn − 〈σv〉7lipαα nBX7liXp (3.106g)
Ẋ7be = 〈σv〉3heα 7beγ nBXαX3he − 〈σv〉7ben7lip nBX7beXn (3.106h)

Unlike with the weak rates, where a theoretical prediction can be made with
remarkable precision, there is large theoretical uncertainty in the modeling of nuclear
reaction rates, so a precise value requires input from experiments. In the following,
we have used the PRIMAT rates of [20]. Unfortunately, this system cannot be solved
analytically, but only numerically. Just like we did for the equation for neutron to
proton freeze-out (Eq. 3.83), we will not use time as the natural variable, but rather
y = me

T
.

As long as neutrons and protons are not free, the Boltzmann equations governing
their evolution will be dominated by the weak rates and the nuclei will remain in
NSE, as we have seen in the section before as well. Thus, only starting at tem-
peratures O(1MeV) slightly above Tf does it make sense to solve the full system
of equations for all nuclei. At higher temperatures, it suffices to solve the simple
differential equation for Xn (eq. 3.84). The last step in the evolution and the cor-
responding NSE abundances can be used as initial conditions for the full solution.
The resulting evolution describing the formation of nuclei up to 7Be is shown on
Fig. 3.6.

While we will mainly be interested in the final abundances and not the evolu-
tion, it is important to understand the physical processes that lead to these final
abundances, especially keeping in mind that we want to use BBN as a laboratory
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term from Eq. 3.107 for the same reactions as a function of y.

for High Energy Physics and, thus, need to understand how new ingredients will
influence the standard outcome of BBN.

In order to do so, it is helpful to look at the evolution of the abundances, as well
as 〈σv〉and the source term

Jij→kl =
1 +∆

Hy
〈σv〉ij→klηBnγ ·XiXj (3.107)

corresponding to all reactions. Fig. 3.7 shows precisely these two quantities for
reactions involving nuclei up to 4He, 〈σv〉on the left and J on the right panel.

The source term is proportional to the by now well known ratio J ∝ Γ
H

that
measures the effectiveness of the reaction. We see that almost all reactions are
slower than the expansion rate of the Universe, as the source term remains far below
one at those temperatures, implying that they cannot maintain nuclear statistical
equilibrium, so their abundances actually remain far below that value for a long
time.

An exception to this is Deuterium, since the only reaction faster than the expan-
sion of the Universe is actually n+p→ D+γ and its backward reaction. As can be
seen from the left panel of Fig. 3.7, this is not owing to the high value of 〈σv〉, but
rather to the large abundance of nucleons compared to other nuclei. As a result, the
deuterium abundance steadily increases, quite closely following its NSE value.

As the D-abundance slowly rises, the DD-reactions, that is, those involving two
Deuterium nuclei, which form 3He and T become increasingly efficient. These two
nuclei start from the same value for the NSE abundance and 〈σv〉 is quite similar for
both, as can be observed from Fig. 3.7. Thus, they are produces in equal measure.
However, the fastest reaction at this time (other than n+p↔ D+γ ) is the neutron
capture of 3He to create T . As a result, most 3He ends up in Tritium, which is why
its abundance surpasses that of 3He by a couple of orders of magnitude.

As a next step, these two nuclei create 4He through deuterium capture reactions.
Since 3He is doubly charged, the coulomb barrier that D needs to overcome is
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higher and the reaction proceeds more slowly than for T . This, combined with the
overabundance of T over 3He, implies that the main pathway to form 4He is through
tritium. Thus, three deuterium nuclei are needed to form one α-particle, with one D
being dissociated as a by-product of the reaction, and the reaction happens almost
instantly. The starting product that determines the fate of heavier nuclei is still D,
so the abundances of T and 4He quite rapidly adapt to any change in XD and follow
its NSE evolution rather closely, as we can see from Fig. 3.6.

Meanwhile, the np reaction is still efficiently producing Deuterium and, with the
DD-reactions now in action as well, there is a competition between them and the
photodissociation reaction that maintains D in NSE. As soon as the source term for
this reaction drops below that of DD-reactions, the situation changes dramatically
and rapidly. This happens at

TBBN = 0.08MeV (3.108)

The reservoir of frozen-out neutrons very quickly gets depleted and turned into
D. This, in turn gets cast into 4He through the aforementioned pathway almost
instantly. The D and T abundances peak shortly after before being depleted just
as rapidly. Because of its stability, most of the 4He remains in that form and any
reaction depleting it is negligibly small. Almost all neutrons, thus, eventually end
up as 4He. As a result, its abundance at the end of nucleosynthesis at Te, can easily
be estimated, to reasonable accuracy, as:

Xα(Te) =
Xn(TBBN)

2
= 0.063 (3.109)

Or in terms of the usual primordial mass fraction for Helium:

Yp = 2Xn(TBBN) = 0.252 (3.110)

Once the neutron reservoir has been depleted, the np-reaction ceases to be ef-
ficient, and the Helium abundance freezes out at its primordial value. The same
happens for D and T which, after peaking when photodissociation stops, get de-
pleted until they freeze out. On the contrary, the 3He abundance actually further
increases after these two peak. This is because of the alternative production channel
for 3He from D through proton capture D+ p→ 3He+γ , which actually becomes
the dominant reaction for 3He since protons remain so abundant throughout the
entire process of BBN. Once the D abundance drops below a certain threshold, this
reaction also freezes out and the 3He abundance remains constant.

We have paid little attention to elements like 7Li and 7Be up to now, since they
only play a subdominant role in the events described. Both of them mainly get
produced by a similar reaction of 4He capture. Similar to the DD reactions, it
is only the abundance of the initial products that slows down this reaction, not
necessarily the actual value of 〈σv〉. Thus, the abundance of 7Li exhibits the same
peak as XT , whereas 7Be shows a slight increase in its abundance, even after 4He
has frozen out, just like 3He.

One final adjustment is necessary, since we know that neither 7Be nor T are
stable. 7Be decays to 7Li with a half-life of 53.22 d, whereas T decays to 3He with
τ1/2 = 12.32 yr. Since these are much larger than the time at which nucleosynthesis
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ends te, this amounts to setting the final abundance of 7Li to be the sum of that
of 7Be and 7Li, and analogously for T , leaving us with p,3He,4He,7 Li as the main
elements whose abundance can be predicted with BBN.

With this, we come to the most important aspect, namely the final abundances.
In order to be able to compare with experimental data, we will quote not XA but the
primordial A-to-proton ratio A/H|p = XA

Xp
with the exception of Helium, where it is

customary to quote the primordial mass fraction Yp. For the small network on Fig.
3.4, assuming an effective description of neutrinos with Neff = 3.043 and computing
the weak rates in the Born approximation, ηB = 6.14 ·10−10 and τn = (878.4±5.0) s,
the final abundances are the following:

Yp = 0.2427 (3.111)
D/H|p = 2.40 · 10−5 (3.112)

3He/H|p = 1.03 · 10−5 (3.113)
7Li/H|p = 5.66 · 10−10 (3.114)

In order to highlight the important physics, we have focused here on this simpli-
fied treatment of BBN. However, if we want to be as precise as observations, we not
only need to leave the effective description of neutrinos and add many corrections to
the weak rates, but also need to include a much larger network of reactions into our
calculation. Implementing this lies beyond the scope of this thesis, but all currently
up-to-date codes do. We have used the same rates as the publicly available code
PRIMAT [20] used for the global analyses of Pitrou et al. Including all the effects
described and with a much more extensive network of nuclear reactions, they find,
for ηB = 6.14 · 10−10:

Yp = 0.2468± 0.00014 (3.115a)
D/H|p = 2.44± 0.04 · 10−5 (3.115b)

3He/H|p = 1.04± 0.01 · 10−5 (3.115c)
7Li/H|p = 5.5(2) · 10−10 (3.115d)

The theoretical uncertainty quoted here, taken from [52], is mainly due to uncer-
tainties in the measurement of the neutron lifetime and nuclear reaction rates. This
last point is actually extremely important, as we will see shortly. If we compare the
outputs of this code with those of other groups performing global analyses of BBN
(Pisanti et al. [29] and Yeh et al. [53]), we find good agreement for the abundances
overall, with the exception of Deuterium, for which these two groups find:

D/H|p = (2.48± 0.08)× 10−5 , [Yeh et al. 22’] (3.116a)
D/H|p = (2.52± 0.07)× 10−5 , [Pisanti et al. 21’] (3.116b)

(3.116c)

While these two determinations of deuterium agree with each other at the 1σ level,
that of Pitrou et al. (Eq. 3.115) is significantly lower. We will see later the cos-
mological implications of this discrepancy, but we first need to understand where it
comes from.
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3.4.3 Importance of Nuclear Reaction Rates

In the previous section, we have seen that even the extremely simplified treat-
ment presented there is, actually, quite complex already. An accurate prediction of
the final abundances requires a sophisticated interplay of different physical phenom-
ena at exactly the right time. Additionally, even minor modifications in the rates
can have dramatic consequences for the final abundances. As with the weak rates
and background thermodynamics, we require a precise knowledge of the nuclear
reactions.

This is especially true for the deuterium abundance that is of
paramount importance for nucleosynthesis. The deuterium abundance
and its theoretical uncertainty is essentially determined by four reactions:
n(p, γ)D, D(p, γ)3He (dpg), D(D, p)T (ddp), D(D,n)3He (ddn). However, the
lack of an accurate theoretical model to calculate them poses a severe challenge.
It may be overcome through input from experiment by measuring σ(E) at the
energies relevant for BBN corresponding to temperatures between 10−2 − 1MeV
and fitting the data points to obtain σ(E).

At those temperatures, particles are not energetic enough to classically over-
come the Coulomb barrier, so that they need to tunnel through them quantum-
mechanically. Thus, the cross section is exponentially suppressed by the Gamow
factor σ(E) ∝ e−

√
EG/E, with EG = 2π2µij(ZiZjα)

2 ∼ O(MeV). In order to extract
the extreme energy dependence of the Gamow factor and isolate the contribution to
σ(E) from the strong interaction, it is common in astrophysics to define the S-factor:

S(E) ≡ σ(E)Ee
√

EG/E (3.117)

A measurement of this S-factor at BBN energies, even though essential for stel-
lar and Big Bang nucleosynthesis, is extremely challenging and cost intensive, and
dedicated experiments, rare. Thus, data points from many different experiments,
with partly or even entirely non-overlapping energy ranges, and varying degrees of
accuracy need to be collectively interpolated to obtain the S-factor. In doing so, the
approach taken by the different authors differs in three points:

• In order to fit the data, we need to choose a functional form Sth(α,E) for S
with parameters α to fit to. Assuming the reaction contains no resonances, the
S-factor is a smooth function of energy, so we may essentially Taylor-expand
S and fit to a polynomial function of sufficient degree. This is the approach
taken by Pisanti et al. [29] and Yeh et al. [53]. Another approach is to
use theoretical ab-initio calculations of the rates that give the overall energy
dependence of the S-factor, leaving only the normalization as a free parameter
to be determined, which is the procedure used by Pitrou et al. [20].

• Additionally, the three groups differ in their criteria for data selection. Pisanti
et al. [29] take into account as much data as they can with the logic that
the fit should be dominated by more precise measurements anyway. This
includes data from experiments that use the indirect (or theory-dependent)
Trojan Horse method [54]. Pitrou et al [20], on the other hand, perform a
strict data selection where only take data from direct experiments and neglect
experiments with too large uncertainties or that provide too few details and
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are thus deemed unreliable. The aim is to decrease the theoretical error on
deuterium under well-motivated assumptions. With their error being smaller
than other determinations by a factor of two, one can say that they have
succeeded in their endeavor.

• Lastly, there is a difference in the employed statistical framework. Pitrou et al.
[20] advocate for a bayesian treatment, while a frequentist statistical analysis
relying on minimizing a χ2 distribution is preferred by Pisanti et al[29] and
Yeh et al. [53].

Both approaches are well-motivated and consistent and there is no reason to prefer
one over the other a priori. Likewise, they should, in principle, not significantly
influence the outcome of nucleosynthesis if data dominates the fit. As evidenced by
the discrepancy in the predicted value of D/H|p, this is not the case at the moment.

A breakthrough was made in 2020 by the LUNA collaboration [55] at the under-
ground Gran Sasso National Laboratory in Italy, which measured the reaction rate
for energies between Ecm = 33 − 263 keV that are of extreme importance for BBN
with a precision of the order of 3%. This measurement significantly reduced the
theoretical error of deuterium, as this was before the main contributor to its error
budget, but in doing so exposed the discrepancies between the different approaches
to fitting the nuclear reaction rates.

Nevertheless, the discrepancies between the different predictions do not stem from
the dpg reaction LUNA measured, thanks to the precision and quality of the data,
but rather from the ddp and ddn reactions [52]. This implies that when the quality
of the data is good enough, it does not matter which approach one uses. Resolving
the tension between the different deuterium predictions will require comparably
accurate measurements for the ddn and ddp reactions, which should still take a
while. In light of that, it is important to take both rates into account before coming
to any conclusions from BBN.

Instead of discarding BBN as a probe altogether, it is enough to simply perform
any global analysis involving BBN with the different rates whenever Deuterium is
involved. In the following, we will do precisely that for two sets of rates. Given
that the theoretical predictions of Pisanti et al. [29] and Yeh et al. [53] are in
good agreement with each other and that they follow a similar approach overall in
their determination of the rates, we will only use those from Pisanti et al. [42],
which are implemented in the publicly available code PArthENoPE-v3.0 [42, 43, 44],
henceforth referred to as PArthENoPE rates. Additionally, we will use the rates of
Pitrou et al. [20], which are implemented in PRIMAT as well. We will refer to them
as PRIMAT rates.
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Chapter 4

Standard Constraints from Big
Bang Nucleosynthesis

We have now reviewed the standard theory leading to a prediction of the pri-
mordial abundances of the light elements. While it is a very complex process, it is
only based on some very well-motivated assumptions and very consolidated aspects
of physics, namely that the SM, and its low energy EFTs more precisely, include
all interactions that may influence BBN, and that that the background expansion
is accurately described by the ΛCDM model of Cosmology.

One of the most compelling aspects of BBN as a theory is that, given those
assumptions, it makes very clear and easily falsifiable predictions. The nuclear
reaction rates, as well as the neutron lifetime used to calibrate the weak rates, are
taken as a fixed input parameter to the theory. They are taken into account in the
theoretical uncertainty on the measurements, with στn being the main contributor to
the Helium uncertainty and the nuclear reaction rates dominating the error budget
for Deuterium. Thus, predictions from SBBN theory are only dependent on one
single cosmological parameter, the baryon to photon ratio ηB, or equivalently the
baryon density Ωbh

2.

4.1 Baryon Density

The dependence of Helium (Left) and Deuterium Abundance (Right) on Ωbh
2 for

τn = 878.4 s is shown on Fig. 4.1 for both the PArthENoPE and PRIMAT rates.
Let us first focus on the Helium Abundance. We see that, as expected, there is

only a minor difference in the determination of YP depending on the choice of rates.
This can be attributed to the fact that almost all neutrons end up in Helium at the
end of Nucleosynthesis, so that the final Helium abundance is only dependent on
the amount of free neutrons at the exact time of the onset of nucleosynthesis.

We saw in the previous section that this can be estimated as the moment the
source term of the DD-reactions, JDD, that lead to the formation of heavier nu-
clei becomes larger than that of the photodissociation reaction of deuterium, JDγ.
JDD ∝ ηB, so an increase in the baryon density implies an increase in JDD , so that
the Temperature at which they are equal increases, while JDγ is not. Since t ∝ T−2,
a higher value of TBBN allows neutrons to decay for a shorter period of time, thus
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Figure 4.1: 68% CL bands for the Primordial Helium mass fraction, YP , (Left) and
Deuterium to Hydrogen ratio, D/H|P , (Right) as a function of the baryon density
Ωbh

2 for both choices of nuclear rates. The green bands correspond to the PDG-22
68% CL of YP and D/H|P , where as the yellow band corresponds to the EMPRESS
prior on YP . The grey band shows the preferred value of Ωbh

2 from measurements
of the CMB.

increasing the final Helium abundance.

However, since JDγ is dominated by the exponential suppression ∝ e−
BD
T , TBBN

will only be logarithmically dependent on ηB ∼ Ωbh
2. Thus, the Helium abundance

will also only depend very weakly on Ωbh
2. In fact, we find that:

Yp = YP |ref ·
(

Ωbh
2

Ωbh2|ref

)0.039

(4.1)

where we have chosen Ωbh
2|ref = Ωbh

2|Planck (Eq. 2.14 and the corresponding value of
YP |ref = 0.2466(0.2468) for the PArthENoPE (PRIMAT) rates. With an exponent
of 0.039, this is indeed positively correlated and only very weakly dependent on
Ωbh

2.
What can also be abstracted from that figure is the (dis)agreement between data

and observations. The green and orange stripes on Fig. 4.1 are 1σ bands corre-
sponding to the PDG-22 (Eq. 2.11) and EMPRESS 2.10 determinations of YP . For
the PDG-22 value, we see that the prediction of SBBN for YP is well within 1σ of
the best fit value, thus showing very good agreement between theory and observa-
tions. The picture is completely different if we use the EMPRESS determination of
YP , as the figure quite blatantly shows the tension of SBBN with the observation.
Resolving this tension purely with the baryon density would require a value as low
as Ωbh

2 ' 0.008, which we can safely rule out. Resolving the tension with the EM-
PRESS measurement will therefore necessarily involve going beyond the Standard
theory of nucleosynthesis.

For Deuterium, the picture is quite different. Its dependence on Ωbh
2 is shown on

the right panel of Fig. 4.1. Unlike for Helium, we see that Deuterium very strongly
varies with Ωbh

2. This is to be expected, since the reactions that determine its

51



Probing New Physics with Big Bang Nucleosynthesis

evolution are directly proportional to this value. Since this a very sensitive system,
any change will have a strong impact on the evolution and final abundance.

Additionally, the final abundance is negatively correlated with Ωbh
2. The reason

for this is slightly more subtle. Take for example the n(D, γ)p reaction. One would
expect an increase in the only production channel for Deuterium to increase its
final abundance. On the other hand, an increase in this reaction implies that the
deuterium abundance reaches the value at which the DD reactions become efficient
earlier, since D grows faster. As can be seen on Fig. 3.7, 〈σv〉decreases rapidly
with temperature, so that the depletion of the Deuterium reservoir will be more
efficient if it starts at lower temperatures. Thus, while XD does increase more
rapidly at the beginning, it will also be depleted more rapidly, leading to a smaller
final abundance. Further increases of other reactions ∝ Ωbh

2 which deplete D will
have a similar effect. Parametrizing the dependence analogously to Helium, we find
that for PRIMAT Rates:

PRIMAT : D/H|P= D/H|P,ref ·
(

Ωbh
2

Ωbh2|ref

)−1.632

(4.2a)

PArthENoPE : D/H|P= D/H|P,ref ·
(

Ωbh
2

Ωbh2|ref

)−1.637

(4.2b)

using D/H|P,ref = 2.44(2.51) as the reference value for PRIMAT (PArthENoPE)
rates. We can also infer from this simple fit that the parametric dependence of
the final abundances on Ωbh

2 is only very mildly affected by the choice of rates.
What changes, however, is the face value and the theoretical uncertainty, as shown
before. Nevertheless, as Fig. 4.1 very clearly shows, both determinations are in
good agreement with each other within the theoretical uncertainties for all values of
Ωbh

2.
The green band on this figure shows the 1σ PDG-22 determination of Deuterium

(Eq. 2.12). Even though the precision of the measurement is ∼ 1%, only slightly
more precise than that of Helium, the strong dependence on Ωbh

2 implies that this
measurement allows us to put very stringent constraints on the baryon density from
BBN, as theory and observations are only in agreement for a very short range where
the blue(red) bands cross the green band.

Ωbh
2 can also be inferred from observations of the CMB. While Ωbh

2 is temper-
ature dependent in general, within the ΛCDM model it remains constant between
e±-annihilation and the era of recombination, making BBN a parameter-free the-
ory within this model. While the success of BBN as a theory does not necessarily
depend on the evolution of the Universe after BBN, as events happening at lower
temperatures might influence CMB observations, but not BBN, an agreement be-
tween the two obtained values is a crucial and highly non-trivial consistency test of
the ΛCDM model. Any deviation from the baryon density inferred from the CMB
will add another entry to the increasingly long list of tensions in cosmology whose
resolution requires new physics.

The value reported by the Planck collaboration [56] combining CMB and BAO
data is shown as the grey band. As we can see, while the choice of rates does
not spoil the consistency of BBN as a theory, it forces us to draw very different
conclusions regarding the health of the Standard Model of cosmology.

In order to make this assessment more quantitative, we will now proceed to
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Figure 4.2: Likelihood function for Ωbh
2 from the PDG-22 prior on both abundances,

since D/H|P dominates the constraints, for PRIMAT(red) and PArthENoPE(blue)
rates, as well as the independent CMB measurement (grey). The figure shows good
agreement between BBN and the CMB for PArthENoPE rates and a 2.1σ tension
for PRIMAT rates.

obtain constraints on the baryon density for different priors following the methods
described in Chapter 2. The main results are shown on Fig. 4.2 and summarized
on table 4.1.

As can be seen from Table 4.1, the constraints on the baryon density are dom-
inated by the prior on the Deuterium Abundance. The effect of simultaneously
constraining the Helium abundance is only of the order of ∼ 10−5 on the baryon
density and does not increase the sensitivity, as expected given its sensitivity to
Ωbh

2.
The only effect of including the prior on Helium is to increase χ2

min, which serves
as a measure of the goodness of fit. Regardless of the choice of nuclear reaction
rates, constraining YP to the EMPRESS value (Eq. 2.10 ) causes an increase of
∆χ2

min ≈ 7.8, which indicates that the measurement is in a ∼ 3σ tension with the
Standard model of BBN. If, on the other hand, we choose the PDG-22 value as the
prior, we find good agreement overall between observations and data and χ2

min is
essentially 0. Using only D/H|P as a prior, one obtains the following constraints on
the baryon density:

PRIMAT : Ωbh
2= 0.02183± 0.00025 (4.3a)

PArthENoPE : Ωbh
2= 0.02222± 0.00040 (4.3b)

In keeping with our expectations, these constraints agree with each other within 1σ,
even though their best-fit value is different. As the prediction with PRIMAT rates is
smaller than with PArthENoPE rates and D/H is negatively correlated with Ωbh

2,
the determination from PRIMAT rates has a lower best fit value for the baryon
density. Also, the sensitivity is better for this set of rates, since they report a much
lower theoretical uncertainty.
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Bounds and Sensitivities on the Baryon density from BBN and CMB Data
YP Data Sets Nuclear Rates Ωbh

2 χ2
min

× D/H|P
PArthENoPE 0.02222± 0.00040 0

PRIMAT 0.02183± 0.00025 0

EM
PR

ES
S

YP +D/H|P
PArthENoPE 0.02217± 0.00039 7.9

PRIMAT 0.02181± 0.00025 7.8

YP +D/H|P + Ωbh
2|Planck

PArthENoPE 0.02239± 0.00013 8.2
PRIMAT 0.02228± 0.00012 12.3

PD
G

-2
2 YP +D/H|P

PArthENoPE 0.02221± 0.00040 0.3
PRIMAT 0.02182± 0.00025 0.3

YP +D/H|P + Ωbh
2|Planck

PArthENoPE 0.02240± 0.00013 0.5
PRIMAT 0.02228± 0.00012 4.5

Table 4.1: Summary of constraints on the Baryon density, Ωbh
2, from considering

several combinations of BBN and CMB data for two possible choices of the nuclear
reaction rates. See main text for details.

We can now compare this with the constraints on Ωbh
2 from the Planck collabo-

ration:
Ωbh

2 = 0.02242± 0.00014 (4.4)

which is obtained using CMB+BAO data. It is clear that, even with the significant
improvement due to the precise measurements from the LUNA collaboration and
the lower theoretical uncertainty from the method adopted to obtain the PRIMAT
rates, the BBN constraints on the baryon density are not really competitive with
CMB measurements yet.

While unimportant to any conclusions up to now, the effect of the choice of
nuclear reaction rates plays a crucial role now in determining the health of ΛCDM
model. The PArthENoPE constraints are in agreement within one sigma with the
Planck constraints, implying that the ΛCDM model has withstood another highly
non-trivial test. On the other hand, if we adopt the PRIMAT rates, we see that
there is a 2.1σ tension with the Standard Model and requiring new physics between
the BBN and CMB epochs to be resolved. These results are summarized on Fig.
4.2.

In order to address the overall tension of the ΛCDM model with observations of
primordial abundances, we can add a prior for the baryon density, thus constraining
it to the values in eq. 4.4 and obtain the best-fit value given the observations for
YP and D/H|P . The value of χ2

min will then give us a measure for the health of the
ΛCDM model.

The conclusions range from extremely healthy over slightly concerned to the
worst case scenario, with the determination of YP by the EMPRESS collaboration
and the PRIMAT rates, where the cosmological model is in some serious trouble with
χ2
min = 12.3 corresponding to a ∼ 3.5σ tension. Thus, while the strong agreement

between BBN theory and observation has allowed this theory to establish itself as
one of the pillars of Cosmology, the increased precision from the experimental as
well as theoretical side is starting to show some cracks in its foundation.
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4.2 Neutron Lifetime

We have up to now discussed only the Ωbh
2 dependence of the final abundances

arguing that is the only parameter influencing SBBN predictions. However, this
is only partly true, since it is the only cosmological parameter, but there are many
more that are used as input from nuclear as well as particle physic. This includes, for
example, the already extensively discussed reaction rates the masses of the particles
involved and the parameters controlling the strength of their interactions. Of this
last category, probably the most important one is the neutron lifetime τn, that is
used to calibrate the weak reaction rates.

Up to now, we have used the value reported by the PDG [11]:

τn = (878.4± 0.5) s (4.5)

as an input. While this looks like a very precise determination. However, there is a
long-standing anomaly concerning the neutron lifetime which has not been resolved
to date, see [57, 58, 50] for recent reviews on this topic. Essentially, the anomaly boils
down to the following problem. There are two current methods to determine the
neutron lifetime, which we will henceforth refer to as the beam and bottle methods.

As the name suggests, for the beam method one requires a beam of slow neutrons
that go into an experimental volume V that is surrounded by strong electromagnetic
fields. The neutrons if stable will not be affected by the E and B fields and are
counted upon exiting the volume, in order to know how many neutrons are in the
volume at any given moment. If they decay, however, they will produce protons,
which are then extracted by virtue of the electromagnetic fields and subsequently
counted. From the ratio of neutrons inside the volume and the protons detected,
one then obtains the neutron lifetime. The results obtained using this method are
consistent with each other and give[58]:

τbeamn = (888.0± 2.0) s (4.6)

The approach of the bottle method, on the other hand, is to use ultra cold neutrons
(UCNs) and let them flow into a of a container whose walls have a high potential
energy and are thus reflective for neutrons. Due to the form of the container (hence
the name bottle), neutrons are trapped by gravity inside the container. Then one
allows the neutron to decay for a variable amount of time ∆t comparable to τn and
measures the neutrons remaining inside the bottle upon extraction. This can then
be fit to obtain the neutron lifetime. Again, measurements that rely on this method
are consistent with each other and give [58]:

τbottlen = (878.4± 0.5) s (4.7)

As can be seen, the value reported by the PDG is mainly composed of bottle mea-
surements. Both measurements are consistent with each other and report very small
systematic and statistical uncertainties. Nonetheless, they differ by:

∆τn = (8.6± 2.1) s (4.8)

which corresponds to a ∼ 4.1σ tension between the two determinations. Unless
the anomaly turns out to be an indication of new physics, a resolution will most
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Figure 4.3: 68% CL bands for the Primordial Helium mass fraction, YP , (Left)
and Deuterium to Hydrogen ratio, D/H|P , (Right) as a function of the neutron
lifetime τn for Ωbh

2 = 0.02242 for both choices of nuclear rates. The green bands
correspond to the PDG-22 68% CL of YP and D/H|P , where as the yellow band
corresponds to the EMPRESS prior on YP . The vertical bands correspond to the
different experimental measurements of τn.

likely involve an independent measurement with a different method, completely
uncorrelated systematic uncertainties and a similar precision.

In that spirit, recently, space-based determinations of the neutron lifetime have
emerged [59, 60], which rely on measuring the flux of neutrons emitted from the
surface of an astrophysical body due to interactions between the surface and cosmic
rays during flyby missions. From this, one can obtain a measurement with clearly
very different systematic errors to laboratory measurements. Combining both mea-
surements using the same technique, [60] finds:

τ spacen = (883± 17) s (4.9)

Which is in agreement with both bottle and beam experiments, but is not com-
petitive with either measurement given its large uncertainties. Thus, the neutron
lifetime measurement remains a puzzle that cannot be solved.

In order to assess how significant this tension is for nucleosynthesis, we must
first understand how a change in τn influences the final Helium and Deuterium
abundances. This dependence is shown on Fig. 4.3, with Helium on the left and
Deuterium on the right. For Helium we only show the determinatio using the
PArthENoPE rates, since the PRIMAT result is virtually identical.

We see that, unlike for the baryon density, Helium is extremely sensitive to the
exact value of τn. The reason is that almost all neutrons available at the onset of
Nucleosynthesis at TBBN are cast into Helium. After neutrons have frozen out, they
are essentially free until that happens. Thus, the evolution of their abundance at
that time can be described as:

nn ' nn|f.o. · e−
t
τn (4.10)
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A change in the neutron lifetime therefore has two effects on its abundance at TBBN.
First, the weak reaction rates controlling the nucleon freeze-out Γn↔p ∝ 1

τn
, so

an increase in τn implies a decrease in the strength of the weak reactions, which
consequently means that freeze-out happens at an earlier time where the neutron
abundance is less suppressed. Second, an increase in τn implies that neutrons will
decay more slowly. Both of these effects are very significant and add up and increase
the final Helium abundance, making it exceptionally sensitive to the exact value of
the lifetime. More quantitatively, we find:

PRIMAT : YP= YP,ref ·
(

τn
τn,ref

)0.734

(4.11a)

PArthENoPE : YP= YP,ref ·
(

τn
τn,ref

)0.741

(4.11b)

For deuterium, on the other hand, we see on the right panel of Fig. 4.3 that the
dependence on τn is somewhat milder, but still positively correlated. The reason
is, similarly to Helium, that a larger value of the neutron abundance implies an
overall larger reservoir which increases the final abundance. Additionally, we are
quoting the ratio of Deuterium over protons. An increase in the initial abundance
of neutrons implies an equally large decrease in the final proton abundance, so that
D/H increases. Quantitatively we find:

PRIMAT : D/H|P= D/H|P,ref ·
(

τn
τn,ref

)0.417

(4.12a)

PArthENoPE : D/H|P= D/H|P,ref ·
(

τn
τn,ref

)0.418

(4.12b)

While it should not come as a surprise that the final abundances strongly depend
on a parameter as crucial as the lifetime of the neutron, the real question is how
choosing either the beam or bottle mean will affect the conclusions that can be
drawn from BBN. From Eqs. 4.11,4.12, we can see that a change in τn of the size of
the discrepancy between both measurements, ∆τn = 8.6 s, corresponds to a shift of:

∆YP = 0.0018' 0.6σY

∆D/H|P = 0.0010' 0.1σD

for any choice of rates, where σ combines the theoretical and observational un-
certainties on the abundance. Thus, given the large observational uncertainty for
primordial Helium, a different choice of prior for the neutron lifetime will only mildly
affect any conclusions drawn from nucleosynthesis, shifting it by, at most, 0.6σY .
For D/H, it is the combination with the large theoretical uncertainty that makes
the possible significance of the choice of prior much lower.

Thus, we may conclude that, although a precise determination of the neutron
lifetime is of crucial importance for BBN, choosing between either the beam or bottle
determination will not critically affect conclusions. Perhaps the most important
aspect, though, is to remember that there is a long-standing problem with the
neutron lifetime and that, even though generally a theoretical uncertainty of only
σY,th = 0.00017 is reported, at present the theoretical uncertainty is actually higher
than that.
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However, instead of complaining about the possible challenges that the neutron
lifetime puzzle might pose for Nucleosynthesis, we can also make use of the fact
that we have, assuming the CMB prior for the baryon density is correct, two direct
measurements whose prediction is very sensitive to and solely depends on the neutron
lifetime. Thus, we can obtain from BBN a cosmological measurement of the neutron
lifetime that is totally independent from the laboratory measurements and might
help solve the puzzle for good.

The resulting likelihood distributions that can be obtained from BBN using the
PArthENoPE as well as the PRIMAT rates for both the PDG and the EMPRESS de-
termination of YP , along with the likelihoods obtained from beam, bottle and space
measurements are shown on Fig. 4.4 and summarized on Table 4.2. Concretely, for
the PDG prior on YP we find:

τn = (870± 14) s (4.13)

for both choices of nuclear rates. Given that observations and data broadly agreed
using the PDG-22 prior for YP and τn for the entire range of Ωbh

2, it should come
as no surprise that this value agrees with τbottlen , as the average is based on these
measurements. On the other hand, it also agrees with τbeamn within ∼ 1σ. Given
the large observational uncertainty on the Helium measurement, this determination
is not competitive with neither beam nor bottle measurements, so unfortunately
it cannot give a preference for one or the other and does not alleviate the tension.
Nonetheless, the sensitivity is comparable with the recent space-based measurements
of τn, which is remarkable considering how easy it is to obtain this measurement.

Unfortunately, adding a prior on D/HP does not increase the sensitivity by more
than one second, as Helium dominates this determination, given deuteriums lower
sensitivity to τn, as well as its large theoretical and observational uncertainty. The
only thing that changes is that, since PRIMAT rates predict a smaller value for

58



Probing New Physics with Big Bang Nucleosynthesis

Bounds on the Neutron Lifetime from BBN
YP Data Sets Nuclear Rates τn χ2

min

EM
PR

ES
S

YP
PArthENoPE 833± 16 0

PRIMAT 832± 16 0

YP +D/H|P
PArthENoPE 836± 15 1.4

PRIMAT 851± 15 10.4
PD

G
-2

2 YP
PArthENoPE 870± 14 0

PRIMAT 870± 14 0

YP +D/H|P
PArthENoPE 872± 14 0.4

PRIMAT 882± 14 5.6

Table 4.2: Summary of constraints on the neutron lifetime, τn, from several combi-
nations of BBN data for two possible choices of the nuclear reaction rates. See main
text for details.

D/H|P than measured, the best-fit value for τn increases, which only makes the
agreement with both methods greater.

Obtaining a precision in the BBN measurement that is comparable with that
of beam or bottle experiments requires a dramatic increase in the precision of ob-
servations of the Helium abundance. Obtaining a measurement of ∼ 2 s precision,
for example, would require a determination of Helium as low as σY,obs ∼ 0.0003,
which would imply an order of magnitude increase in precision that is unthinkable
in the foreseeable future as current measurements of Helium are dominated by large
systematic uncertainties that are unlikely to go down anytime soon.

However, determinations of the primordial helium abundance by one experiment,
like for example that of [18], already report a sensitivity of σY,obs ∼ 0.0022, which
would imply an uncertainty of στn = 10 s, and if we were to increase the uncertainty
further to σY,obs ∼ 0.001, we would obtain στn = 4.8 s, which is already smaller than
the difference between the beam and bottle methods. Depending on the central
value of these determinations, this would have the potential to provide a valuable
indication for a cosmologically preferred lifetime.

If instead of using the PDG-22 prior for YP we now use that of the EMPRESS
collaboration we find:

τn = (833± 16) s (4.14)

for PArthENoPE rates and a very similar result for PRIMAT rates. These are shown
as the dashed lines on Fig. 4.4. As the best-fit value for Yp reported by EMPRESS
is much lower, the neutron lifetime we find is likewise significantly lower, showing
again a tension of ∼ 3σ with observations. However, even though such a low value of
the neutron lifetime would, in principle, solve the EMPRESS anomaly, it is severely
constrained, not only by the beam and bottle experiments, but by a plethora of
other observations.

Seeing as neither the neutron lifetime, nor the baryon density are able to satis-
factorily accommodate the low determination of YP from EMPRESS, resolving this
tension in BBN will require us to go a step further and introduce aspects beyond
the respective Standard models of particle physics, as well as cosmology. This is
what we will do for the rest of the thesis.
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4.3 Effective Number of Neutrino Species

We will now depart from the Standard paradigm of Big Bang Nucleosynthesis
and introduce elements of new physics to the theory. This is of interest not only
to resolve the tensions we have alluded to in the previous section, but also in itself.
Nucleosyntesis is the earliest probe of the Universe available to us at present. The
CMB constrains physics at T ∼ O(0.1 eV), whereas with BBN we can directly probe
physics at energies up to T ∼ O(10MeV), which is eight orders of magnitude higher
than the CMB. In terms of time, with the CMB we can look back to 380 000 yr after
the Big Bang, while nucleosynthesis gives us a direct insight into physics at only
t ∼ O(10−3 s).

The Standard Model should in principle be valid up to Energies ∼ O(100GeV)
at least, so any deviations might be an indication of new physics even at such low
energies and may serve as a guide-post for BSM physics. On the other hand, many
extensions proposed to solve tensions in laboratory physics can have severe impacts
on Cosmology at this time, so BBN may help severely constrain these models we
would otherwise not be able to reject. Thus, studying the impact of new physics on
Nucleosynthesis is of crucial importance.

Just as there are three main epochs of BBN, modifications to it can be likewise
put into three categories. First, modifications at late times to the nuclear reaction
rate network. These generally require very specific models and will have severe
consequences for all nuclei. This type of modifications is generally used to modify
the abundance of heavier nuclei like Lithium and Beryllium in order to solve the
Lithium problem.

Second, one may also modify the reactions that lead to the neutron to proton
freeze-out, either by adding new reactions involving neutrons or protons, modifying
the initial abundances of the particles involved, or simply changing the strength of
the weak rates. These will affect all abundances, but especially that of Helium.

Last, but definitely not least, even in the absence of any direct interaction with
Standard Model particles, the mere presence of new particles (or objects, like for
example Primordial Black Holes) will have a direct influence on the energy density
at the time of BBN, therefore modifying the Hubble parameter and with it the
time-temperature ratio that is of crucial importance to all reactions. This is the
modification to the Standard paradigm that is best studied and the one we we will
start with.

Aside from the advantage of probing the Universe at an earlier time than the
CMB, BBN has another aspect that make it very attractive to study new Physics.
It makes very direct and easily falsifiable predictions, namely the primordial abun-
dances which can be directly compared with observations with very simple statistical
methods.

This simplicity, while very attractive as it allows to place very stringent con-
straints that are hard to evade, is also partly its downfall, since there are only
two reliable measurements of primordial abundances and we can therefore, out of
the plethora of effects that influence nucleosynthesis, only constrain one at a time
independently from the CMB or two if we combine BBN and the CMB.

Unlike direct modifications of the neutron to proton ratio, or the nuclear rates,
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influencing the background expansion at the time of BBN does not necessarily re-
quire any specific type of interactions. The mere presence of exotic particles with
a sufficiently large contribution to the Universe’s energy density will affect the final
abundances in a homogeneous way for a large class of models of new physics.

These models are generally referred to under the umbrella term of dark radiation,
as most involve the presence of a new particle that is weakly interacting with the
Standard model, if at all, with a mass of at most O(MeV), in order for it to be
relativistic or close to it at the epoch of BBN, as otherwise its contribution to ρtot
would be negligible.

Models of dark radiation and many more can be constrained using just one pa-
rameter that has already been introduced for Standard BBN, the effective number
of neutrinos Neff . While this is considered non-standard nucleosynthesis, the influ-
ence of this specific modification has been a topic of intense study for many years
now, because of the wide applicability of constraints on this parameter as well as
the amount of BSM physics that predict a strong modification to it, hence why we
have included it in this section.

From the Standard model, we would expect that Neff = 3. We have already
seen that incomplete neutrino decoupling very slightly modifies this relation to be
Neff = 3.043. In order to differentiate the Standard Model contribution to Neff from
that of dark radiation, it is customary to define:

∆Neff = Neff −NSM
eff = Neff − 3.043 (4.15)

The question now is how exactly ∆Neff modifies the final Helium and Deuterium
abundances. Given that it only modifies the energy density present during BBN,
it will mainly affect it through the Hubble rate, which for a radiation dominated
Universe can be parametrized in terms of the effective degrees of freedom geff . The
contribution to the degrees of freedom from dark radiation can be written as:

ge,DR
eff =

ρDR

ργ
=

7

4

(
4

11

) 4
3

·∆Neff ' 0.45 ·∆Neff (4.16)

Plugging this into eq. 3.17, we find:

H = 1.66
√
gSMeff + 0.45∆Neff

T 2

MPl

(4.17)

During BBN gSMeff ranges between 3.36 − 10.75. Taking the mean value for gSMeff =,
we can assume that 0.45∆Neff � gSMeff , so that we can expand the root to find:

H = 1.66
√

gSMeff
T 2

MPl

·
(
1 +

0.45∆Neff

2gSMeff

)
' HSM · (1 + 0.06∆Neff) (4.18)

Thus, an increase in ∆Neff implies a relative increase by about 0.06∆Neff in the
expansion rate, which can be quite sizable. The effect of such an increase in the
expansion rate on nucleosynthesis is twofold.

The first is a shift in the time-temperature relation, as t = 1
2H(T )

, such that the
same temperature corresponds to a relatively smaller time. The time-temperature
relation multiplies all the source terms in the Boltzmann equation and therefore
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Figure 4.5: Primordial Helium mass fraction, YP , (Left) and Deuterium to Hydrogen
ratio, D/H|P , (Right) as a function of the additional effective number of neutrino
species ∆Neff for Ωbh

2 = 0.02242 and both choices of nuclear rates. The green bands
correspond to the PDG-22 68% CL of YP and D/H|P , where as the yellow band
corresponds to the EMPRESS prior on YP . The vertical bands correspond to the
different experimental measurements of τn.

influences them in the same manner. As a result, the temperature for the onset
of BBN does not change, as this is determined by equating the source term for
the DD-reactions and the deuterium photodissociation. Thus, an increase in the
expansion rate implies a shorter time-span for free neutrons to decay with τn and,
consequently, an increase in the neutron to proton ratio at the onset of BBN.

On the other hand, the temperature at which the weak rates freeze-out, deter-
mined roughly by the condition that Γ

H
' 1, gets shifted to higher temperatures.

Since
(

nn

np

)eq
= e

−Q
T , this implies an even higher neutron to proton ratio at the onset

of nucleosynthesis which, similarly to the neutron lifetime, increases the abundances
of both Helium and Deuterium.

The actual dependence on ∆Neff of the two is shown on Fig. 4.5, with Helium
on the left and Deuterium on the right panel. In order to obtain a fit of the same
form as for the other parameters, we will recast it in terms of Neff and normalize it
to ∆NSM

eff . The results for both choices of reaction rates are actually identical and
we find:

YP = YP,ref ·
(

Neff

NSM
eff

)0.163

(4.19a)

D/H|P = D/H|P,ref ·
(

Neff

NSM
eff

)0.407

(4.19b)

Even though the exponents are the same, of course the reference values differ, as can
be sen by the offset between the PArthENoPE (blue) and PRIMAT (red) bands on
the right panel of Fig. 4.5. We also see that, indeed, both abundances are positively
correlated with Neff and are quite sensitive to it, as well. Perhaps counter-intuitively,
the Deuterium abundance is actually more sensitive than the Helium abundance to
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changes in the Helium abundance.

4.3.1 BBN Constraints on ∆Neff

Unlike the neutron lifetime and the baryon density, the sensitivity of Helium to
a non-standard value for Neff actually has the potential to resolve the EMPRESS
anomaly. While the prediction for Helium seems to be in agreement with the PDG-
22 prior for ∆Neff ≈ 0, resolving the tension with the EMPRESS prior requires a
negative value for ∆Neff ≈ −0.65.

This would be fine in princple if not for Deuterium, since a lower value of ∆Neff

implies a lower value of D/H. Even though this is not too problematic if we assume
PArthENoPE rates, it is severely constrained if we use PRIMAT rates. Despite
showing promess, it seems that there is no way to accommodate the measurements
as both priors have different preferences for the sign of ∆Neff .

Unlike with Standard Nucleosynthesis, however, this is not necessarily a problem,
as we have an additional parameter in Ωbh

2 we can play with. Allowing this parame-
ter to float is not only helpful to better accommodate the observations, but actually
required if we want to be consistent with our analysis since these two parameters
are very strongly correlated.

The 1σ and 2σ contours obtained following the methods described in Ch. 2
allowing both ∆Neff and Ωbh

2 to simultaneously vary are shown on Fig. 4.6. In
order not to overload the plot, on the left panel we show the impact of choosing a
different prior for YP for the PArthENoPE rates, where the EMPRESS prior for YP

is shown in solid lines and the dashed lines correspond to the PDG-22 value. On the
right, the value of YP remains that of the EMPRESS collaboration, but the contours
obtained using both PArthENoPE (purple/blue) rates and PRIMAT (red/orange)
rates are shown. Since both Ωbh

2 and ∆Neff can be constrained from observations
of the CMB, we additionally show the contours one obtains when adding the Planck
prior from eq. 2.17, which corresponds to the black-grey contour. The corresponding
constraints are also summarized on Table 4.3.

Up to now we have seen that, with the PDG-22 prior on YP , there are no tensions
between the observations, the ΛCDM model and the standard prediction for both
YP and D/H with PArthENoPE rates. Thus, the distribution shows no significant
preference for a value of ∆Neff 6= 0 and the Planck 1σ contour is contained at least
partly within the 1σ contour for BBN. From this contour, one obtains the following
constraints:

Ωbh
2 = 0.022031± 0.00053 , [YP +D/H|P (4.20a)

Neff = 2.93± 0.21 , PDG− 22] (4.20b)

Comparing this to eq. 4.3, it is clear that adding an additional parameter has
increased the uncertainty on the baryon density, which is to be expected since we
have added a new degree of freedom to our fit. Thus, constraints from the CMB still
dominate Ωbh

2. This is evident when looking at the contour including the Planck
prior, where the contour very noticeably shrinks in size on the x-axis.

The situation is different regarding Neff . The CMB constrains Neff = 2.97±0.29.
Not only are the constraint on this parameter from BBN are actually stronger than
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Figure 4.6: Left:1σ and 2σ C.L.s for ∆Neff and Ωbh
2 for BBN and Planck data,

independently and combined, assuming either the EMPRESS (solid) or PDG-22
(dashed) prior on YP for PArthENoPE rates. Right Same contours using only the
EMPRESS prior on YP , but adopting also the PRIMAT rates(red/orange).

those from the CMB. Since they are still comparable, though, we expect a noticably
increased sensitivity to Neff when adding the Planck prior to our χ2. More concretely,
we find:

Ωbh
2 = 0.02236± 0.00017 , [YP +D/H|P + CMB (4.21a)

Neff = 2.98± 0.13 , PDG− 22 + Planck] (4.21b)

Thus, the sensitivity on Neff increases by ≈ 0.08 when using the Planck prior. This
increase is not only due to combining the two independent constraints, but also due
to the correlation of Neff with Ωbh

2. With the central value now pushed closer to 3,
any form of extra radiation present at the BBN epoch is severely constrained.

On the other hand, if we instead choose the EMPRESS prior for YP , the situation
radically changes, we find:

Ωbh
2 = 0.02103± 0.00054 , [YP +D/H|P (4.22a)

Neff = 2.41± 0.22 , EMPRESS] (4.22b)

which differs from eq. 7.20 drastically in the central value of the contours. The
most noticeable change is in Neff . Since we can see from Fig. 4.2 that there is no
way to obtain such a low value of YP with only the baryon density, even though YP

is less sensitive than D/H|P to Neff , it actually dominates the constraints, driving
it to a much lower value that, again, differs from the Standard value of Neff = 3.043
by almost 3σ.

As a result of that, Ωbh
2 gets pushed to lower values in order to compensate for

the change in Neff , which increases the tension with the CMB, even for PArthENoPE
rates which previously were not in tension with it, albeit only slightly. However,
Neff is only a solution since we have permitted Ωbh

2 to float freely. If instead we
add the Planck prior, there is only a small amount of room for Ωbh

2 to compensate
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for negative ∆Neff in D/H|P . The constraints obtained with the Planck prior are:

Ωbh
2 = 0.02222± 0.00017 , [YP +D/H|P + CMB (4.23a)

Neff = 2.81± 0.13 , EMPRESS + Planck] (4.23b)

The resulting constraints, while still pointing towards negative values of ∆Neff , are
only in a very mild tension with ∆Neff = 0. The fit to observational data, though,
is worse than without the Planck prior.

Given that the strong correlation between Ωbh
2 and ∆Neff plays such a crucial

role, it is expected that the choice of rates strongly affects the constraints as well.
Without a prior on Ωbh

2, the constraints on Neff are dominated by YP , so we do
not expect them to change given the choice of rates. On the other hand, the tension
between observations and the Standard prediction for BBN needs to be resolved.
This adds to the effect of negative ∆Neff and pushes the central value of the fit to
lower Ωbh

2. Additionally, the constraints on Ωbh
2 get more stringent.

The plot on the right panel of Fig. 4.6 clearly exhibits that behavior, with the red
contour not moving at all on the ∆Neff-axis, but shifting to the left and becoming
thinner. More quantitatively, for PRIMAT rates and only BBN priors we find:

Ωbh
2 = 0.02067± 0.00046 , [YP +D/H|P (4.24a)

Neff = 2.41± 0.22 , EMPRESS] (4.24b)

which agrees with our expectations. Constraining Ωbh
2 to its CMB value has a

similar effect on both parameters as with the PArthENoPE rates, namely increase
both towards their standard values. However, in order to account for the additional
tension in Ωbh

2 from this choice of rates, Neff needs to be even higher. Thus, the
main effect of including the CMB prior in our fit with PRIMAT rates is to increase
Neff slightly. The constraints one finds are:

Ωbh
2 = 0.02220± 0.00017 , [YP +D/H|P + CMB (4.25a)

Neff = 2.95± 0.13 , EMPRESS + Planck] (4.25b)

which is in good agreement with ∆Neff = 0 , but increase the overall tension with
observations as evidenced by the higher χ2

min = 12.2 for this fit.
The same overall behavior of the constraints when choosing a different set of

reaction rates is exhibited when using the PDG-22 prior for YP . In that case,
though, the only tension that needs to be resolved is that in Ωbh

2. Thus, in the
BBN only case we expect values for Neff close to 3, and slightly higher when adding
the Planck prior. More concretely, we find:

Ωbh
2 = 0.02234± 0.00017 , [YP +D/H|P + CMB (4.26a)

Neff = 3.09± 0.12 , EMPRESS + Planck] (4.26b)

These constraints, while still in agreement with ∆Neff = 0, allow values as high
as ∆Neff = 0.17. On the other hand, we have seen that resolving the EMPRESS
anomaly with this parameter would require values as low as ∆Neff = −0.85.
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Bounds on the Effective Number of Neutrino species from BBN and CMB Data
YP Data Sets Nuclear Rates Ωbh

2 Neff χ2
min

EM
PR

ES
S

YP +D/H|P
PArthENoPE 0.02103± 0.00054 2.41± 0.22 0

PRIMAT 0.02067± 0.00046 2.41± 0.22 0

YP +D/H|P + Planck
PArthENoPE 0.02222± 0.00017 2.81± 0.13 5.5

PRIMAT 0.02220± 0.00017 2.95± 0.13 12.2

PD
G

-2
2 YP +D/H|P

PArthENoPE 0.02201± 0.00053 2.93± 0.21 0
PRIMAT 0.02165± 0.00044 2.94± 0.21 0

YP +D/H|P + Planck
PArthENoPE 0.02236± 0.00017 2.98± 0.13 0.4

PRIMAT 0.02234± 0.00017 3.09± 0.12 4.8

Table 4.3: Summary of constraints on the Baryon density, Ωbh
2, and the effective

number of neutrino species, Neff , from BBN and CMB data, independently and
combined, for two possible choices of the nuclear reaction rates. See main text for
details.

4.3.2 Light Scalar as Dark Radiation

Regardless of the prior chosen for BBN, the presence of another neutrino species,
for example a sterile neutrino, is severely constrained, since a sterile neutrino with
a normal mixing angle would increase Neff by 1. In order to understand how even
a fractional and small value for ∆Neff < 1 might still be of interest, we will look
concretely at an example of how new Physics might alter it. For simplicity, let us
assume the case of a light real scalar particle χ with mass mχ � 1MeV that only
very weakly interacts with the Standard model and does predominantly decay to
channels other than electrons and neutrinos. Thus, its only influence on BBN is
through its gravitational presence, namely its energy density.

It is produced thermally in the early Universe through the freeze-out mechanism.
Given its weak interaction with the SM, it is no longer in equilibrium with the
thermal bath of photons. We will assume its decoupling happens at a temperature
TD � 1MeV. Given that it remains relativistic until BBN, its energy density has
the following form:

ρχ =
π2

30
T 4
χ = ργ(T ) ·

(
Tχ

T

)4

(4.27)

The derivation for the temperature ratio is analogous to the case of neutrinos
assuming complete decoupling, so that we find:

Tχ

T
(T ) =

(
gSMeff (T )

gSMeff (TD)

) 1
3

=

(
gSMeff (Tν,f )

gSMeff (TD)

) 1
3

·
(

4

11

) 4
3

(4.28)

which can be directly inserted into the energy density. The energy density in form of
radiation at the epoch of BBN now contains contributions from photons, electrons,
neutrinos and χ. This can now directly be inserted into the generalized definition
of Neff (Eq. 3.47) to find:

Neff =
8

7

(
11

4

) 4
3
(
ρν + ρχ

ργ

) ∣∣∣∣
T0

(4.29)
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From this equation, one can easily obtain that:

∆Neff =
8

7

(
11

4

) 4
3
(
ρχ
ργ

) ∣∣∣∣
T0

=
4

7

(
11

4

) 4
3

·
(
Tχ

T

)4

=
4

7
·
(
Tχ

Tν

)4

(4.30)

The precise contribution from such a particle therefore depends only on the ratio of
the photon to χ temperature, which in turn depends on the details of the particle’s
decoupling which is directly related to the interaction strength of the particle. Thus,
by constraining ∆Neff , we can directly constrain 〈σv〉and the particle’s mass.

Depending on the exact value of 〈σv〉, the contribution to ∆Neff varies greatly.
The smallest contribution it will give is if χ decouples before the electroweak phase
transition at TD ≥ 100GeV. Then gSMeff = 106.75, so the minimal contribution to Neff

would be ∆Nmin
eff = 0.02. One obtains the maximal contribution if Tχ

T
= Tν

T
, yielding

∆Nmax
eff = 4/7. The maximal value allowed by the constraints just derived from

BBN is ∆Neff = 0.17, which would imply Tχ

T
' 0.15, which places its decoupling

close to the QCD phase transition at TQCD ' 160MeV. The exact constraints one
can extract from this now depend on the dynamics of decoupling for the chosen
model. The point, however, is that even a slight deviation from the standard value
might be an indication of new physics.

4.3.3 ∆Neff < 0

A light scalar is just one of many options to increase Neff . However, we have
seen that in order to resolve the tension with the EMPRESS anomaly, we require a
value for Neff < 3. We have obtained this by blindly varying the parameter without
regard for the physical implications. This would be okay if we did not know how
many neutrino families there are. However, it is long known that there are at least
three species. Depending on their exact interaction with the Standard Model and
each other, as well as their masses, this might still not be a problem. For example,
if one neutrino were massive enough that it is Boltzmann suppressed, or if it had
a mixing angle with other species such that it is not in thermal equilibrium with
them, Neff could still be lower than 3.

This is no longer an option, given the measurements on the neutrino mixing
parameters and their mass. The formula for the neutrino contribution to Neff ,
therefore, looks as follows:

Nν
eff = 3 · 8

7

(
11

4

) 4
3

· ρ
1
ν

ργ
(4.31)

where ρ1ν is the contribution to ρ from one neutrino species. Thus, if we want
N ν

eff < 3 we either need to decrease that contribution or reheat the temperature of the
photon bath. Both of these modifications are possible, but they require additional
interactions with the plasma. This is different from the assumptions under which
we have derived the constraints on N ν

eff and, even if we manage to obtain Neff < 3,
it is not necessary that this will actually decrease the Helium abundance and solve
the EMPRESS anomaly. Models that decrease Neff need to be evaluated on a case
to case basis in order to assess how this influences BBN.
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One option to obtain Neff < 3 is to increase the photon energy density relative to
that of neutrinos. Since neutrino interactions keeping them in thermal equilibrium
with photons are efficient until about ∼ 10− 1MeV, this class of models generally
requires reheating to happen in some form for temperatures below the neutrino
decoupling temperature or close to it, but not too close in order not to affect the
events of Nucleosynthesis too much. Studying such models with a low reheating
temperature would go beyond the scope of this thesis, but the reader is referred to
[61, 62] for dedicated studies of this topic.

These studies show that, while a low reheating temperature can be very efficient
in decreasing Nν

eff to values much lower than 3, they actually increase the final
Helium abundance and decrease the Deuterium abundance. Thus, regardless of the
choice of nuclear reaction rates, this actually increases the tension for Helium, and
for the PRIMAT rates it simultaneously increases the tension with the ΛCDM model
coming from Deuterium.

Another class of models that decrease Neff are MeV-scale electrophilic particles,
that is, particles with masses ∼ O(MeV) whose predominant annihilation channel
is to electron positron pairs. This will naturally have severe consequences on Nucle-
osynthesis. Dedicated studies ([63, 64] find, similarly to low reheating temperature
scenarios, that the Helium abundance actually increases, despite having ∆Neff < 0.
Therefore, even though in principle there are models that can decrease the number
of effective neutrino species, none of them actually have the desired effect of reducing
the Helium abundance during BBN.
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Chapter 5

Time Variation of Fundamental
Constants

There is one further possibility that we have not yet considered to obtain ∆Neff <
0, although it is not clear a priori whether it is more sensible. Neff is used to
parametrize changes in the Hubble expansion rate, which is dependent on three
things. The first is what we have already studied, namely the total energy density
of the Universe. The second is Einstein’s theory of relativity, from which the form
of the Friedman equation we have solved to obtain the dynamics of the background
expansion has been derived. Modified theories of gravity may change the form of
this equation. The success of the standard cosmological model up to now constrains
these changes to be rather small, but that does not discard them, especially at the
early times probed by Nucleosynthesis. Last, but not least, if we do not modify the
Friedman equation, then H ∝ 1

MPl
=
√
GN . Thus, a change in the Hubble expansion

rate can also be accounted for by a change in Newton’s constant GN .
On the other hand, GN can be measured in the laboratory to be GN = (6.674 30±

0.000 15)m3/(kg s2), that is, with orders of magnitude better accuracy than what can
be obtained from BBN. Therefore, GN is, in principle, not allowed to float freely
and these constraints make no sense if interpreted like this. However, we know
that many constants have a running with energy due to quantum effects. One is,
therefore, left to wonder whether constants may not also vary with time.

The idea is not new and dates back at least as early as 1937, when Dirac proposed
his large number hypothesis [65], which implied that GN should be time dependent.
The framework that would allow these constants to vary with time within a consis-
tent field theory was developed shortly after by Jordan [66]. Generally, this requires
to promote the constants to be related to dynamical scalar fields and their vacuum
expectation value.

5.1 The Gravitational Constant

The specific case of theories where only GN is time dependent was more closely
studied by Brans and Dicke in the context of extensions to General Relativity, lead-
ing to the definition of scalar tensor theories of gravity [67]. Such modifications to
gravity arise quite naturally in Unified theories, such as Kaluza-Klein and String
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theory. Thus, constraints on GN at the epoch of BBN can be interpreted as con-
straints on its variation with cosmological time, which in turn may help constrain
alternative theories of gravity.

This is not the only way to constrain the time variation of GN , see for example [68]
for an excellent review on these constraints and anything related to time variation
of fundamental constants. Constraints from BBN are not only competitive with
them, but BBN is the earliest probe of the Universe available to us at the moment.
Therefore, it is of paramount importance to constrain the time variation of these
”constants” during BBN.

It should be noted that talking about a time variation of a dimensionful quantity
is not consistent, since it requires a system of units whose definition is dependent on
other constants of nature which may themselves vary with time. Therefore, it only
makes sense to talk about time variation of dimensionless constants or, in its absence,
of ratios of dimensional constants. Regardless, it is very important to always very
precisely explain which constants are promoted to be allowed a time dependence
and which are not. Only within that precisely defined metrological system does it
make sense to allow a time variation of constants. Concretely, we will focus on a
situation where we allow GN to vary, but all particle physics energy scales like ΛQCD

and the Higgs vacuum expectation value v are held fixed at their value today.
With that setup, we can now begin talking about the BBN constraints on time

variation of fundamental constants. The nice thing about having used the effective
degrees of freedom before is that, instead of having to do a dedicated analysis to
answer this question, we can simply recast the constraints on ∆Neff in terms of GN .
In order to do so, let us define

α =
∆GN

G0
N

(5.1)

where G0
N is the value we have used up to now for Newton’s constant, that is its

value as measured today. This allows us to write the Hubble rate as:

H = 1.66

√
ge,SMeff T 2 ·

√
GN = H(T )SM ·

√
1 + α (5.2)

from which we obtain the relation:

α =

(
H

HSM

)2

− 1 (5.3)

If we now parametrize H in terms of ∆Neff , we find that:

α =
∆GN

G0
N

=
7

43
∆Neff (5.4)

With this equation, we can quite simply obtain the dependence of the abundances as
a function of the variation of GN , which is shown in terms of the ratio GN

G0
N

on Figure
5.1 for both PArthENoPE and PRIMAT rates, with the left panel showing the
dependence of Helium and the right panel that of Deuterium. Since ∆GN

G0
N
∝ ∆Neff ,

the correlation between GN and helium and Deuterium is the same, that is, an
increase in GN implies an increase in the Hubble expansion rate, which results in
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Figure 5.1: Primordial Helium mass fraction, YP , (Left) and Deuterium to Hydrogen
ratio, D/H|P , (Right) as a function of the ratio between the Gravitational constant
at BBN and today GN

G0
N

for Ωbh
2 = 0.02242 and both choices of nuclear rates. The

green bands correspond to the PDG-22 prior on YP and D/H|P , where as the yellow
band corresponds to the EMPRESS prior on YP .

an increased production of Helium and Deuterium. The exact dependence of the
abundances on the variation of Newton’s constant can be parametrized as:

YP = YP,ref ·
(
GN

G0
N

)0.335

(5.5a)

D/H|P = D/H|P,ref ·
(
GN

G0
N

)0.835

(5.5b)

Using Eq. 5.4, we can now recast constraints on ∆Neff in terms of GN . The results
are summarized on Table 5.1 and shown on Fig. 5.2. The most important difference
between this figure and Fig.4.6 is the prior used to constrain Ωbh

2. Simply using
the prior for Neff at the epoch of BBN and the epoch of the CMB is not consistent.
However, the strong correlation between these two parameters implies that simply
using the constraint for Ωbh

2 from eq. 2.14 will likely overestimate the sensitivity
to GN . Following [69], we will therefore use the slightly more conservative prior on
Ωbh

2

Ωbh
2 = 0.02236± 0.00030 (5.6)

obtained from [70] by allowing GN to vary in CMB fits and then marginalizing over
GN .

The preference for Neff < 3 obtained from the BBN only constraints with the
EMPRESS prior for YP with PArthENoPE rates is equivalent to:

∆GN

G0
N

= −0.104± 0.035 (5.7)

corresponding to a 2.9σ preference for a non-standard value of Newton’s constant,
relatively lower by almost 10%, at the epoch of BBN. On the other hand, if we use
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and Ωbh
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PDG-22 (dashed) prior on YP for PArthENoPE rates. An additional conservative
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2 (Eq. 5.6, see text for details) is used to increase the sensitivity.
Right Same contours using only the EMPRESS prior on YP , but adopting also the
PRIMAT rates(red/orange).

the PDG prior and the PArthENoPE rates, we find:

∆GN

G0
N

= −0.019± 0.034 (5.8)

which is indeed compatible with α = 0.
Since we are allowing Ωbh

2 to float in this case, there is actually no difference
arising from the choice of nuclear rates. This is because the Deuterium abundance
essentially fixes the value for Ωbh

2, while the prior on YP is responsible for the
constraint on GN , for which the choice of rates does not play a significant role.

When constraining the baryon density to its CMB value, however, the prediction
needs to be fit to data mainly by tuning GN , which will increase our sensitivity to
it. By constraining Ωbh

2, we are essentially fixing D/H|P to be within a very small
range. Regardless of the prior on YP , they require GN < G0

N , albeit to different
degrees. However, this also decreases the deuterium production. Since this cannot
be compensated by tuning Ωbh

2, the deuterium abundance fixes the value of GN to
be close to its value today as well. Thus, regardless of the prior on YP , when lifting
the degeneracy between Ωbh

2 and GN , the preference for α 6= 0 decreases and the fit
becomes worse as χ2

min increases. Naturally, since deuterium now plays the central
role in the constraints obtained, the choice of rates will also have a strong effect on
the obtained constraints.

Concretely, we find for the EMPRESS prior:

PArthENoPE :
∆GN

G0
N

= −0.056± 0.029 (5.9a)

PRIMAT :
∆GN

G0
N

= −0.023± 0.026 (5.9b)
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which increases the sensitivity of the constraints by about 20%. Additionally, this
still corresponds to a 1.9σ preference for ∆GN

G0
N
6= 0 for PArthENoPE rates. On

the other hand, there is no preference in the case of PRIMAT rates as they are
in agreement with ∆GN

G0
N

= 0 at < 1σ. The reason the preference is stronger for
PArthENoPE rates is because the prior on Ωbh

2 is less of a problem for this choice,
as they are not in tension with the CMB prior. As a result, the deuterium abundance
can be decreased by a larger margin before it generates a tension with the observed
abundance. Thus, α can get closer to the value required to solve the Helium tension.
However, as evidenced by the large value of χ2

min, the lack of preference for a non-
standard value of GN should not be mistaken by a reduction of the tension between
observations and data.

If instead we use the PDG-22 prior for YP , we find:

PArthENoPE :
∆GN

G0
N

= −0.007± 0.028 (5.10a)

PRIMAT :
∆GN

G0
N

= 0.014± 0.025 (5.10b)

which shows no preference for α 6= 0.
In order to interpret these results as a time variation of GN and compare them

to other measurements, we need to parametrize its time dependence. Following [69],
we choose to parametrize it in the simplest way possible as a linear function of time:

GN(t) = GBBN
N + ĠN(t− tBBN) (5.11)

The entire time variation is contained in ĠN , which can be simply obtained
comparing GBBN with another reference time at which the value of GN is known.
We choose this to be the present time t0 = 13.8Gyr. This weak time variation
justifies the assumption that GN is constant during the relatively short time period
of BBN. Using our parametrization of GN(t), for the PDG-22 prior with a constraint
on Ωbh

2 we find for the logarithmic time variation:

PArthENoPE :
ĠN

G0
N

= (0.5± 2.0) · 10−12 yr−1 (5.12a)

PRIMAT :
ĠN

G0
N

= (−1.0± 1.8) · 10−12 yr−1 (5.12b)

The sensitivity to variations of this constant from BBN is comparable to most other
experiments, showing the potential of BBN to obtain powerful constraints on new
Physics. The only measurement notably more sensitive is one using data from lunar
laser ranging experiments, which reports ĠN

G0

∣∣
0
= (7.1± 7.6) · 10−14 yr−1 [71].

We obtain the following constraints on the relative time variation:

ĠN

G0
N

= (7.5± 2.6) · 10−12 yr−1 (5.13)

for the BBN only prior the EMPRESS value for YP . Thus, within the framework
of time dependent fundamental parameters, the EMPRESS anomaly could be in-
terpreted as a 3σ indication that the gravitational constant varies ever so slightly
every year, showing a possible deviation from Einstein’s theory of relativity.
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Constraints on the time variation of the Gravitational Constant from BBN
YP Data Sets Nuclear Rates α = ∆GN

G0
N

ĠN

G0
N
[10−12 yr−1] Pref α 6= 0 χ2

min
EM

PR
ES

S

YP +D/H|P
PArthENoPE −0.104± 0.035 7.5± 2.6 2.9σ 0

PRIMAT −0.104± 0.035 7.5± 2.6 2.9σ 0

YP +D/H|P + Ωbh
2|Planck

PArthENoPE −0.056± 0.029 4.1± 2.1 1.9σ 4.4
PRIMAT −0.023± 0.026 1.7± 1.9 0.9σ 9.1

PD
G

-2
2 YP +D/H|P

PArthENoPE −0.019± 0.034 1.3± 2.5 0.5σ 0
PRIMAT −0.017± 0.034 1.2± 2.5 0.5σ 0

YP +D/H|P + Ωbh
2|Planck

PArthENoPE −0.007± 0.028 0.5± 2.0 0.3σ 0.3

PRIMAT 0.014± 0.025 −1.0± 1.8 0.6σ 1.8

Table 5.1: Summary of constraints on the time variation of the Gravitational con-
stant from several combinations of BBN data and two possible choices of the nuclear
reaction rates. See main text for details.

However, comparing the required variation with lunar laser ranging constraints, it
seems that an interpretation of the EMPRESS anomaly in terms of a time dependent
gravitational constant would be ruled out. It should be noted, however, that this
measurement has been obtained from an analysis of data taken over a period of 35
years. While relatively long for normal experiments, this measurement has still been
taken over a short period of time, whereas the constraints from BBN come from a
variation on cosmological time scales. Thus, the parametrization we choose for the
time dependence of GN very strongly influences the constraints obtained.

For example, if instead of a linear parametrization we choose GN ∝ t−x, then the
resulting constraints are of the order of 10−13 and no longer in tension with the lunar
laser ranging experiments. Thus, even though for comparison with other literature
we still include the limits in terms of ĠN

GN
, both claims of detection as well as that

these constraints are ruled out, should be made with caution and constraints on
the time variation of fundamental constants on cosmological timescales should be
treated as such.

Additionally, while a variation of Newton’s constant helps with the EMPRESS
anomaly, it does not really solve the possible tensions within the standard model of
cosmology, since the prior on Ωbh

2 worsens the fit with data.
Despite these caveats, the EMPRESS anomaly may indeed have an interpretation

in terms of modified theories of gravity. Studying these lies beyond the scope of this
thesis, but merits further investigation left for future work.

5.2 Higgs Vacuum Expectation Value

Theories where fundamental constants are allowed to vary, generally require fun-
damental constants to be related to a scalar field and their Vacuum Expectation
Value (vev). To the best of our current knowledge, the only scalar field contained
in the standard model is the Higgs field, which acquires a vacuum expectation value
leading to the electroweak phase transition during which the fields in the SM become
massive. Thus, we have a prime candidate for a fundamental constant which fulfills
the requirements to be time dependent. Just as was the case for the gravitational
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constant, v is dimensionful. Therefore, we will allow the Higgs vev to vary while
keeping the scale of the strong interaction, ΛQCD, fixed, at its value today

Unlike for the Gravitational constant, however, there are far few constraints on
this parameter. The few constraints that can be derived mainly come from studying
the aftermath of natural nuclear reactors which went critical billions of years ago. An
example is the natural nuclear reactor in a uranium mine close to Oklo in the Gabon
Republic[72], which went critical about 1.8Gyr ago, but more have been discovered
since. From the abundances of certain isotopes, one can extract key quantities
which, among other quantities, depend also on the Higgs vacuum expectation value.
However, these require a detailed model of the nuclear reaction rates, which is a
very challenging task, making constraints derived from these data on v highly model
dependent.

Additionally, one can obtain constraints from precise measurements of long lived
α and β decays in ancient meteorites. The resulting constraints are similar to
those from the Oklo phenomenon and suffer from the same problems of the model
dependence, with additional uncertainty coming from the dating of the meteorites.

On the other hand, the dependence of BBN on the Higgs vev, while still in-
volved, is less model dependent than that of Oklo and meteorite constraints, since
modifications to the nuclear reaction rate network play only a secondary role [73].
Additionally, BBN allows us to probe variation of v at the longest time scale possi-
ble. With the recent developments in the theoretical description of BBN as well as
improvements in the observational abundances, BBN presents itself as one of the key
physical processes where variations of the Higgs vev can be tested to high precision.

In principle,the Higgs vev modifies many different parameters of importance for
BBN, since it influences the masses of all fermions and sets the scale of the weak
rate at the time of BBN, which as we know is of great importance, both for neutrino
decoupling and for the neutron to proton freeze-out. Out of these, the most signifi-
cant modification comes through four parameters, namely Fermi’s constant GF , the
electron mass me, the nucleon mass difference Q = mn − mp, and the deuterium
binding energy BD.

In order to obtain the influence of the modification of these parameters through
the Higgs vev on the final nuclear abundances, we have written a python code
that solves the Boltzmann equations describing the process of nucleosynthesis (Eq.
3.106a ) using the reduced network from Fig. 3.4 with the PRIMAT choice of nuclear
reaction rates. The effect on the final abundances from variations of v, as we will
see, is mainly on the weak rates, which requires that they be recomputed for every
new value of the Higgs vev. Calculating them including the long list of corrections
detailed in [20] is computationally very expensive. Additionally, making a prediction
that is accurate within the theoretical uncertainties of deuterium would require us
to include a much more extensive nuclear network.

We need to take both of these effects into account if we want to make predictions
at more than 1% precision, which is what we need in order to make correct state-
ments on the compatibility of these scenarios with a time variation of the Higgs vev.
However, corrections to the weak rates are of the order of a few percent only already,
so we should be able to safely ignore the effect of tiny variations of fundamental con-
stants on these corrections. Additionally, the variation of v does not influence the
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rest of the reaction network. It suffices, therefore, to calculate the abundances in
the Born approximation, assuming complete neutrino decoupling and with only the
small reaction network made up of 12 reactions, where the effect of variations of
the fundamental constants is the strongest, and then simply add the effect of each
correction as detailed in [20] linearly, that is:

YP (v) = Y Born+SN
P (v) + δY weak rates,FN

P (5.14a)
D/H|P = D/H|Born+SN

P (v) + δD/H|weak rates,FNP (5.14b)

whereδY weak rates,FN
P = 0.00447 and δD/H|weak rates,FNP = 0.04 . This wil allow for

a much faster computation of the final results without compromising on a precise
determination of the final abundances.

For Deuterium there is the additional complication that the choice of nuclear rates
has a strong effect. Instead of implementing both the PArthENoPE and PRIMAT
rates, we adopt a similar method to take this into account, where we modify the
deuterium abundance as follows:

D/H|P = D/H|Born+SN
P (v) + δD/H|weak rates,FNP + δD/H|nuclear ratesP (5.15)

with δD/H|nuclear ratesP = 0.07 if we choose the PArthENoPE rates, while, naturally,
δD/H|nuclear ratesP = 0 for PRIMAT rates.

We have checked that both of these approximmations are actually accurate to
better than 0.1% for the parameters studied up to now, namely τn,Ωbh

2, Neff ,as well
as for the neutrino chemical potential ξν we will introduce later. This is supported
by the fact that, while the face value of the final abundances does change depending
on the choice of rates, the parameters of the fit actually vary only very slightly, if
at all. Therefore, we will use this approximation in order to derive BBN constraints
on the time variation of the Higgs vev.

5.2.1 Fermi’s Constant

The modification of Fermi’s constant GF is perhaps the most obvious parameter
that is modified when varying v, since at tree level, is quite simply related to it as:

GF =
1√
2v2

(5.16)

Thus, it is clear that it will be very sensitive to any change in GF . The impact of
this on Nucleosynthesis is just as easily understood. The weak reaction rates Γn↔p

that determine the neutron to proton freeze-out and which are extremely important
for Nucleosynthesis in general are ∝ G2

F , as we can see from eq. 3.77. This implies
that:

δΓn↔p

Γ0
n↔p

= 2
δGF

G0
F

(5.17)

which is quite a strong dependence. A relative increase in GF therefore implies an
increase in the neutron to proton conversion rates, which pushes the temperature
of the neutron to proton decoupling towards lower values, implying a relatively
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Figure 5.3: Primordial Helium(Left) and Deuterium(Right) abundance as a func-
tion of the relative variation of the fundamental constants most affected by a time
variation of the Higgs vev, namely Fermi’s constant, GF , the electron mass, me, the
Deuterium Binding Energy BD, and the nucleon mass difference, Q. The final abun-
dances have been calculated from the weak rates in the Born approximation and the
reduced nuclear network from Fig. 3.4, assumingNeff = 3.043 and Ωbh

2 = 0.02242
and the PRIMAT nuclear reaction rates.

lower abundance of neutrons at freeze-out. On the other hand, this implies that the
neutron lifetime is shorter than the standard value, which has the same effect of
reducing the number of free neutrons at the onset of nucleosynthesis, which implies
a significant decrease of both the Helium and deuterium abundances.

Additionally, this will also affect the process of neutrino decoupling, which is also
governed by the weak rates. However, complete neutrino decoupling will not be
affected by this and, since incomplete neutrino decoupling only very weakly affects
the outcome of BBN, these effects will most likely be only very weak.

In the Born approximation, the dependence of the primordial abundances as a
function of the relative increase in GF is shown as the solid red line on Fig. 5.3,
with the left panel displaying the final Helium and the right panel the Deuterium
abundance, confirming what we expected. This dependence can be parametrized as:

YP = YP,ref ·
(
GF

G0
F

)−1.458

(5.18a)

D/H|P = D/H|P,ref ·
(
GF

G0
F

)−0.833

(5.18b)

We see that the dependence on GF is quite strong for both nuclei, so slight varia-
tions in GF will have harrowing effects on the final abundances. Additionally, the
dependence of YP is stronger, which is to be expected given that the Helium abun-
dance is almost completely determined by the neutron abundance at the onset of
nucleosynthesis, which is directly related to Γn↔p ∝ G2

F .
Since we already know that GF is not a fundamental parameter, but rather an

EFT coupling constant which is related to the Higgs vev, it only makes sense to
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vary it as function of the Higgs vev. Given the simple relation between GF and v,
its variation is quite simple to obtain. We define the relative variation of the Higgs
vev as:

αv =
δv

v0
(5.19)

such that GF can be parametrized as follows:

GF/G
0
F = (1 + αv)

−2 (5.20)

Thus, an increase in the Higgs vev will lead to a decrease in Fermi’s constant,
resulting in higher Helium and Deuterium abundances. Inserting this into Eq. 5.18
and expanding around small values of α, we find:

YP = YP,ref · (1 + 2.916αv) (5.21a)
D/H|P = D/H|P,ref · (1 + 1.666αv) (5.21b)

5.2.2 Electron Mass

The value of the electron mass affects the process of nucleosynthesis in many
ways, namely through the electron energy density and pressure, which affects the
background thermodynamics. However, in [74] it was found that this effect is sub-
leading and that, for small variations of me, the main effect is through the weak
rates. While the normalization constant of the weak rates K ∝ m5

e, we need to
remember that this is only an artifact of choosing to parametrize the phase-space
integral in terms of the dimensional constant ε = Ee

me
. Thus, the main effect of me

on the weak rates is through the overall phase-space of the interaction. An increase
in me decreases the available phase-space of these reactions, leading to an earlier
freeze-out and, consequently, a higher abundance of neutrons at the onset of nucle-
osynthesis, which implies an increase in the overall abundances of both Helium and
deuterium. as can be abstracted from the green line on Fig. 5.3. The parametric
dependence of the abundance to changes in the electron mass is found to be:

YP = YP,ref ·
(
me

m0
e

)0.484

(5.22a)

D/H|P = D/H|P,ref ·
(
me

m0
e

)0.288

(5.22b)

As we can see, both abundances only very weakly vary with the electron mass and
are positively correlated, as expected.

The dependence on the Higgs vev is, again, quite straightforward, since this is a
purely electroweak phenomenon. The electron acquires its mass through the yukawa
coupling of the lepton and Higgs doublet, leading to me ∝ yev, with ye the Yukawa
coupling of the electron, after electroweak symmetry breaking. We are currently
assuming that only the Higgs vev is allowed to vary with time, such that:

δme

m0
e

=
δv

v0
(5.23)

Therefore, by replacing me = m0
e · (1 + αv) in our numerical code we obtain the

variation of the abundances with the Higgs vev due to its effect on the electron
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mass. Given this simple relation between me and v, we also know that the effect of
varying the vev is the same as that of varying the electron mass, and we can quite
simply obtain:

YP = YP,ref · (1 + 0.484αv) (5.24a)
D/H|P = D/H|P,ref · (1 + 0.288αv) (5.24b)

which is a much weaker dependence than on a variation of Fermi’s constant.

5.2.3 Nucleon Mass Difference

Not only leptons obtain their masses through the Higgs mechanism, but all
fermions, which naturally includes the quarks that make up the nucleons. Thus,
their mass is likewise influenced by changes of the Higgs vev. Slight changes to the
absolute value of their masses does not notably affect BBN, but the final abundances
are extremely sensitive to their mass difference Q = mn−mp. It affects the produc-
tion of nuclei mainly the neutron to proton ratio at freeze-out, which in equilibrium
and assuming a negligible chemical potential is given by:

nn

np

= e−
Q
T (5.25)

Since both deuterium and Helium are highly sensitive to the neutron to proton ratio
at freeze-out, we expect them to be very sensitive to Q. From this equation, we also
see that an increase in Q implies a decease of the neutron to proton ratio, which in
turn implies a decrease of both the final Helium and Deuterium abundance, as we
can also see from the black line on Fig. 5.3. Concretely, we find:

YP = YP,ref ·
(

Q

Q0

)−3.062

(5.26a)

D/H|P = D/H|P,ref ·
(

Q

Q0

)−1.845

(5.26b)

Since protons are composite particles bound by the strong force, the relation be-
tween the neutron and proton mass difference and the Higgs vev is slightly more com-
plicated, but can be predicted with relatively low uncertainty nonetheless. The mass
difference between the nucleons can be traced back to two contributions, namely the
difference in the electromagnetic contribution to their self energy, which is propor-
tional to the fine structure constant αEM and ΛQCD and the mass difference between
the u and d quarks, which depends on the Yukawa couplings of the up and down
quark and the Higgs vev. Following [75], we parametrize both contributions to Q lin-
early. Additionally, since we only allow the Higgs vev to vary, we find the following
relation:

δQ

Q0

= 1.587
δv

v0
(5.27)

or equivalently:
Q = Q0 + 2.053

δv

v0
(5.28)
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Therefore, an increase in the Higgs vev will lead to a strong modification of the
nucleon mass difference and decrease both the Helium and Deuterium abunance.
Especially Helium is extremely sensitive to modifications of this value, and it is
actually the strongest effect which will dominate the outcome of any variation. If
we insert this into equation 5.26 and expand around αv � 1, we find:

YP = YP,ref · (1− 4.920αv) (5.29a)
D/H|P = D/H|P,ref · (1− 2.933αv) (5.29b)

5.2.4 Deuterium Binding Energy

Last, but not least, the deuterium binding energy is also affected by a variation
of the Higgs vev through the pion mass. Following Yukawas theory of nuclear
interactions, the pion is the particle exchanged during interactions of the nuclear
force and, as such, sets the length scale of attractive nuclear forces, as evidenced
by the exponential dependence of the attractive Yukawa potential on the exchange
particle’s mass.

The effect of a variation of the deuterium binding energy on the final abundances
is mainly through the deuterium photodissociation rate, which is exponentially sup-
pressed by the binding energy ∝ e−

BD
T . This reaction regulates the deuterium

abundance and determines the onset of nucleosynthesis. This reaction requires the
presence of a large amount of highly energetic photons in the Wien tail of the distri-
bution. Once this is no longer the case, it stops being efficient and nucleosynthesis
begins.

If the deuterium binding energy increases, the temperature at which this con-
dition is no longer met increases and nucleosynthesis begins earlier, leading to a
higher final Helium abundance as less neutrons decay to protons before being cast
into Helium. On the other hand, an earlier onset of nucleosynthesis not only implies
that the DD-reactions depleting deuterium are efficient for a longer time, but also at
higher temperatures where they are stronger, since the higher temperature implies
that the Coulomb barrier the nuclei need to tunnel through is smaller. Summariz-
ing, an increased binding energy implies an earlier onset of BBN, leading to a higher
value of YP and a smaller final abundance of Deuterium, which is also the behavior
exhibited by the blue line on Fig.5.3. The functional dependence of BBN on these
values can be parametrized as follows:

YP = YP,ref ·
(
BD

B0
D

)0.687

(5.30a)

D/H|P = D/H|P,ref ·
(
BD

B0
D

)−3.579

(5.30b)

Unlike for the other modifications, the Deuterium binding energy most signifi-
cantly influences the final abundance of deuterium. This is to be expected, since
all of the other modifications mainly modify the outcome of the neutron to proton
freeze-out.

Obtaining the dependence of BD on the Higgs vev requires two ingredients,
namely the dependence of BD on a variation of the pion mass and the sensitiv-
ity of the pion mass to changes in v. The latter can be easily obtained to good
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approximation from the Gell-Mann-Oakes-Renner relation, which relates the mass
of the pion to the u and d quark masses and ΛQCD as follows:

m2
π ∝ (mu +md)ΛQCD ∝ v (5.31)

from which we obtain:
δmπ

mπ

=
1

2

δv

v0
(5.32)

The question of how the pion mass influences the binding energy is slightly more
involved and requires a dedicated numerical study. These studies find that a linear
dependence of the deuterium binding energy on small variations of the pion mass of
the kind we are interested in at present, are a good fit to the data. Following [13],
we parametrize the dependence as follows:

δBD

B0
D

= r · δmπ

m0
π

=
r

2
· δv
v0

(5.33)

with −10 ≤ r ≤ −6. There are some caveats to this parametrization, as detailed in
[13], but for our purposes and the small variations of the Higgs vev we are interested
in, these do not play a major role [74]. For all further calculations, we have chosen
the mean, r = −8.

Thus, an increase in the Higgs vev leads to a significantly strong modification
towards lower values of the Deuterium Binding energy, such that its net effect on
nucleosynthesis through BD is to decrease Helium production and increase the deu-
terium abundannce. The strong dependence of Deuterium on BD and the latter’s
strong variation with the Higgs vev implies that deuterium will be dominated by
the effect of a change in the Binding energy, contrary to what was argued in [76,
77]. Expanding around small variations of the Higgs vev we find:

YP = YP,ref · (1− 2.748αv) (5.34a)
D/H|P = D/H|P,ref · (1 + 14.316αv) (5.34b)

which confirms how strongly Deuterium depends on the Higgs vev through its bind-
ing energy.

To summarize, we find the following dependence on the four main parameters
that are affected by a variation of the Higgs vev and that notably influence the
outcome of nucleosynthesis:

YP = YP,ref ·
(
GF

G0
F

)−1.458(
me

m0
e

)0.484(
Q

Q0

)−3.086(
BD

B0
D

)0.687

(5.35a)

D/H|P = D/H|P,ref ·
(
GF

G0
F

)−0.833(
me

m0
e

)0.288(
Q

Q0

)−1.848(
BD

B0
D

)−3.579

(5.35b)

Comparing the effect of a variation in these parameters with others obtained
before, we see that the dependence of the final abundances on these parameters
is much stronger than on, for example, the effective number of neutrino species,
showing how sensitive BBN is to even small variations on fundamental parameters.
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In order to obtain the variation of the SM Higgs vev, we need to allow all of these
parameters to collectively vary as a function of v. This is done by implementing
the changes of Eqs. 5.20, 5.23 , 5.28 and 5.33 in the code used to obtain the final
abundnances. However, it should be noted that for other mechanisms which endow
the Standard model with a more complex and phenomenologically rich scalar sector,
like for example two Higgs doublet models, these variations need may be independent
from each other to some extent. Studying the effect of extensions to the scalar sector
on primordial nucleosynthesis would lie beyond the scope of this thesis, but is an
interesting prospect left for future work.

5.2.5 Variation of the Higgs Vacuum Expectation Value

For now, we will stick to the SM scenario where there is only one Higgs and one
vev. In that case, we see that while the effect of every single variation by itself is
very strong, they can counteract each other. The actual outcome is the result of
a fierce competition between the different effects. Using the linear expansions in
terms of αv of Eqs. 5.21, 5.24, 5.29 and 5.34, we can quantify this competition. For
Helium, we find:

YP

YP,ref

= 1 + αv · (cGF
+ cme + cQ + cBD

)

= 1 + αv · (2.916 + 0.484− 4.920− 2.748) = 1− 4.2677αv (5.36)

We see that the effect of Fermi’s constant and the Deuterium binding energy on the
fina Helium abundance almost cancel each other. The effect of the electron mass
is only subdominant and the final abundance is actually mainly dictated by the
variation of Q. Therefore, Helium is anticorrelated with a variation of v, since it
increases Q which in turn reduces the final Helium abundance. The left panel of
Fig. 5.4 shows the Final Helium mass fraction as a function of the relative variation
of v. We see that, indeed, this effect dominates and that YP and v are negatively
correlated with a very strong dependence, such that YP is sensitive to variations
on the Higgs vev at the order of 1%. This is much stronger than for example on
variations of the neutron lifetime or the effective number of neutrino species.

For small variations of v, the Helium abundance can be fit as follows:

YP = YP,ref · (1 + αv)
−4.421 (5.37)

which is remarkably close to our previous estimate of the exponent −4.2677. Ad-
ditionally, this negative correlation implies that resolving the EMPRESS anomaly
will generally require a value of the Higgs vev that is slightly higher than its value
today.

For Deuterium, there is little room for competition between the different effects.
The linear expansion in terms of αv of Eq. 6.15 looks as follows:

D/H|P
D/H|P,ref

= 1 + αv · (cGF
+ cme + cQ + cBD

)

= 1 + αv · (1.666 + 0.288− 2.932 + 14.316) = 1 + 13.337αv (5.38)

Thus, the incredibly strong dependence on variations of its binding energy overpow-
ers any other effects modifying the final abundance, leading to a strong sensitivity
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Figure 5.4: Primordial Helium mass fraction, YP , (Left) and Deuterium to Hydrogen
ratio, D/H|P , (Right) as a function of the relative time variation of the Higgs
Vacuum expectation value αv = δv

v0
for Ωbh

2 = 0.02242 and Neff = 3.043. For
Helium we only show the PRIMAT rates, as the results for PArthENoPE rates are
identical and for Deuterium we adopt both choices of nuclear rates. The green bands
correspond to the PDG-22 prior on YP and D/H|P , the yellow band corresponds
to the EMPRESS prior.

to variations of the Higgs vev and a positive correlation. This is shown on the right
panel of Fig. 5.4. The dependence of the Deuterium abundance on variations of the
Higgs vev can be parametrized as follows:

D/H|P = D/H|P,ref (1 + αv)
13.580 (5.39)

which is in very good agreement with the linear expansion of eq. 5.38. The strong
sensitivity of the Helium and Deuterium abundances to variations of the Higgs vev
shows the potential of BBN to precisely constrain its dependence with cosmological
time.

5.2.6 Constraints

We will now analyze how scenarios with a time dependent variation of the Higgs
vev are constrained by cosmological data. The above results have been derived
for a fixed baryon density Ωbh

2 = 0.02242. While not decisive for the Helium
abundance, Deuterium production very strongly depends on it. We saw in Sec. 4.1
that deuterium is actually strongly anti-correlated ∝ (Ωbh

2)−1.632. Therefore, the
final deuterium abundance is degenerate with respect to these two parameters, as,
in principle, any increase in the Higgs vev at the epoch of BBN can be compensated
for with a slightly stronger increase in Ωbh

2. Therefore, in order to derive constraints
on the Higgs vev, we also allow the baryon density to float simultaneously.

Assuming no presence of Dark radiation that isNeff = 3.043, we will constrain
αv independently from BBN using the observational abundances of Helium and
Deuterium and subsequently combine these with the Planck prior from eq. 2.16.
By running the analysis using both the EMPRESS prior on YP = 0.2370 ± 0.0034,
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the EMPRESS (solid) or PDG-22 (dashed) prior on YP for PArthENoPE rates.
Right Same contours using only the EMPRESS prior on YP , but adopting also the
PRIMAT rates(red/orange).

as well as the PDG-22 determination YP = 0.245± 0.003, and two different choices
for the nuclear reaction rates, we will additionaly highlight the effect that these two
choices have on the constraints and its interpretation in the context of the Standard
Model of Cosmology and particle physics.

The resulting constraints are summarized in table 5.2, with the corresponding
1σ and 2σ contours are shown on Fig. 5.5. The left panel shows the effect of the
different priors on the constraints using the PRIMAT rates, while on the right panel
we vary the choice of nuclear reactions and focus only on the EMPRESS prior on
YP .

The first thing that becomes apparent when regarding these plots is the strong
correlation between the baryon density and a variation of the Higgs vev. Since
YP only very weakly depends on Ωbh

2, the contour for the BBN only constraints
is essentially determined by the variation of YP . The sensitivity of the constraints
will be comparable to the precision in the observational determination of Helium
σYP
≈ 0.003 for both priors, while the central of both αv and Ωbh

2 will depend on
the central value adopted.

If we use the EMPRESS prior on YP and the PArthENoPE rates, we find:

Ωbh
2 = 0.02427± 0.00082 , [YP +D/H|P (5.40a)

δv

v0
= 0.0100± 0.0032 , EMPRESS] (5.40b)

The lower central value for YP implies that the Higgs vev at the epoch of BBN should
be higher than its value today by almost 1% at a significance of 3.0σ. Assuming,
like for the variation of the Gravitational constant, a linear time dependence v(t) =
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vBBN + v̇ · (t− tBBN), we find a yearly variation of the Higgs vev:

v̇

v0
= (−7.2± 2.3) · 10−13 yr−1 (5.41)

Due to the positive correlation between Ωbh
2 and αv, the baryon density likewise

gets pushed to higher values compared to the SBBN best-fit value 0.02222±0.00040.
Additionally, this strong correlation leads to a loss in sensitivity in the determination
of Ωbh

2. Even with this large uncertainty, this result still implies a 2.2σ tension
with the ΛCDM model of cosmology, even for the PArthENoPE set of rates. This is
because these rates generally lead to an increased production of deuterium, which
given the large value of the Higgs vev required to resolve the tension in YP requires
even larger values of Ωbh

2 to compensate.
On the other hand, when choosing the PDG-22 prior on YP we find:

Ωbh
2 = 0.02267± 0.00072 , [YP +D/H|P (5.42a)

δv

v0
= 0.0022± 0.0030 , PDG− 22] (5.42b)

which is consistent with the ΛCDM model of Cosmology and constrains the time
variation of the Higgs vev to be consistent with its value today at ∼ 0.5%. However,
this is only so because we have allowed the baryon density to freely float, which has
nullified the high sensitivity of deuterium to variations in αv. In order to constrain
it, we will use a prior from the Planck CMB data.

It should be noted that, similarly to the case of a time variation of Newton’s
constant, we need to be careful when using priors from epochs that are separated by
a long time like BBN and the CMB. However, this is only important if a variation
of the Higgs vev strongly affect the power spectrum of the CMB.

This was investigated in [74] , which found that indeed the CMB is influenced by
a variation of the Higgs vev through the electron mass, which affects the thomson
scattering cross section as well as the Helium binding energy, but was found to be
much smaller than its effect on BBN. We will neglect this effect and assume the
prior from Eq. 2.16. Combined with BBN priors and adopting PArthENoPE rates
we find:

Ωbh
2 = 0.02244± 0.00013 , [YP +D/H|P + CMB (5.43a)

δv

v0
= 0.0039± 0.0016 , EMPRESS + Planck] (5.43b)

Constraining the baryon density, we increase sensitivity to αv by a factor of two.
Even though the central value is much lower than from the BBN only determination,
this increased sensitivity implies that data still favor a time variation of the Higgs
vev

v̇

v0
= (−2.8± 1.2) · 10−13 yr−1 (5.44)

which is different from zero at 2.1σ. However, the overall fit to the data decreases
and this determination is inconsistent with the previous determination at 1.7σ, since
the central value is much lower because the degeneracy between Ωbh

2 and αv in
deuterium is broken and αv cannot be pushed to the high values required by YP .
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When choosing the PDG-22 determination of YP , we find:

Ωbh
2 = 0.02244± 0.00013 , [YP +D/H|P + CMB (5.45a)

δv

v0
= 0.0013± 0.0017 , PDG− 22 + Planck] (5.45b)

which is another confirmation of the excellent success of the ΛCDM model of Cos-
mology. Additionally, this strongly constrains the time variation to be

v̇

v0
= (−0.9± 1.2) · 10−13 yr−1 (5.46)

which is consistent with no time variation within the current uncertainties.
We now focus our attention on how the choice of nuclear reaction rates changes

these conclusions. For the EMPRESS and CMB independent prior we find:

Ωbh
2 = 0.02347± 0.00070 , [YP +D/H|P (5.47a)

δv

v0
= 0.0096± 0.0031 , EMPRESS] (5.47b)

As the BBN only constraints on αv are dominated by the value of YP , we see that
the choice of rates does not modify the results too much. If anything, we can gauge
from this the importance of the Deuterium abundance for these constraints. On
the other hand, since PRIMAT rates underproduce Deuterium, the central value of
the baryon density decreases compared to that obtained with PArthENoPE rates to
compensate for it, which actually reduces the tension with the ΛCDM model. This
differs from the SBBN scenario and the scenarios with a time varying fundamental
constant or Dark radiation. However, it does not alleviate the overall tension, at
the CMB and BBN determinations of Ωbh

2 still differ by 1.8σ.
When constraining the baryon density to its Planck value, we find for PRIMAT

rates:

Ωbh
2 = 0.02244± 0.00012 , [YP +D/H|P + CMB (5.48a)

δv

v0
= 0.0039± 0.0012 , EMPRESS + Planck] (5.48b)

Thus, the lower theoretical uncertainty stemming from more stringent data selection
criteria implies an increase in the sensitivty by ∼ 0.0004 if we adopt this choice,
leading to a yearly decrease of the Higgs vev by:

v̇

v0
= (−2.8± 0.9) · 10−13 yr−1 (5.49)

which, even though the best fit value does not change is an even stronger indication
for a non-zero time variation of the Higgs vev by 3σ. However, the cost of this
increased sensitivity is a worse fit to the data.

If we now adopt the PDG-22 prior on YP , we find the following BBN only con-
straints:

Ωbh
2 = 0.02229± 0.00060 , [YP +D/H|P (5.50a)

δv

v0
= 0.0022± 0.0029 , PDG− 22] (5.50b)
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which shows the same inferred value for αv, but a significantly lower value of Ωbh
2,

which is actually below the preferred value from Planck measurements of the CMB,
which in turn will allow for larger values of αv. Concretely we find:

Ωbh
2 = 0.02244± 0.00013 , [YP +D/H|P + CMB (5.51a)

δv

v0
= 0.0026± 0.0013 , PDG− 22 + Planck] (5.51b)

which is consistent with the CMB determination of Ωbh
2, as well as a negative time

variation of a similar magnitude as that inferred from the EMPRESS+Planck prior
at 1σ. Concretely, it implies a preference for a non-zero time variation of the Higgs
vev

v̇

v0
= (−2.8± 0.9) · 10−13 yr−1 (5.52)

with a significance of 2.1σ. A time variation of the Higgs of that magnitude would
not only ameliorate the tension coming from the low best-fit value reported by
the EMPRESS collaboration, but also that between BBN and the CMB best fits
stemming from the different choice of reaction rates.

By deriving these constraints, we have also shown how sensitive BBN is to slight
changes in the value of the Higgs vev. For the BBN only constraints, we find that it
is susceptible to variations as small as σαv = 0.0029, with constraints limited only
by the precision of observations of the Helium abundance, because the Deuterium
abundance is degenerate with respect to these two parameters.

Breaking this degeneracy requires input from other cosmological data, namely an
independent measurement of the baryon density Ωbh

2, for example from observations
of the CMB. When additionally including this information in our analysis, we find
that the sensitivity increases by almost a factor of 3, reaching a sensitivity σαv =
0.0012 that can constrain time variations of the Higgs vev of the order of 1·10−13 yr−1,
which is more stringent than on the Gravitational constant.

These constraints, regardless of the prior or nuclear reaction rates one chooses, are
in agreement with previous constraints. The authors of [74] find−0.007 ≤ αv ≤ 0.02,
while those of [13] report −0.005 ≤ αv ≤ 0.012 (at 95% confidence). We improve
upon these constraints in several ways. First and foremost, we use up to date
priors on the observational abundances. This is especially significant for Deuterium,
where 105 · D/H|P = 3.0+1.0

−0.5 was used in [74] and 105 · D/H|P = 2.87 ± 0.22 in
[13]. Additionally, the theoretical prediction of both Helium and Deuterium has
seen massive improvements in recent years, especially given the novel determination
of the deuterium burning rate by the LUNA collaboration [55], which we have taken
into account, allowing for a much more precise determination of αv.

Nevertheless, there are some caveats which are left for future work. The first
is, quite straightforwardly, implementing the modifications coming from a variation
of the Higgs vev consistently for all corrections to the weak rates and assuming a
much larger network of reactions. Modifications coming from this are expected to
be small and not notably affect the conclusions presented here.

Additionally, we have used perhaps an outdated determination of the dependence
of the Deuterium Binding Energy on the pion mass, and consequently on the Higgs
vev. Given its strong influence, especially on the Deuterium final abundance, this
might need to be revisited.
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Constraints on the time variation of the Higgs vev from BBN and CMB data
YP Data Sets Nuclear Rates Ωbh

2 αv = δv
v0

v̇
v0
[10−13yr−1] Pref.αv 6= 0 χ2

min
EM

PR
ES

S

YP +D/H|P
PArthENoPE 0.02427± 0.00082 0.0100± 0.0032 −7.2± 2.3 3.0σ 0.0

PRIMAT 0.02374± 0.00070 0.0096± 0.0031 −6.9± 2.3 3.0σ 0.0

YP +D/H|P + Planck
PArthENoPE 0.02244± 0.00013 0.0039± 0.0016 −2.8± 1.2 2.1σ 5.3

PRIMAT 0.02244± 0.00012 0.0039± 0.0012 −2.8± 0.9 3.0σ 3.8

PD
G

-2
2 YP +D/H|P

PArthENoPE 0.02267± 0.00072 0.0022± 0.0030 −1.6± 2.2 0.8σ 0.0

PRIMAT 0.02229± 0.00060 0.0022± 0.0029 −1.6± 2.1 0.7σ 0.0

YP +D/H|P + Planck
PArthENoPE 0.02244± 0.00013 0.0013± 0.0017 −0.9± 1.2 0.9σ 0.3

PRIMAT 0.02244± 0.00013 0.0026± 0.0013 −1.9± 1.0 2.1σ 0.1

Table 5.2: Summary of constraints on the variation of the Higgs vev αv = δv
v0

and
Ωbh

2, as well as the yearly variation of v(t) assuming a linear time dependence from
considering BBN and CMB data for two possible choices of the nuclear reaction
rates, Neff = 3.043 and τn = 878.4 s See main text for details.

Last but not least, when adding the CMB prior, we have neglected the effect
a variation of the Higgs vev might have on the power spectrum and simply used
a gaussian prior obtained assuming the Higgs vev is constant. We know that this
is not actually the case, as the Higgs vev modifies the mass of the electron which
affects the process of recombination. While the constraints found in [74] are not
competitive with BBN determinations, these are based on very early WMAP data.
Updates on constraints of the variation of the electron mass using Planck data find
δme

m0
e
= 0.0039 ± 0.0074 [78], which implies that the CMB is sensitive to variations

of the Higgs vev of the order of 1%. Thus, one may expect that this can have a
noticeable effect on the combined BBN and CMB constraints derived here.

Given the rather strong indication from EMPRESS data that the Higgs vev is
indeed variable with time and the effects this may have on Cosmology, we believe
that it is important to study these aspects. Implementing these improvements is
left for future work.
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Chapter 6

Neutron Dark Decays

We have now explored how a modification to the Hubble expansion rate affects
the process of Nucleosynthesis, both from the point of view of dark radiation as
well as a time variation of GN . Aditionally, we have seen how changes to the weak
and nuclear reaction rates through a time variation of the Higgs vev affect the final
abundances. Now, we will focus our attention on how we can constrain new physics
affecting solely the process of the neutron to proton freeze-out through modifications
of the weak rates.

The weak rates affect the outcome of nucleosynthesis by determining the neutron
to proton ratio at the onset of BBN, as we saw in sec. 3.3.2, in two ways. First, the
strength of the interactions ∝ GF determines the moment these reactions freeze-
out, which happens for Tf ' 0.8MeV. In the instant freeze-out approximation, the
neutron and proton abundances are in chemical equilibrium until that temperature.
Assuming a negligible chemical potential, we find

nn

np

∣∣∣∣
Tf

= e
− Q

Tf (6.1)

The freeze out temperature is determined by the condition that Γ
H
≤ 1. Since

Γ ∝ G2
FT

5 and H ∝ T 2, we find that Tf ∝ G
− 2

3
F , such that

nn

np

∣∣∣∣
Tf

∝ e−Q·G2/3
F (6.2)

Therefore, the neutron to proton ratio at freeze-out is exponentially sensitive to
the interaction strength of the four point Fermi interaction between neutrons and
protons. Once the neutrons have frozen out, they are allowed to decay freely ∝ e−

t
τn

with a lifetime τn until nucelosynthesis begins at TBBN ' 0.073MeV. Since we are
assuming only modifications to the process of nucleon freeze-out, this temperature
remains unchanged. Thus, we find:

nn

np

∣∣∣∣
TBBN

∝ e−Q·G2/3
F e−

tBBN
τn (6.3)

where, in the last step we have neglected the effect of neutrons decaying to pro-
tons,which for the time range of interest here amounts to an effect ∼ 4%. Generally,
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the neutron lifetime is used to calibrate the weak rate interaction strength from Eq.
3.81, so both of these modifications together are generally regarded as modifications
to the value the neutron lifetime, so that:

nn

np

∣∣∣∣
TBBN

∝ e
− Q

τ
1/3
n e−

tBBN
τn (6.4)

In the Standard Model, the neutron can only decay to a proton and this parametriza-
tion is correct. However, it should be noted that these two contributions in general
measure two different things. First, the neutron to proton abundance at freeze-out
is determined by the strength of the weak interactions, and the value of the to-
tal neutron lifetime influences how many neutrons are left-over from the freeze-out
abundance when BBN begins.

This is especially of interest in the context of the neutron lifetime anomaly. As
was already explained in Sec.4.2, this boils down to different experimental methods
measuring consistently different values for the neutron lifetime with a significance
of ∼ 4σ. If we assume this tension not to come from systematic errors that have
carried through from one experiment to the other, an explanation of this anomaly
requires new physics.

In order to do so, we need to look at the difference between the two experiments.
Aside from many technical details, they mainly differ in one very crucial aspect,
namely what they actually measure. The beam method measures the amount of
protons that are produced by neutrons decaying in a steady stream when passing
through an experimental volume V, whereas the bottle method measures the amount
of neutrons left inside a trap after a variable amount of time.

Thus, while the bottle method measures directly the total lifetime of the neutrons,
the beam method measures it indirectly through protons, which in principle means
that both experiments actually measure two different physical quantities, namely the
total neutron lifetime τn and the branching ratio of decays to protons or, equivalently,
the lifetime of the neutron when assuming it only decays to protons, which we will
henceforth call τnp. Interestingly, the experiments find that τnp > τn

Within the Standard model, the neutron can only decay to protons, such that
τn = τnp. However, these two are not necessarily the same if we include BSM
physics. Motivated by this observation, the authors of [12] proposed that both
measurements can indeed be reconciled if the neutron has one or more dark decay
channels to particles other than protons, such that

τbottlen = τbeamn × Br(n→ p) ≤ τbeamn (6.5)

with a branching ratio
Br(n→ p) ≈ 99% (6.6)

or, equivalently, for dark decays:

Br(n→ X 6= p) ≈ 1% (6.7)

As we saw in eq. 6.3, the neutron to proton ratio is sensitive to both the in-
teraction strength GF and the total neutron lifetime. The existence of dark decays
of the neutron does not modify the relation between GF and the neutron lifetime
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decaying to protons. Thus, we can still calibrate the weak rates using using τnp. On
the other hand, nothing changes in the neutron decay, since here nucleosynthesis is
truly only influenced by the total decay rate of the neutron, regardless of its end
product. Thus, Eq. 6.3 becomes:

nn

np

∣∣∣∣
TBBN

∝ e
− Q

τ
1/3
np e−

tBBN
τn (6.8)

which shows that the neutron to proton ratio at the onset of nucleosynthesis is
exponentially sensitive to both the total neutron lifetime, as well as the lifetime of
its decay to protons or the corresponding branching ratio, allowing us to constrain
models

We will focus on a simplified scenario where we assume the that n→ X, with X
some arbitrary decay product X, for example the decay of n → χφ with a fermion
χ and a scalar φ as investigated in [79]. In order to remain as model independent
as possible, we will look at the scenario where the dark particle’s contribution to
the energy density of the Universe is negligible and the inverse decays producing
neutrons are negligible. This is a crucial assumption that would need to be checked
for any given model. For example, the case that the neutron decays to photons is
severely constrained by BBN precisely for this reason [80].

Keeping this assumption in mind, the only modification required to the standard
picture of nucleosynthesis is to add an additional decay channel for the neutron to
some sort of dark sector which we will collectively describe by XDark =

nDark

nB
, whose

abundance we assume to be negligibly small at the beginning of nucleosynthesis.
The Boltzmann equation describing its evolution is:

dXDark

dt
= Γn→Dark ·Xn =

(
1

τn
− 1

τnp

)
Xn (6.9)

where we need to make sure that the condition τnp > τn is always satisfied, such
that we do not have the unphysical scenario of a negative decay rate. Additionally, a
similar contribution needs to be included in the Boltzmann equation of the neutron,
such that

dXn

dt
⊃ −Γn→Dark ·Xn (6.10)

This modification can now be implemented in state of the art codes for nucle-
osynthesis in order to obtain the dependence of the final abundances of Helium and
Deuterium as a function of both ”neutron lifetimes”. In this case, we have used the
code PRIMAT [20].

Assuming the central value from 4.4 for Ωbh
2, Fig. 6.1 shows the dependence

of the Helium(Left) and Deuterium(Right) abundances on both τn(red) and τnp
(orange). For the dependence on τn, we have chosen to set τnp to the central value
of beam experiments τbeamn = 888.0 s, whereas for the dependence on τnp we have
chosen to set the central value of bottle experiments τbottlen = 878.4 s. Enforcing the
condition that τnp > τn is the reason that both lines end so abruptly at those values,
which correspond to the dash-dotted orange and red lines.

An increased value of τnp, which implies a weaker interaction strength, and con-
sequently, means that the decoupling happens at an earlier time, such that the
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Figure 6.1: 1σ C.L. bands for the primordial Helium mass fraction, YP , (Left) and
Deuterium to Hydrogen ratio, D/H|P , (Right) for both types of neutron lifetime
(see text for details) The red band shows the total neutron lifetime τn assuming
that its lifetime decaying only to protons is τnp = 888.0 s, whereas the orange band
is a function of τnp, assuming τn = 878.4 s. Additionally, Ωbh

2 = 0.02242 and
Neff = 3.043. In both cases we show only the results from PRIMAT rates. The
dash-dotted lines separate the physical from the unphysical parameter space because
τnp > τn. The green bands correspond to the PDG-22 prior on YP and D/H|P , the
yellow band corresponds to the EMPRESS prior.

abundance at freeze-out is less suppressed. On the other hand, an increased total
neutron lifetime implies that the neutrons will decrease less slowly, which likewise
increases the abundance of neutrons at tBBN. An increase in the neutron to proton
ratio before BBN begins and that does not affect the reaction network in any other
way translates to a slightly smaller increase in the Deuterium abundance. Therefore,
an increase in either lifetime correlates with an increase in the production of both
nuclei, as can be seen on Fig. 6.1. Concretely, we find that the abundances can be
parametrized as follows:

YP = YP,ref ·
(
τn
τ 0n

)0.171(
τnp
τ 0np

)0.532

·Θ(τnp − τn) (6.11a)

D/H|P = D/H|P,ref ·
(
τn
τ 0n

)0.069(
τnp
τ 0np

)0.350

·Θ(τnp − τn) (6.11b)

where we have used the standard value of the neutron lifetime τn = 878.4 s as the
reference value for both lifetimes. The theta function simply makes sure that we
remain in a physical parameter space. We see from this equation that we recover the
standard dependence on the neutron lifetime from Eq. 4.11 in the case of τn = τnp.

Constraints

We have now seen that the production of light nuclei depends on both values
of the Neutron lifetime, showing that we can indeed constrain dark baryons with
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Figure 6.2: 1σ and 2σ C.L.s in the (τn, τnp) parameter space after marginalizing
over Ωbh

2 for both sets of nuclear rates. We choose the PDG-22 priors on YP and
D/H|P combined with a Planck prior to constrain the baryon density assuming
Neff = 3.043. The grey region corresponds to the unphysical parameter space where
τn > τnp. The green bands corresponds to the 2σ C.L. from beam experiments and
the red band to the 6σ C.L. from bottle experiments.

observations of the primordial abundances. However, this also implies that nucle-
osynthesis now has three parameters, while we can only observe the Helium and
Deuterium abundances with a sufficient degree of accuracy, so our parameter space
will be degenerate. In order to lift that degeneracy, we will either include a prior
on the baryon density from the CMB (Eq. 4.4) or the neutron lifetime from both
types of experiment or a combination of these three.

Additionally, we saw in Sec. 4.2 that using the EMPRESS determination of YP

as a prior leads to a preferred value of τn which is drastically different from the
Standard value used today, so we came to the conclusion that an interpretation of
this anomaly in terms of a non-standard value of τn was unlikely. In order to not
over-complicate this section by introducing unnecessary sources of tension that we
believe are orthogonal to our discussion, we will stick to the PDG-22 prior on YP

when deriving these constraints.
Even though the dependence of the deuterium abundance on the neutron lifetime

will be subdominant, it will fix the value of the baryon density. In order to assess
how the choice of nuclear reaction rates will influence the final constraints, we will
assume that the effect of the neutron lifetime on the choice of nuclear reaction rates
leading to the difference in the production of Deuterium will be negligible, so that
we can approximate:

D/H|PArthENoPE
P (τnp, τn) = D/H|PRIMAT

P (τnp, τn) + δD/H|ratesP (6.12)

with δD/Hrates
P = 0.07.

The 1σ and 2σ contours one obtains when assuming only a prior on the baryon
density and marginalizing over it are shown on Fig. 6.2 for both choices of nu-
clear reaction rates. The black region in the top left corner of the plot indicates
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the nonphysical parameter space where the creation rate of dark sector particles is
negative.

Even though we have added a prior on Ωbh
2, one can clearly see that the param-

eter space remains degenerate in this case, more strongly so for PArthENoPE rates,
given that the effect of the neutron lifetimes on both abundances is actually degener-
ate. The prior on Ωbh

2 fixes the deuterium abundance at D/H|P = 2.52 ·10−5, while
the Helium abundance remains unconstrained, since its standard value is mostly de-
termined by the neutron lifetime. The central value of the observational abundance
of Helium is slightly lower than its standard value with τn = τnp = 878.4 s, so in
order to come closer to that value, one needs to either decrease the value of τnp,
which will reduce YP more drastically, but only goes so far as τnp ≥ τn, or reduce
the value of τn.

Once we reach the exact value of the observational abundance, any change coming
from a further decrease in τn can be compensated by a smaller increase in τnp, or
vice versa, which explains the shape of the 1σ contour. The range of the contour is
only determined by the observational uncertainty on the Helium abundance as well
as the slight increase in the theoretical uncertainty coming from allowing the baryon
density to float.

While the dependence of Deuterium on the neutron lifetime is much weaker, the
degeneracy between the parameters is slightly different. Thus, compensating for a
decrease of τn, requires a different increase in τnp. While this effect is small, given the
overall weak τ dependence and large observational and theoretical uncertaintes of
deuterium, at some point the value departs from the observational uncertainty, which
is why the 1σ contour ends at τn ≈ 630 s and τnp ≈ 970 s despite the degeneracy
of both deuterium and Helium with respect to these parameters. All of this leads
to the constraints from BBN with only a prior on the baryon density not being
very stringent, with values of both neutron lifetimes allowed that are far from the
experimental determinations today.

These experimental constraints are shown on Fig. 6.2, with the green band
corresponding to the 2σ contour from beam experiments, which measures τnp, and
the red band showing constraints from bottle measurements at the 6σ confidence
level in order to make them more visible. The neutron lifetime anomaly arising
between the two is visible by the fact that both of these contours do not meet
for the standard scenario that τn = τnp close o to the black dash-dotted line that
separates the physical and nonphysical parameter space, but actually meet to the
right of it. Nonetheless, the place where they meet is contained within the 1σ
contour for PArthENoPE rates, showing that Nucleosynthesis is not in tension with
the new physics interpretation of the Neutron Lifetime Anomaly (NLA) proposed
in [12].

Additionally, as we saw already in sec. 4.2, SBBN is not in tension with either
determination of the neutron lifetime. This can also be abstracted from Fig. 6.2,
since the region where the contours corresponding to either technique meet with
the dash-dotted line in the parameter space are likewise fully contained in the 1σ
contour.

On the other hand, the situation is quite different for the PRIMAT choice of rates,
whose 1σ and 2σ contours are shown in red. Unlike for the PArthENoPE rates, the
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Figure 6.3: Left: 1σ and 2σ C.L.s in the (τn, τnp) parameter space after marginal-
izing over Ωbh

2 for both sets of nuclear rates. We choose the PDG-22 priors on YP

and D/H|P combined with a Planck prior to constrain the baryon density assum-
ing Neff = 3.043 and, most importantly, constraining τnp = (888.0 ± 2.0) s. Right:
Same contours as on the left panel, but now constraining the total neutron lifetime
to the value measured in bottle experiments τn = (878.4 ± 0.5) s, corresponding to
the beam experiments that measure only protons. On both figures, the grey region
corresponds to the unphysical parameter space where τn > τnp. The green bands
corresponds to the 1σ and 2σ C.L. from beam experiments and the red band to
those from bottle experiments.

prior on Ωbh
2 introduces a tension with the observational deuterium abundance, as

it predicts a much lower value. Reconciling theory and observation requires a stark
increase in the Deuterium abundance, which can only be achieved by an increase in
τnp. However, this very strongly modifies the Helium production as well, which needs
to be compensated by a smaller value of τn. Accommodating both observations is
therefore only possible for a narrow window compared to the case with PArthENoPE
rates around τn = (674.6± 32.0) s and τnp = (960± 11) s. In principle, this implies
that BBN is in tension with both measurements of the neutron lifetime, which seems
rather unlikely for many reasons, not only from the experiments but also from tthe
consistency of BBN itself given the large production of dark sector particles that
comes from such a low value of τn. Most likely this means that we need to first
resolve the issues that are causing the 2σ tension within the ΛCDM model before
taking 1σ constraints on the neutron lifetimes serious when using PRIMAT rates.

Regardless of the rates, the degeneracy between the two parameters as well as
the relatively large uncertainty in the priors for both abundances makes the purely
cosmological constraints on this scenario very weak. The only assessment one can
make, and even this is only partly true, is that the new physics interpretation of
the neutron lifetime is permitted by cosmological observations. In order to improve
this, we will now add a prior on the neutron lifetimes themselves which will break
the degeneracy.

First, we include a prior on τnp = τbeamn (888.0 ± 2.0) s from beam experiments,
since these measure only the protons resulting from the neutron decay. The resulting
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contours for both choices of nuclear reaction rates are shown on the left panel of
Fig.6.3. Indeed this prior lifts the degeneracy , but the low sensitivity of the Helium
abundance to τn implies that the constraints are not very stringent. Since they are
entirely dominated by the determination of YP , we can estimate the sensitivity using
Eq. 6.11 as ∆τn ≈ 126 s given the possible variation of ∆YP = 0.006. Numerically,
we find:

τn = 814+61
−60s, χ2

min = 0.3 [PArthENoPE] (6.13a)
τn = 841+48

−57s, χ2
min = 4.2 [PRIMAT] (6.13b)

Both determinations show no significant deviation from neither the bottle nor beam
measurements of τn, reinforcing our conclusion that there is no tension with neither
the new physics nor the systematic interpretation of the NLA. Additionally, the
χ2
min, while close to zero for PArthENoPE rates, is > 1 for PRIMAT rates due to

the tension in the baryon density.
Additionally, the sensitivity in the estimate of the neutron lifetime is in keeping

with our naive estimate for the lower limits, but especially for the PRIMAT rates the
upper limit is slightly smaller. The reason for this becomes apparent when looking
at the red contour on the left panel of Fig. 6.3, namely that there are no physical
points in the parameter space that can accommodate such a high value of the total
neutron lifetime. Thus, the in principle Gaussian contour gets cut-off at the top
slightly, giving the resulting constraint. This is not the case for the PArthENoPE
rates, since their best-fit value is much lower, given that they have more room to
lower the Helium abundance to values closer to 0.245 without increasing the tension
with the determination of the deuterium abundance.

We can also constrain the total neutron lifetime to its value as measured in bottle
experiments τn = τbottlen = (878.4 ± 0.5) s. The resulting 1σ and 2σ contours are
shown on the right panel of Fig. 6.3. These constraints, as we can already see from
the contour itself, are the most stringent ones for several reasons. The first is that
the dependence of Helium on τnp is simply much stronger.. Additionally, the prior
on τn is so stringent that it is equivalent to not allowing the parameter to float,
which further increases the sensitivity. Lastly, this strong constraint implies that
τnp > 878.4 s, so the Helium abundance is essentially limited to be YP ≥ 0.2469.
Thus, there is essentially a much smaller effective observational uncertainty ∆YP =
0.001, leading to a much higher effective sensitivity. Numerically, we find:

τnp = 878.5+11.4
−0.1 s, χ2

min = 0.6 [PArthENoPE] (6.14a)
τnp = 879.5+18.1

−1.1 s, χ2
min = 4.4 [PRIMAT] (6.14b)

Which is much more sensitive than any of the determinations from before, even
for the standard BBN result. Both inferred values of the neutron lifetime are very
close to the best fit value from bottle experiments, since the Helium abundance
generally prefers lower values of τn, τnp in order to accommodate the slightly lower
best fit value from observations. As a result, the lower bounds are only determined
by the difference between the best fit value for τnp and τn.

Likewise, the dominant effect determining the upper bound, rather than the
sensitivity in the observational abundances, is the central value of the ellipse, which
is determined by the prior on the baryon density through the deuterium observation
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and the prior on τnworking in unison with the condition that τnp ≥ τn. For PRIMAT
rates, the value of Ωbh

2 is as close to its lower bound as possible to increase the
deuterium production, such that YP ≥ 0.2463, whereas the value of Ωbh

2 is higher
for the PArthENoPE rates, such that YP ≥ 0.2469, which is why the constraint is
more stringent for the PArthENoPE rates.

Regardless of the choice of rates, though, the new physics interpretation of the
NLA remains in good agreement with the BBN predictions, as well as the inter-
pretation as a systematic error in one of the experiments, as both the bottle and
beam measurements are within the 1σ bounds of eq. 6.14. However, especially for
the constraint derived using a prior on τn, even a slight increase may, depending on
the central value of YP , actually begin to constrain any scenario involving the dark
decay of neutrons.

6.1 General Modifications to the Weak Rates

We have neglected the impact of the EMPRESS anomaly in our discussion of
the dark decay of the neutron, so we will now focus our attention on how the EM-
PRESS anomaly may actually be interpreted as a hint of new physics at the epoch
of BBN. We have already looked at modifications of the Hubble expansion of the
Universe and a time variation of the fundamental constants, as well as modifications
of the SBBN paradigm from the value of the neutron lifetime. Except for the latter,
whose modification we have concluded is an unlikely explanation of the EMPRESS
anomaly, is that Deuterium is the key element when it comes to constraining these
scenarios, whereas the EMPRESS anomaly only concerns YP . For the previous sce-
narios, this implied an increased tension with the Standard Model of Cosmology
or, equivalently, when constraining the baryon density to its CMB value, the deu-
terium abundances sensitivity prevented a production of Helium as low as required
by EMPRESS.

In order to ameliorate the EMPRESS anomaly, we therefore need to modify
Nucleosynthesis in a way that more strongly affects the production of Helium than of
Deuterium. This almost certainly discards any modifications to the nuclear reaction
rates, to which in general the Helium abundance is rather insensitive. In light of
that, we are left with either a modification of the expansion history, which we have
already investigated, and of the weak rates.

In light of that, we will now analyze how modifications to the weak rates affect
both the Helium and deuterium abundances and then look, more specifically, at
aspects of new physics that may influence these, in order to target the EMPRESS
anomaly in a more isolated fashion. First, we need to assess the dependence of
the final abundance on these reactions by independently varying the normalization
of each of the six weak reactions from Eq. 3.50. The relative variation of Helium
(Left) and Deuterium (Right) as a function of the ratio with respect to the Born
Approximation of the reaction when using the PRIMAT nuclear reaction rates is
shown on Fig. 6.4. The solid lines correspond to the reaction creating protons from
neutrons, and the dashed line correspond to the reverse reaction and the green and
orange bands indicate the different priors on the observational abundances.

Similarly to modifications of the neutron lifetime, a change in the weak rates will
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Figure 6.4: Primordial Helium(Left) and Deuterium(Right) abundance as a function
of the relative variation of each weak rate interconverting neutrons and protons indi-
vidually. The final abundances have been calculated from the weak rates in the Born
approximation and the reduced nuclear network from Fig. 3.4, assumingNeff = 3.043
and Ωbh

2 = 0.02242 and the PRIMAT nuclear reaction rates and then corrected us-
ing the approximation detailed in Eq. 5.14.

only affect the neutron to proton ratio at the onset of nucleosynthesis. Since all
nuclei require at least one neutron, the sum of all abundances is set by the amount
of neutrons available in the reservoir when nucleosynthesis begins. An increase
(decrease) in the normalization of the reservoir does not change the redistribution
if the abundance into nuclei, but increases (decreases) their overall abundance, so
modifications to the weak rates will affect the deuterium and Helium production in a
similar way but with a weaker effect on Deuterium, which is the behavior exhibited
on Fig. 6.4.

Additionally, increasing any of the reactions transforming neutrons into protons
will naturally decrease the abundance of neutrons when BBN begins, leading to a
smaller Helium abundance, and vice versa for the reverse reaction. Concretely, we
find that:

YP = YP,ref ·
(
Γn

Γ0
n

)−0.258(
Γne

Γ0
ne

)−0.581(
Γnv

Γ0
nv

)−0.580

(6.15a)(
Γpev

Γ0
pev

)0.014(
Γpv

Γ0
pv

)0.338(
Γpe

Γ0
pe

)0.380

D/H|P = D/H|P,ref ·
(
Γn

Γ0
n

)−0.157(
Γne

Γ0
ne

)−0.321(
Γnv

Γ0
nv

)−0.320

(6.15b)(
Γpev

Γ0
pev

)0.008(
Γpv

Γ0
pv

)0.182(
Γpe

Γ0
pe

)0.204

which shows precisely this behavior. Additionally, an increase in the neutron to pro-
ton conversion more strongly affects the final abundances than the reverse reaction.
This is to be expected, since an increase in the neutron lifetime, which corresponds
to a decrease of all rates collectively through the normalization, leads to a higher
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Helium and Deuterium abundance, which would not be the case of the effect of
modifying the proton to neutron conversion were stronger.

From the left panel of Fig. 6.4 we can already see that variations of the weak
rates can accommodate the Helium prior from the EMPRESS collaboration if we
increase any of the reactions transforming neutrons to protons by a sufficient amount.
Since modifying single reactions will require a very specific model, we will focus on
variations of the neutron to proton conversion rates as a whole. Not only will this be
simpler to do, but actually it has the strongest effect on the final Helium abundance,
so that even small variations can explain the Helium anomaly. Concretely, we find
that a variation of the weak rates

∆Γn→p

Γ0
n→p

= 0.03± 0.01 (6.16)

that is, an increase in the reaction rates at the percent level, is enough to resolve
the EMPRESS anomaly. The question now arises as to how we can achieve such
an increase in the weak rates other than a modification of the overall normalization
from either a variation of the neutron lifetime or Fermi’s constant.

Given that a possible solution to the NLA is the proposition of new particles that
interact with the neutron, one is left to wonder whether these particles also have
interactions that allow an increase in the neutron to proton conversion rates but
without affecting the reverse reaction. One possibility to do this would be to simply
adjust the masses of the particles such that the reverse reaction from a proton to a
neutron is simply forbidden by energy conservation. This will require the presence
of at least two new particles with a mass difference between the two particles to
be smaller than the nucleon mass difference Q. Additionally, one of the particles
needs to be electromagnetically charged. These requirements severely constrain the
scenario and make it perhaps not as attractive as initially thought.

We therefore focus our attention to the weak rates themselves. From Eq. 3.77,
we see that aside from the matrix element, contained in the normalization factor
K, they only depend on the phase-space distribution of the electrons and neutrinos.
Sine the electron phase-space distribution is more constrained, perhaps the simplest
way to modify the weak reaction rates is through a modification of the neutrino
phase-space distribution.

Without modifying the details of neutrino interactions too much, spectral distor-
tions will play a subdominant role on the final abundances, as shown in [20]. Thus,
we will assume that they remain in thermal equilibrium, so that the distribution is
generally only dependent on two quantities: the neutrino temperature Tν and the
chemical potential µν .

The temperature can only be modified by changing the details of the neutrino
freeze-out, thus altering the ratio of the neutrino to photon temperature. This, as
we can see from Eq. 3.49, is equivalent to a modification of Neff , whose effect we
have already looked into in Sec.4.3. In this case, the EMPRESS anomaly required
∆Neff < 0. Aside from perhaps an interpretation as an indication for a time variation
of GN at the epoch of BBN, models that reduce the effective degrees of freedom
generally lead to even higher values of YP .

Thus, perhaps the simplest way to obtain a value for Helium as low as required
by the EMPRESS measurements is to allow for the presence of a large neutrino
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chemical potential or, equivalently, a large lepton asymmetry at the epoch of BBN.
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Chapter 7

Lepton Asymmetries

The presence of a lepton asymmetry in general at the time of BBN should not
come as a surprise, though. The mere fact that we are alive today is an indication
that, at least on small scales, there is an asymmetry between matter and antimatter.
This leaves us with three options. We are simply living inside a large inhomogeneity
as a result of an expected statistical fluctuation, where there is more matter than
antimatter, this is simply the way the Universe was created, or, perhaps the most
attractive one and the one most in keeping with our current picture of the expanding
Universe: there exists some sort of mechanism generating a primordial asymmetry
between matter and antimatter in the very early Universe, regardless of its initial
state [81].

For the case of baryons, we have already seen that we can constrain the baryon
density Ωbh

2 from observations of the primordial abundances of light elements, al-
though in this context it is customary to use the equivalent baryon to photon ratio
ηB. A primordial overabundance of matter over antimatter density ∆X = nX − nX

in principle remains constant as the Universe evolves except for the effect of dilution
due to its expansion, but the respective particles actually annihilate if they meet,
which they eventually do. Thus, the primordial asymmetry makes itself apparent
by the density of particles of that species leftover. This implies:

ηB

∣∣∣∣
TBBN

=
nB

nγ

∣∣∣∣
TBBN

=
nB − nB

nγ

∣∣∣∣
TBBN

(7.1)

that is, that we are actually constraining the baryon asymmetry, as it is the
same as the baryon density. The current constraints from BBN actually give, for
PArthENoPE rates and the EMPRESS prior on YP :

ηB = (6.06± 0.11)× 10−10 (7.2)

while the currently most precise determination combining CMB and BAO data finds
ηB ≡ (nB − nB)/nγ = (6.14± 0.04)× 10−10 [82], with a precision . 1%.

The simplest theories proposed to generate this baryon asymmetry require a CP
and B violating out of equilibrium decay of a thermally produced particle. The
amount of symmetry violation and initial abundance of said particle is adjusted in

This section is based on the publication [24]
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such a way to produce just the right amount of asymmetry as required by observa-
tions. Given that we have reason to assume the Standard model to be correct up to
energies of ∼ 100GeV, the simplest idea is to generate this asymmetry at energies
above the electroweak phase transition in the very early Universe.

At those energies, however, the vacuum structure of the Standard model becomes
non-trivial and sphaleron transitions become efficient [83]. Sphalerons are static
solutions of the electroweak Equations of motion of the Standard Model which in-
terpolate between vacuum solutions corresponding to different baryon and lepton
numbers. These transitions, while they conserve the total B − L number, they
actually violate B+L and, therefore, B and L respectively. Thus, sphaleron transi-
tions transfer part of the baryon asymmetry to an asymmetry in the lepton sector.
Naively, one would therefore expect that the asymmetry in the lepton sector is of
the same magnitude as that in the baryon sector[84, 85, 86, 87].

On the other hand, several scenarios have been constructed where the lepton
asymmetries at the time of BBN can be much larger than the baryon asymmetry.
In order to evade the constraints from sphalerons, one typically needs these scenarios
to produce the lepton asymmetry at temperatures below the sphaleron freeze-out.
Different models differ in how they generate the lepton asymmetry, for example
via Affleck-Dine leptogenesis [88, 89], decays of topological defects [90], freeze-in
leptogenesis [91, 92], resonant-leptogenesis [93, 94] or Q-ball decays [95, 96]. Fur-
thermore, there are scenarios where large lepton asymmetries are generated before
sphaleron freeze-out, but in which the total lepton asymmetry in the Universe is
zero [97, 98].

Unfortunately, even though there is a very precise determination of the baryon
asymmetry implying that it is extremely small, there is no evidence that this is
actually the case for the primordial lepton asymmetries, ηLα , with α = e, µ, τ . This
is mainly because the lepton asymmetry will eventually be stored in neutrinos, as it
is the lightest lepton and the only neutral one, which are notoriously hard to detect.
Without the possibility of measuring the cosmic neutrino background, we need to
obtain constraints on the asymmetry stored in the lepton sector indirectly. Aside
from the constraint explored in [99] which is only valid for very high temperatures
T > 106GeV, the most stringent constraints on a lepton asymmetry actually come
from its effect on the primordial Helium abundance, again showing the potential of
BBN to constrain new physics.

7.1 Implications of a Primordial Lepton Asymme-
try for BBN and the CMB

The primordial lepton asymmetry is normally parametrized by the neutrino chem-
ical potential, µν . At energies above O(10MeV), the neutrinos are kept in chemical
equilibrium through the reactions in Eq. 3.33, which implies that:

µν = −µν (7.3)

so that the phase-space distributions fν(Eν , Tν , µν) = fν(Eν , Tν ,−µν), which sig-
nificantly simplifies matters. Since the chemical potential, just like the energy, gets
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red-shifted as the Universe expands, it is customary to define the comoving chemical
potential

ξν =
µν

Tν

(7.4)

We define the lepton asymmetry for each flavor just as we have defined the baryon
asymmetry:

ηLα ≡
nνα − nν̄α

nγ

(7.5)

Inserting the neutrino phase-space density into Eq. A.3 and expanding around small
values of the chemical potential, we find [13]:

ηLα ≡
nνα − nν̄α

nγ

=
1

12ζ(3)

[
Tνα

Tγ

]3 (
π2ξνα + ξ3να

)
, (7.6)

' 0.25 ξνα
[
1 + ξ2να/π

2
]
,

where ζ(3) ' 1.20206. In the last step, we have used the value of Tγ/Tν expected
from neutrino decoupling in the Standard Model [100]. This relation explains why
the chemical potential can be used to parametrize the asymmetry, so we will now
use the two interchangeably.

The implications of a nonzero lepton asymmetry in BBN and the CMB have been
studied in the past (for reviews, see e.g. [101, 13, 20, 102]), but we will outline the
most important modifications to the paradigm described in Ch. 3.

The first modification is to the expansion history through the energy density.
Up to now, we have assumed that ρν = ρν and taken this into account simply by
multiplying ρν by a factor 2. The presence of a chemical potential actually increases
the energy stored in the form of neutrinos regardless of the sign of ξν , so that
ρν + ρν ≥ 2ρν . We can parametrize this increase in terms of the effective number
of neutrino species ∆Neff by simply inserting the neutrino phase-space density into
the definition of ∆Neff . Unlike for the lepton asymmetry, we can actually obtain an
exact closed form solution of the integral. We find:

∆Neff =

e, µ, τ∑
α

[
30

7

(
ξα
π

)2

+
15

7

(
ξα
π

)4
]
, (7.7)

This modification is independent of the neutrino flavour and of its sign, always
leading to ∆Neff ≥ 0. Since neutrinos oscillate between different flavours when free-
streaming, one expects |ξνe| ' |ξνµ | ' |ξντ | [103, 104, 105, 106]. Therefore, and
in view of the current constraints on the electron lepton asymmetry, |ξνe| . 0.1,
the modification on ∆Neff due to a nonzero chemical potential is expected to be
∆Neff . 0.01. In order to obtain predictions accurate at the percent level for YP

from nucleosynthesis, we will take this effect into account when calculating YP (ξν).
This would in principle already leave an imprint in the CMB through Neff by itself,
but given the current sensitivity of experiments, we will neglect this contribution
and focus only on the impact of the nonzero lepton asymmetry on YP.

The effect of ξν on nucleosynthesis actually does depends critically upon its flavor.
A non-zero lepton asymmetry will mainly modify SBBN through the weak rates,
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which only involve neutrinos of the electron flavour. This is not because the reaction
with other flavours is forbidden, it is just extremely suppressed because of the large
mass of muons and tauons. Thus, when referring to ξνe in the context of BBN, we
generally mean only ξνe , but as we have already seen it is expected that these are
equilibrated through neutrino oscillations.

A non-zero chemical potential will not really affect the free neutron decay, but its
main effect will be on the two body reactions. It will increase the neutron to proton
conversion through n + ν → p + e− and decrease the proton conversion through
p + ν → n + e+. Thus, a lepton asymmetry has precisely the desired modification
of the weak rates we pointed out in the last section.

Assuming neutrons and protons are kept in chemical equilibrium through the
above reactions, we find for the chemical potentials ξp − ξn = ξνe . Before, we
assumed ξνe = 0, leading to the equilibrium neutron to proton ratio ∝ e−

Q
T we have

used up to now. In the presence of a non-negligible chemical potential, we find:

nn

np

∣∣∣∣
eq.

= e−
Q
T
+ξn−ξp = e−

Q
T · e−ξνe (7.8)

Thus, a positive value of the neutron chemical potential will lower the equilibrium
value of the neutron to proton ratio, ultimately lowering its value at freeze-out,
thereby reducing all abundances. From this criterion, we can already gather that a
decrease of YP as required by EMPRESS corresponds to ξνe ∼ 0.04. In order to have
a more quantitative measure, we need to re-derive the weak reaction rates governing
the nucleon freeze-out including a neutrino chemical potential. These modifications
are actually rather simple in the Born Approximation and we can find a similarly
compact form for the reaction rates. The derivation of the reaction rate for the
process n+ ν → p+ e− actually also holds up to Eq. 3.74 for the case of a neutrino
chemical potential, so we find:

Γnν→pe = K

∫ ∞

q

dε ε (ε− q)2
√
ε2 − 1 · fν(ε− q, ξνe)fe(−ε) (7.9)

For the other rates, the we have an antineutrino in the final state. In this case, we
can derive the following relation assuming a FD distribution:

1− fν(Eν , ξν) = fν(−Eν ,−ξν) (7.10)

Using the fact that ξνe = −ξν , we see that the energy relations in the Pauli-blocking
factors for the two reactions remain the same and we simply need to add the depen-
dency of the chemical potential with a positive sign in both cases. Thus, similarly
as with eq. 3.77, we can define the total sum of all reactions converting neutrons to
protons, finding:

Γn→p = K

∫ ∞

1

dε ε
√
ε2 − 1

[
(ε− q)2 fν(ε− q, ξνe)fe(−ε)

(ε+ q)2 fν(−(ε+ q), ξνe)fe(ε)
]

(7.11)

Since an increase in ξνe implies an increase in the phase-space distribution fν , a
positive chemical potential will have the desired effect of increasing the reaction
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Figure 7.1: Primordial Helium mass fraction, YP , (Left) and Deuterium to Hydrogen
ratio, D/H|P , (Right) as a function of the electron neutrino chemical potential ξνe for
Ωbh

2 = 0.02242 and Neff = 3.043 for both choices of nuclear rates. The green bands
correspond to the PDG-22 prior on YP and D/H|P , the yellow band corresponds
to the EMPRESS prior.

rate in this direction, confirming what we have already established. From this
it is quite simple to obtain the reverse reaction rate. For the p + e → n + ν
reaction, the neutrino is now a final state, such that the phase-space density becomes
fν(−Eν ,−ξνe). Similarly, the antineutrinos from the other two equations are now
initial states, so that the phase-space density becomes fν(Eν ,−ξνe). The kinematic
relations defining the energy are not affected, so that we find that, just as in the
case for negligible potential, the relation between forward and backward reaction is
actually quite simple, namely:

Γp→n(q, ξνe) = Γn→p(−q,−ξνe) (7.12)

This implies, that an increase in the chemical potential will have a positive effect
on the neutron conversion rate and the inverse effect on the proton conversion rate,
thus further decreasing the final abundance of Helium as desired.

The corrections to the weak rates can also be modified to allow for a non-standard
value of the neutrino chemical potential, as is shown in [13, 20]. Modifications from
a large chemical potential to the weak rates, as well as the increase in the neutrino
energy density from Eq.7.7, have been implemented in state of the art codes. For
the remainder of this section, we will use PArthENoPE-v3.0 [42, 43, 44]. For both
choices of nuclear reaction rates, the dependence of Helium(left) and Deuterium
(Right) as a function of the lepton asymmetry in the electron flavour is shown on
Fig. 7.1

From this figure, we can clearly see how strong the impact of a non-zero lepton
asymmetry is, especially on the Helium abundance, even for small variations of
ξνe . As we expected, a positive value of ξνecorresponds to a decrease in YP . More
concretely, it leads to a shift in the primordial helium abundance of [20]:

YP(ξνe) ' YP|ref · (1 + ξνe)
−0.92 , (7.13)
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where YP|ref = 0.2469 refers to the primordial helium abundance in the standard
BBN scenario. Naturally, a nonzero lepton asymmetry also affects the abundances
of the rest of the light elements, albeit less strongly. For deuterium the effect is [20]:

D/H|P (ξνe) ' D/H|P, ref · (1 + ξνe)
−0.50 . (7.14)

where, again, D/H|P, ref refers to the value of the primordial deuterium abundance
for a zero lepton asymmetry. Since the effect of ξνeon deuterium is mainly through
the weak rates, the choice of rates does not modify the dependence of D/H|P , but
the reference value does significantly change. From Fig. 7.1, we can already gather
that the choice of rates can have a strong influence. However, given the strong
sensitivity of Deuterium to the baryon density, D/H|P ∝ (Ωbh

2)−1.6, the sensitivity
to ξνe from D/H|P is lost unless Ωbh

2 is given as an input by other methods. In the
absence of such a prior, the larger value in ξνe may be compensated for by a lower
value of Ωbh

2.

7.2 Current constraints

We will now analyze how BBN and CMB data can constrain the electron neutrino
chemical potential for two possible cosmological scenarios, namely when we assume
a standard expansion history during BBN such that Neff = NSM

eff + ∆Neff(ξνe) =
3.044 + ∆Neff(ξνe)

1 , or when Neff differs from the SM expectation, corresponding
to a non-standard expansion history by allowing Neff to float.

The resulting constraints are summarized in Figs. 7.2 and 7.3 for cosmological
scenarios with a standard and non-standard expansion history, respectively, as well
as on Table 7.1.

In Fig. 7.2 we show the 1 and 2σ confidence regions for ξνe and Ωbh
2, fixing

Neff = NSM
eff = 3.044 and for the PArthENoPE choice of rates for different priors

on YP . The grey contour corresponds to constraints coming from CMB data only,
whereas the purple contours show the BBN only constraints. We see quite clearly
that, while CMB data dominates the constraints on the baryon density, current
constraints on the (electron) lepton asymmetry ξνe are dominated by BBN data.
Given the strong dependence of D/H|P on Ωbh

2, in the absence of a prior for this
parameter, the prior on D/H|P will fix the value of the baryon density, such that
the constraints on ξνeare dominated by YP . As a result, the correlation between he
baryon density and ξνe is almost non-existent, as we can see from the marginal tilt
in the purple contour.

As we can also abstract from the figure, the importance of the choice of prior on
YP cannot be understated. The new EMPRESS result points to a positive lepton
asymmetry,

ξνe = 0.043± 0.015 [EMPRESS] , (7.15)

which is different from zero with a ∼ 3σ significance. Instead, if one adopts the
PDG-22 recommended value, one obtains:

ξνe = 0.008± 0.013 [PDG−22] , (7.16)
1In this section we use NSM

eff = 3.044 since these results were obtained before the publication of
[46]. However, a modification of ∆Neff = 0.001 will not affect any of the conclusions.
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Figure 7.2: 1 and 2σ C.L. regions for ξνe and Ωbh
2 from nucleosynthesis data, CMB

data, and their combination for a cosmological scenario without dark radiation (i.e.
assuming Neff = NSM

eff = 3.044). The left panel compares the favored regions for
two determinations of the helium abundance (EMPRESS survey and the PDG-
21 recommended value) adopting the PArthENoPE nuclear rates, while the right
panel compares the favored regions for two choices of the nuclear reaction rates
(PArthENoPE or PRIMAT) adopting the EMPRESS measurement of the helium
abundance.

showing no preference for a nonzero lepton asymmetry. The combination with the
Planck data does not alter significantly the conclusions for the lepton asymmetry,
although it reduces the allowed range for Ωbh

2. For PArthENoPE rates this does
not pose a problem and the overall fit to data is quite good regardless of the prior.

On the right panel of Fig. 7.2 we show how the choice of nuclear reaction rates
affects the constraints. This plot shows the 1σ and 2σ contours from BBN and
CMB data independently and combined for both the PArthENoPE (purple/blue)
and PRIMAT(orange/red) nuclear rates. This figure quite clearly shows that The
EMPRESS hint for a nonzero lepton asymmetry is fairly insensitive to the choice
of the nuclear reaction rates, with the contours only very marginally shifting along
the ξνe-axis. This was to be expected, given that the constraints on ξνe come solely
from Helium and are mostly uncorrelated with Ωbh

2.
Additionally, the lack of correlation also implies that we expect to see a shift in

the baryon density constraints from BBN only similar to that found in the SBBN
case, namely that the reconstructed value of Ωbh

2 is slightly lower when adopting
the PRIMAT rates than for the PArthENoPE rates. This also worsens the overall
fit to data when combining BBN and CMB priors, as can be seen by the difference
in the respective χ2

min values.
We now allow the effective number of neutrino species to float. This implies

that we now have a three-dimensional parameter space, but only two reliable mea-
surements for the primordial abundances, so our parameter space is degenerate.
Therefore, just as in the case of the dark decays, we require some form of input to
lift the degeneracy between parameters. We choose two different priors in this case.
First, in order to assume as little as possible from the CMB we will only take the
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Figure 7.3: Same as Fig. 7.2, in the plane of ξνe and ∆Neff , without making assump-
tions on the dark radiation content in the Universe.

prior on the baryon density. However, this is not entirely consistent since the effect
of the baryon density,Neff , and YP on the CMB power spectrum is correlated. Thus,
we will use the full Gaussian prior from Eq. 2.17 that takes this into account.

In Fig. 7.3 we show the 1 and 2σ confidence regions for ξνe and ∆Neff , corre-
sponding to a scenario with a non-standard expansion history after marginalizing
over the baryon density.

The left panel shows the importance of the choice of prior on YP . From the
grey contour corresponding to CMB data only, we can abstract that also in this
cosmological scenario, the determination of ξνe is dominated by BBN data.

Additionally, we have seen in Sec. 4.3 that Helium production is positively cor-
related with Neff , As can be seen by the elongated shape of the purple ellipse, this
implies that Neff and ξνe are degenerate. With only a prior on Ωbh

2, the degeneracy
is only broken because of the slightly different correlation of both parameters for
the deuterium abundance. The degeneracy implies that slightly higher values for
both parameters are allowed at the cost of some sensitivity. Concretely, for the
EMPRESS prior we find

ξνe = 0.063± 0.026 , [YP +D/H|P + Ωbh
2 (7.17a)

Neff = 3.39± 0.31 , EMPRESS + Planck] (7.17b)

with a 2.4σ preference for a non-zero value of the chemical potential. On the other
hand, for the PDG-22 prior we find:

ξνe = 0.018± 0.024 , [YP +D/H|P + Ωbh
2 (7.18a)

Neff = 3.21± 0.31 . PDG−22 + Planck] (7.18b)

with no preference for a non-zero chemical potential. However, in both cases the
degeneracy between the two parameters allows for much larger values of Neff than in
the standard scenario, which may ease the tension between some scenarios including
dark radiation and BBN.

Planck measurements of Neff break the positively correlated degeneracy between
ξνe and ∆Neff , thereby reducing slightly the allowed range of ξνe , so that the preferred
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values of ξνe and Neff , using the EMPRESS determination of YP, are:

ξνe = 0.046± 0.021 , [YP +D/H|P + CMB (7.19a)
Neff = 3.12± 0.20 , EMPRESS + Planck] (7.19b)

which amounts to a 2.2σ preference for a nonzero lepton asymmetry. If one adopts,
instead, the PDG-22 recommended value, one finds:

ξνe = 0.006± 0.019 , [YP +D/H|P + CMB (7.20a)
Neff = 3.03± 0.20 . PDG−21 + Planck] (7.20b)

yielding no preference for a nonzero lepton asymmetry.
Since also in this case YP dominates the constraints on ξνe , the conclusions on

this parameter do not depend strongly on the choice of the nuclear reaction rates,
as shown in the right panel of Fig. 7.3. On the other hand, the preferred values
for ∆Neff can vary sizably depending on this choice. The PRIMAT rates already
under-produce Deuterium assuming the Planck value for Ωbh

2, a situation which
is only worsened when allowing for a positive neutrino chemical potential, which
further suppresses the Deuterium production. This has to be compensated for by
an increase in Neff , leading to a shift of the best-fit value of the orange contour on
the right panel of Fig. 7.3 towards greater ∆Neff .

This effect is largest when only adding a prior on the baryon density. In this
case, using PRIMAT rates and the EMPRESS determination of YP we find:

ξνe = 0.079± 0.026 , [YP +D/H|P + Ωbh
2 (7.21a)

Neff = 3.68± 0.23 , EMPRESS + Planck] (7.21b)

which shows a 3.5σ preference for a large leptons asymmetry and, additionally, is
only mildly in tension with the presence of a sterile neutrino during BBN, a scenario
which is largely ruled out from other observations. For the PDG-22 recommended
value,

ξνe = 0.034± 0.020 , [YP +D/H|P + Ωbh
2 (7.22a)

Neff = 3.50± 0.22 . PDG−22 + Planck] (7.22b)

The strong correlation between Neff and ξνe leads to a 1.7σ preference for a non-zero
lepton asymmetry, even with the comparatively larger value of YP from the PDG-22
determination. These should be compared to Eq. (7.17) and Eq. (7.18), respectively.

However, when constraining the effective number of neutrinos from observations
of the CMB, such high values of Neff are no longer allowed, and this preference
vanishes, while the goodness of fit worsens due to the ∼ 2σ tension coming from the
PRIMAT rates. More concretely, we find

ξνe = 0.052± 0.020 , [YP +D/H|P + CMB (7.23a)
Neff = 3.29± 0.19 , EMPRESS + Planck] (7.23b)

with a 2.6σ preference for a non-zero lepton asymmetry, while for the PDG-22
recommended value, the

ξνe = 0.014± 0.018 , [YP +D/H|P + CMB (7.24a)
Neff = 3.19± 0.18 . PDG−22 + Planck] (7.24b)
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Bounds and Sensitivities on the Primordial Lepton Asymmetries from BBN and CMB data
YP Data Sets Nuclear Rates ξνe Neff Pref ξνe 6= 0 χ2

min
C

M
B

Planck

PArthENoPE 0.022± 0.053 3.044 0.4σ 0
PRIMAT 0.022± 0.053 3.044 0.4σ 0

PArthENoPE 0.004± 0.092 2.97± 0.29 0.0σ 0
PRIMAT 0.002± 0.094 2.94± 0.29 0.0σ 0

EM
PR

ES
S
Y
P
=

0.
23
70
(3
4) YP + D/H|P

PArthENoPE 0.043± 0.015 3.044 2.9σ 0
PRIMAT 0.042± 0.015 3.044 2.9σ 0

YP + D/H|P + Ωbh
2|Planck

PArthENoPE 0.040± 0.015 3.044 2.7σ 1.2
PRIMAT 0.030± 0.014 3.044 2.1σ 8.1

YP + D/H|P + Planck PArthENoPE 0.040± 0.014 3.044 2.8σ 1
PRIMAT 0.034± 0.014 3.044 2.4σ 7.3

YP + D/H|P + Ωbh
2|Planck

PArthENoPE 0.063± 0.026 3.39± 0.31 2.4σ 0
PRIMAT 0.079± 0.023 3.68± 0.23 3.5σ 0

YP + D/H|P + Planck PArthENoPE 0.046± 0.021 3.12± 0.20 2.2σ 0.9
PRIMAT 0.052± 0.020 3.29± 0.19 2.6σ 5.6

PD
G

-2
2
Y
P
=

0.
24
5(
3)

YP + D/H|P
PArthENoPE 0.008± 0.013 3.044 0.6σ 0

PRIMAT 0.007± 0.013 3.044 0.6σ 0

YP + D/H|P + Ωbh
2|Planck

PArthENoPE 0.006± 0.013 3.044 0.5σ 0.3
PRIMAT 0.000± 0.013 3.044 0.0σ 4.4

YP + D/H|P + Planck PArthENoPE 0.008± 0.013 3.044 0.6σ 0.4
PRIMAT 0.004± 0.013 3.044 0.3σ 4.9

YP + D/H|P + Ωbh
2|Planck

PArthENoPE 0.018± 0.024 3.21± 0.31 0.7σ 0
PRIMAT 0.034± 0.020 3.50± 0.22 1.7σ 0

YP + D/H|P + Planck PArthENoPE 0.006± 0.019 3.03± 0.20 0.3σ 0.5
PRIMAT 0.014± 0.018 3.19± 0.18 0.8σ 4.3

Fo
re

ca
st

ed
C

on
st

ra
in

ts

Simons Observatory (YP = 0.2370) PArthENoPE 0.044± 0.015 3.044 2.9σ -
PArthENoPE 0.051± 0.035 3.13± 0.11 1.4σ -

CMB-S4 (YP = 0.2370) PArthENoPE 0.044± 0.010 3.044 4.2σ -
PArthENoPE 0.051± 0.023 3.13± 0.08 2.1σ -

Simons Observatory + EMPRESS PArthENoPE 0.043± 0.010 3.044 4.4σ -
PArthENoPE 0.047± 0.016 3.12± 0.07 2.9σ -

CMB-S4 + EMPRESS PArthENoPE 0.043± 0.008 3.044 5.3σ -
PArthENoPE 0.045± 0.014 3.12± 0.06 3.3σ -

Simons Observatory + YP SM PArthENoPE −0.001± 0.010 3.044 0.0σ -
PArthENoPE 0.001± 0.015 3.05± 0.07 0.1σ -

CMB-S4 + YP SM PArthENoPE 0.000± 0.008 3.044 0.0σ -
PArthENoPE 0.001± 0.013 3.05± 0.06 0.0σ -

Table 7.1: Summary of constraints or forecasts on the primordial (electron) lepton
asymmetry, ξνe , from considering several combinations of BBN and CMB data, for
cosmological scenarios without or with dark radiation, and for two possible choices
of the nuclear reaction rates. See main text for details.

which is in agreement within current observations with ξνe = 0 and NSM
eff . These

should be compared to Eq. (7.19) and Eq. (7.20), respectively.
It is noteworthy that if one requires ∆Neff to be positive, as occurs in most

models of dark radiation, then the preference for a positive lepton asymmetry further
increases, as negative values of ξνe cannot be compensated for by a negative value
of ∆Neff . As we have seen, except for a scenario with a time variation of the
gravitational constant, the few cosmological settings that feature ∆Neff < 0, notably
MeV-scale reheating [61, 62] and scenarios with MeV-scale electrophilic particles [64,
63], actually modify the expansion history in a different and highly non-trivial way
instead of simply parametrically reducing as we have assumed here. Therefore, they
actually lead to a higher YP, see [107, 108] and would thus enhance the tension with
the EMPRESS measurement.
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7.3 Forecasts for the Simons Observatory and
CMB-S4

The sensitivity of current cosmological probes to a primordial lepton asymmetry
is limited by two factors. First, the observational uncertainty on YP from astrophys-
ical observations dominates the sensitivity to ξνe for a standard expansion history
of the Universe. Since these measurements are constrained mostly by systematic
uncertainties which are unlikely to be improved in the near future, an independent
from a different source will be extremely important. Additionally, in the case of
allowing for a non-standard expansion history of the Universe, then the sensitivity
is additionally influenced by the positive correlation between Neff and ξνe .

In light of that, future CMB observations will be instrumental to further probe
the hint for a nonzero lepton asymmetry from EMPRESS. Not only will they provide
an independent and precise measurement of YP, but these experiments have been
specifically designed to yield an unprecedented sensitivity to Neff . Thus they fulfill
both requirements to significantly increase the sensitivity in the case of a standard
and non-standard expansion history.

In this section we consider specifically the prospects for detecting a nonzero
primordial asymmetry with the upcoming Simons Observatory and the projected
CMB-S4. We will follow a similar method in our statistical analysis, so we will first
need an estimate of the Gaussian covariance matrix of these observations. Addi-
tionally, in order not to over-complicate matters and not to combine measurements
which are on tension, as this will lead to non-sensical results, we will use only the
PArthENoPE rates for this section, as these show good agreement with currrent
CMB observations.

For the Simons Observatory, we take the baseline covariance matrix to the rel-
evant parameters of our analysis YP, Neff and Ωbh

2 [109]. Once marginalized over
the rest of cosmological parameters, they read [63]:

Simons Observatory

σ(Ωbh
2) = 0.000073 , (7.25a)

σ(YP) = 0.0066 , (7.25b)
σ(Neff) = 0.11 , (7.25c)

ρ(Ωbh
2, YP) = 0.33 , (7.25d)

ρ(Ωbh
2, Neff) = 0.072 , (7.25e)

ρ(Neff , YP) = −0.86 . (7.25f)

For CMB-S4, we use the results from the Fisher matrix forecast performed in [63]
which is in very good agreement with the results reported by the collaboration [110,
111]. The relevant parameters read:

CMB−S4
σ(Ωbh

2) = 0.000047 , (7.26a)
σ(YP) = 0.0043 , (7.26b)

σ(Neff) = 0.081 , (7.26c)
ρ(Ωbh

2, YP) = 0.22 , (7.26d)

111



Probing New Physics with Big Bang Nucleosynthesis

ρ(Ωbh
2, Neff) = 0.25 , (7.26e)

ρ(Neff , YP) = −0.84 . (7.26f)

While for the covariance matrix we can make more or less correct or, at least
conservative, estimates, the best fit value will only be determined once the actual
experiments take data. The best we can do is to make some well-motivated assump-
tions on possible central values of all three parameters that suit the purpose of our
analysis. Our main goal is to see how future measurements will be able to discard or
support the EMPRESS hint for a lepton asymmetry. There is also a third possibility
that the new determination does neither one nor the other, but that is not what we
are concerned with here.

For YP, we will therefore consider two possibilities, either YP = YP|SBBN = 0.2469
or YP = YP|EMPRESS = 0.2370, corresponding to a scenario where the helium abun-
dance coincides with the standard BBN prediction, thus constraining the EMPRESS
hint for a large lepton asymmetry, or when it is lower as hinted by EMPRESS, which
will increase the significance of the hint. For both, we consider also a direct astro-
physical determination with an error bar of 0.003 which matches the precision of
current determinations, since it is unlikely that these will significantly change in the
future as systematic errors already dominate these measurements.

For the central value of the baryon density we will take Ωbh
2 = 0.02242, as favored

by Planck CMB observations, see Eq. (2.14), since this is in good agreement alos
with the BN prediction with PArthENoPE rates.

Finally, for Neff we will either choose NSM
eff = 3.044, as expected in the Standard

Model, or the central value inferred from the current full analysis of BBN and CMB
data using PArthENoPE rates, namely Neff = 3.12, see Eq. (7.19b).

In Fig. 7.4 we present the results of our forecast. In the upper panels, we show
the sensitivity to ξνe from the Simons Observatory (left) or CMB-S4 (right) as a
function of Ωbh

2 for a scenario with a fixed Neff = 3.044. We compare this sensitivity
to the one obtained from current CMB+BBN data. The green contours correspond
to the BBN independent constraints, while the yellow contours correspond to the
combination with current measurements of the primordial abundances.

The green contours should, therefore, be compared with the grey contour on
Fig. 7.2, which already shows how significant an improvement this is. After the
Simons observatory is done taking data, CMB only constraints on the neutrino
chemical potential will be competitive with current independent and combined BBN
constraints.

Furthermore, even though the conservative projection of the uncertainty of the
measurement of YP from CMB-S4 is larger than current observations, its unprece-
dented sensitivity to the baryon density actually implies that the CMB only con-
straints from this experiments will actually improve the sensitivity with respect to
current combined constraints. More concretely, our forecast sensitivity to the lepton
asymmetry for each experiments reads:

σ(ξνe)|Neff=3.044 ' 0.015 , [Simons Obs.] (7.27a)
σ(ξνe)|Neff=3.044 ' 0.010 . [CMB−S4] (7.27b)

which should be compared to σ(ξνe)|Neff=3.044 = 0.0015 as obtained from current
experiments.
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Figure 7.4: 1 and 2σ C.L. forecast regions for ξνe and Ωbh
2 for a scenario without dark

radiation (top panels), or ξνe and ∆Neff for a scenario without making assumptions
on the amount of dark radiation (bottom panels) from nucleosynthesis data, the
upcoming Simons Observatory (left panels) or the projected CMB-S4 (right panels),
and their combination.

More importantly, if the true value of the helium abundance correspond to the
EMPRESS determination of YP = 0.2370, and the Universe does not contain sub-
stantial amounts of dark radiation, Neff = 3.044, then the combination of EM-
PRESS and the Simons Observatory would increase the significance for a nonzero
lepton asymmetry, to ∼ 4.4σ, and the combination with CMB-S4 to ∼ 5.3σ (see Ta-
ble 7.1). While the projected sensitivity is independent of the central value we have
chosen, the significance of the prediction for a non-zero lepton asymmetry should be
taken as best-case scenarios, as they naturally very strongly depend on the central
value. Instead, they should be interpreted as best case-scenarios.

In the lower panels of Fig. 7.4, we allow Neff to vary. As expected, the reach of the
Simons Observatory and of CMB-S4 worsen when relaxing the assumptions on the
cosmological scenario. We obtain for the sensitivity of these scenarios independently
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Figure 7.5: Summary of current and forecast 1- and 2-σ allowed regions for ξνe and
Ωbh

2 in a scenario without dark radiation (left panel), or ξνe and ∆Neff in a scenario
without making assumptions on the amount of dark radiation (right panel) from
nucleosynthesis data (EMPRESS survey or PDG-21 recommended value) and CMB
data (Planck, Simons Observatory or CMB-S4).

of BBN:

σ(ξνe) ' 0.04 , [Simons Obs.] (7.28a)
σ(Neff) ' 0.11 , [Simons Obs.] (7.28b)
σ(ξνe) ' 0.02 , [CMB−S4] (7.28c)
σ(Neff) ' 0.08 . [CMB−S4] (7.28d)

which should be compared to the σ(ξνe) = 0.020 that can be reached with current
experiments. This is still better than the sensitivity obtained independently from
the Simons Observatory. On the other hand, CMB-S4 will reach a similar sensitivity
as current combined measurements, even if we allow Neff to float. This should not
be surprising, since the unprecedented sensitivity of this experiment to Neff implies
that this is almost equivalent to actually keeping Neff fixed.

For both experiments, though, we can definitely say that the sensitivity is at the
very least comparable to current experiments, so that the combination of EMPRESS
with CMB experiments will significantly narrow down the allowed ranges for ξνe and
∆Neff , thereby strengthening the case for a nonzero lepton asymmetry, should the
EMPRESS hint be correct. Concretely, combining current BBN an dfuture CMB
data we find

ξνe = 0.047± 0.016 , [EMPRESS + SimonsObs.] (7.29a)
Neff = 3.12± 0.07 , [EMPRESS + SimonsObs.] (7.29b)
ξνe = 0.045± 0.014 , [EMPRESS + CMB−S4] (7.29c)
Neff = 3.12± 0.06 . [EMPRESS + CMB−S4] (7.29d)

which improves significantly upon the current sensitivity. Regarding the possible
significance of the anomaly, within this cosmological scenario, the EMPRESS hint
for a non-zero lepton asymmetry is at 2σ significance, whereas the combination
of EMPRESS data with the Simons Observatory or CMB-S4 would increase the
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significance to ∼ 3σ. However, given the strong sensitivity of both experiments to
Neff and its streong positive correlation with ξνe , the central value of Neff will be
extremely important determining the significance of the EMPRESS anomaly should
it persist.

Lastly, we have not really mentioned Deuterium throughout this section, even
though in principle it is also quite sensitive to ξνe , so it may also play a significant
role in determining the significance of the EMPRESS hint. Unlike the case for
Helium, the current measurement is limited by statistics, and it is expected to
improve substantially in the near future with the advent of 30m class optical/near-
infrared telescopes [112]. Perhaps more importantly, though, the current uncertainty
is actually dominated by uncertainty in the theoretical prediction for D/H|P coming
from the d + d → n + 3He and d + d → p + 3H reaction rates. Additionally, since
the most stringent constraints actually rely on a combination of CMB and BBN
data, resolving the possible tension between BBN and the CMB, which we have
ignored up to now in this discussion, is imperative. Therefore, in order to provide
a competitive probe of the lepton asymmetry, it is mandatory to measure more
precisely these reactions, or improve the theoretical modeling [52].

7.4 Conclusions

The recent measurement of the primordial helium abundance by EMPRESS could
be an indication for a nonzero lepton asymmetry in the electron neutrino flavor.
Motivated by this new measurement, we have performed a global analysis of the
primordial lepton asymmetries using both BBN and CMB data. Our main results
are summarized in Fig. 7.5, which shows the current constraints on the lepton
asymmetry (parametrized by the neutrino chemical potential ξνe) and its correla-
tion with the baryon asymmetry (Ωbh

2) and with the amount of dark radiation in
the Universe (parametrized by the extra contributions to the effective number of
neutrino species, ∆Neff); quantitative results are reported in Table 7.1.

The constraints on the lepton asymmetry are currently dominated by the helium
abundance, so that they are naturally strongly dependent on the prior chosen on
YP , while the choice of nuclear reaction rates only mildly affects the results. We find
a ∼ 3σ preference for nonzero lepton asymmetry when using the EMPRESS data,
while with the PDG-22 recommended value the preference vanishes (see Fig. 7.2
and Table 7.1). These conclusions are broadly in agreement with other recent works
analyzing the implications of the EMPRESS measurements on the cosmological
parameters [10, 113].

Finally, we have also performed a forecast of the sensitivity to the lepton asym-
metry from the upcoming Simons Observatory and the future CMB-S4. As can be
already seen by Fig. 7.5, Simons Observatory will reach, independently, a sensi-
tivity comparable to the current BBN constraints, while CMB-S4 has the potential
of improving upon them. Should the Simons Observatory confirm the EMPRESS
result, the CMB data from the Simons Observatory, combined with the results from
EMPRESS, will strengthen the hint for a nonzero lepton asymmetry to ∼ 3σ if we
allow for a non-standard background evolution, and ∼ 4σ if Neff = NSM

eff . With the
future CMB-S4 data, the significance would be ∼ 3σ and ∼ 5σ for the different
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scenarios respectively
If confirmed, this result would hint toward new physics generating a large lepton

asymmetry that is not converted to a correspondingly large baryon asymmetry by
sphaleron processes. The construction of possible models and their possible signals
deserves, in our opinion, further investigation.
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Chapter 8

Conclusion

From its rocky start in the early 1940s, as a controversial and slightly neglected
idea, primordial nucleosynthesis has seen some impressive advances with time, both
from a theoretical as well as an experimental point of view and has established itself
as one of the pillars of modern Cosmology. Now, Nucleosynthesis has entered the
era of precision cosmology and as such has become one of the most powerful probes
of the early Universe, opening up a window into the Universe just three minutes
after its conception.

While, overall, one can definitely say that BBN has withstood the test of time,
in this era of precision cosmology, just as in other branches of cosmology, possible
cracks in its foundation are starting to show. Aside from the long-standing Lithium
problem, which we have simply ignored throughout this thesis, recent measurements
of the d+p→ 3He+γ rate by the LUNA collaboration [55] have exposed a possible
∼ 2σ tension between the baryon density abstracted from measurements of the CMB
and BBN, when they should be equal according to the ΛCDM model. Additionally,
the novel determination of the primordial Helium abundance by the EMPRESS
collaboration is in about a 3σ tension with the Standard Model. This would imply
that for every observational abundance we can constrain there is a significant tension
between prediction and observation. On the other hand, different determinations
of YP show no tension with the SBBN prediction of YP and the tension with the
Deuterium abundance leading to the smaller predicted value of Ωbh

2 vanishes if one
interpolates the experimental rates differently.

A resolution of this tension will only come with either new measurements of the
Helium abundance either confirming or rejecting the EMPRESS result and with
new experimental data on the DD-reactions that dominate the error budget of the
Deuterium abundance. Thus, while saying that BBN is in trouble may be a bit
of an overstatement, we also need to be careful when championing the remarkable
agreement between theory and data of the primordial abundances of light nuclei
given its fragility.

More importantly, though, as we hope to have shown with this thesis, in neither
of the two cases, the importance of BBN as a probe of new physics is undermined in
any way. If the EMPRESS value for YP and the choice of nuclear reaction rates from
PRIMAT turn out to be confirmed, this may be interpreted as a hint of new physics
at play at the epoch of BBN, guiding further development in the areas of Cosmology
and Particle Physics, whereas if the PDG-22 determination and the rates adopted
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in PArthENoPE turn out to be correct, then BBN can constrain those same aspects
of new physics.

Throughout this thesis, we have attempted to do both, by highlighting the effects
the seemingly trivial choice of prior on YP and nuclear reaction rates has on the
conclusions, while still performing exhaustive global analyses using different sets of
BBN and CMB data, both independently and combined.

We have focused on three scenarios. First, we have allowed for a non-standard
expansion history of the Universe parametrized by ∆Neff 6= 0. In this case, the choice
of nuclear reaction only very mildly affects the constraints, while the prior on YP

significantly changes the conclusions. Regardless of the combination between CMB
and BBN data, with the PDG-22 value we find good agreement with Neff = NSM

eff .
For the EMPRESS prior, on the other hand, we find Neff = 2.41 ± 0.22, which is
about 3σ lower than the Standard model value and slightly in tension with the CMB
determination. While some models leading to ∆Neff exist, they actually increase the
primordial abundance of Helium, actually worsening the tension with the Standard
model. We find that the simplest interpretation of this is actually as a 3σ indication
of a time variation of the Gravitational constant ∆GN

G0
N

= −0.104±0.035 or, assuming

a linear time dependence for GN(t), ĠN

G0
N
= (7.5± 2.6)× 10−12yr.

We then studied the time variation of the Higgs vacuum expectation value and
its effect on BBN. Both Helium and Deuterium are positively correlated with a
relative variation of v, more strongly so for Deuterium than for Helium. However,
given a degeneracy between the baryon density and the Higgs vev for Deuterium,
the sensitivity from BBN on this parameter is entirely dominated by the prior on
YP . Thus, we find δv

v0
= 0.0096± 0.0031 for the EMPRESS prior on YP regardless of

the choice of nuclear rates and a similar sensitivity but no preference for δv
v0
6= 0 for

PDG rates. When assuming a prior on Ωbh
2, the degeneracy for Deuterium breaks

and it is now this abundance that dominates the constraints. Interestingly, given the
strong dependence of the Deuterium abundance on δv

v0
, even for the PDG-22 value

for YP the tension coming from the choice of PRIMAT rates translates into a 2.1σ
preference for δv

v0
= −1.9± 1.0. However, since this constraint is now driven by the

Deuterium abundance, the preference vanishes for PArthENoPE rates. Regardless,
this may be a hint that both the PRIMAT tension as well es the EMPRESS anomaly
are an artifact of a time variation of the Higgs vev.

Departing from the topic of the time variation of fundamental constants, we
have also studied how BBN can be used to perhaps resolve the Neutron Lifetime
Anomaly. First, the strong sensitivity of the Helium abundance to τn and the
increased precision in the Helium determination allows one to make an indirect
measurement of τn from BBN data, yielding (870 ± 14) s for the PDG-22 prior,
which is comparable to space determinations of τn, although it does not provide
any significant preference for one or the other. For the EMPRESS prior on YP we
find a value lower by about 3σ than both determinations, which seems an unlikely
explanation of the EMPRESS anomaly. The error on τn is entirely dominated by the
uncertainty in YP , so increasing the precision in the BBN measurement of τn requires
increasing the precision in YP , making it unlikely that the BBN measurement of τn
will become comparable with the most precise determinations to date.

However, we can also directly constrain the BSM physics interpretation propsosed
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in [12]. They remark that the NLA could be explained if the neutron decayed to
protons, with a lifetime we call τnp, and additionally had a small branching ratio
∼ 1% to some dark sector particles, that leads to a slightly smaller total neutron
lifetime τn. While more stringent constraints can be derived, we show that BBN is
in principle sensitive to both types of neutron lifetime, providing essentially a model
independent constraint on this scenario.

Given the large observational uncertainty on Helium and the fact that Deuterium
and Helium are degenerate with respect to τn and τnp, we find that BBN in principle
agrees both with the SM and BSM interpretations of the NLS, although the con-
straints are far from being competitive. The most stringent constraints are obtained
from PArthENoPE rates by adding a prior on τn = τbottlen = (878.4 ± 0.5) s, for
which we find τnp = 878.5+11.4

−0.1 s, which still agrees both with the SM as well as the
dark neutron decay interpretation of the anomaly. However, in this case, depending
on the central value of YP , even with slight improvements in the observational de-
termination of YP , we can begin to constrain the BSM physics interpretation of the
NLA.

Last, but definitely not least, having explored several other options, we come
to the conclusion that a modification of the weak rates is perhaps the simplest
way to reduce the Helium abundance without influencing strongly the Deuterium
abundance. Therefore, we propose the presence of a large lepton asymmetry at
the time of BBN as the most likely explanation of the EMPRESS anomaly and
again perform an exhaustive analysis of the effect of a non-zero lepton asymmetry
on BBN and the CMB, both for the case of a standard, Neff = NSM

eff , as well as a
non-standard, Neff 6= NSM

eff , expansion history of the Universe.
The constraints on ξνe are dominated by the Helium abundance and, therefore,

very strongly dependent on the prior chosen for YP , but rather insensitive to the
choice of nuclear reaction rates, although the other parameters allowed to simul-
taneously vary are slightly affected by it. The significance for a non-zero chemical
potential is ∼ 3σ when keeping Neff fixed and ∼ 2σ when allowing Neff to float for
the EMPRESS prior on YP . On the other hand, with the PDG-22 prior on YP we
find no preference for such a large lepton asymmetry.

Furthermore, we have performed a forecast of the sensitivity of future experiments
improving observations of the CMB, namely the Simons Observatory and the CMB-
S4. Assuming Neff = NSM

eff , we find that the Simons Observatory independently will
provide a sensitivity that is comparable to the current senstivity from BBN only.
CMB-S4 on the other hand will actually improve the sensitivity by ∼ 30%. We
find that these experiments, if they were to confirm the EMPRESS results, have
the potential to increase preference for a non-zero chemical potential to 4σ for the
Simons Observatory and 5σ for the case of CMB-S4. The improvement for the case
of Neff 6= NSM

eff is less striking. Nonetheless, both experiments will provide powerful
independent determinations of YP dominated by different systematics. If they were
to confirm the EMPRESS results, this would be a strong indication of the presence
of a large lepton asymmetry during BBN.

All in all, hopefully this thesis has shown the potential of BBN as a cosmological
probe to constrain a plethora of different elements of new physics and provide hints
to be used as guideposts for future developments.
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Appendix A

Equilibrium Thermodynamics

A.1 Phase Space Distribution

The great accomplishment of statistical mechanics is to make a connection be-
tween a statistical description of the microscopic processes in a thermodynamic sys-
tem, the microstates, and the quantities that describe it completely, the macrostate.
This approach has proven useful and astonishingly accurate at modeling many com-
plex systems under relatively simple assumptions and deriving valid results for the
macroscopic observables.

Each microstate is described by a vector in the phase space Γ of all particles and
amounts to a specific macrostate. Many microstates can yield the same macrostate.
The key to describing any thermodynamic system and its development is to know
how the probability for each microstate is distributed in the phase space, in order
to determine which macrostate is most likely to happen.

This is described by the phase-space distribution f(q, p), where q = (q1, ..., qN)
and p = (p1, ..., pN) stand for the generalized coordinates and momenta of all parti-
cles. All thermodynamic quantities can be abstracted from it, requiring the limit of
a large number of particles which we can safely say is fulfilled.

Thus, we can assume for the phase space distribution of a particle in equilibrium
in the early Universe the phase space distribution of a single particle in an ideal gas,
significantly reducing the degrees of freedom and the complexity of the problem. In
the most general sense, that is, taking quantum and relativistic effects into account,
one can write the phase space distribution as:

f(q, p) =
1

eβ(E−µ) ± 1
(A.1)

where β = 1
kBT

, E is the energy of the particle for a given microstate and µ is the
chemical potential of the particle. There is a distinction between an ideal gas of
bosons and fermions. The plus stands for fermions and the minus for bosons. For
simplicity reasons, it will not always be clarified which sign stands for bosons and
which for fermions. Unless explicitly stated otherwise, if a double sign like ± is used
in an equation, the sign above will stand for fermions, the one below for bosons.

This slight difference has an enormous impact on the overall behaviour of such a
gas, as can be seen from figure A.1. For bosons the distribution diverges to infinity
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Figure A.1: Bose-Einstein, Fermi-Dirac and Boltzmann distributions as a function
of x = β(E−µ). For x > 2 all three distributions show the same behavior, whereas
they have very different limits for x� 1.

as β(E − µ) approaches 0, a behavior which leads to Bose-Einstein condensation
at low temperatures, whereas for fermions the Pauli exclusion principle forces the
distribution to remain below one.

A further distribution which is also very important in this context is the Boltz-
mann distribution:

f(q, p) = e−β(E−µ) (A.2)

Both the Bose-Einstein and the Fermi-Dirac distribution converge to the Boltz-
mann distribution in the limit of either low particle density or high temperature (see
fig. A.1). This approximation greatly simplifies the equations and, in most cases,
approximating the Fermi-Dirac and Bose-Einstein distribution as a Boltzmann dis-
tribution, thus neglecting the difference between the nature of these particles and
the quantum effects arising from it, is remarkably accurate.

A.2 Non-relativistic Particles

We can now proceed to calculate some quantities that we will need very often
throughout the thesis, starting with the particle density. We will neglect the chemi-
cal potential in this section, as this will allow us to obtain closed form solutions. The
phase space distributions from eq. A.1 and A.2 are not probability density functions,
as they are not normalized to one. They are normalized to yield the total number
of particles in the system N if integrated over phase space. Thus, only integrating
over momentum space should lead to the distribution of particles in position space,
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also known as the particle number density. We can therefore write:

n =
gi

(2π)3

∫
d3~p f(|~p|) (A.3)

The factor gi
(2π)3

accounts for the fact that we have assumed that the distribution of
possible microstates in the phase space is continuous and the factor g accounts for
the internal degrees of freedom of the particle, that is, the fact that each eigenstate
may be degenerate, for example, due to multiple possible spin configurations.

In the non-relativistic limit, the kinetic energy E = |~p|2
2m

= 3
2
T is much smaller

than the rest mass, so that in the non-relativistic limit m/T � 1. Thus, the energy
momentum relation can be approximated as:

E =

√
m2 + |~p|2 = m

√
1 +
|~p|2

m2
≈ m+

|~p|2

2m
(A.4)

Furthermore, in the non-relativistic limit, the phase space densities of both
fermions and bosons can be approximated by the same Boltzmann distribution.
Thus, the integral for the particle density results in:

nnr =
gi

(2π)3

∫
d3~pe

−β

(
m+

|~p|2
2m

)
= e−

m
T

gi
(2π)3

∫
d3~pe−

β
2m

(
p2x+p2y+p2z

)

⇒ nnr = gi

(
mT

2π

) 3
2

e−
m
T

(A.5)

The energy density is defined in a similar manner by multiplying the integrand
with the energy of a particle and integrating over momentum space:

ρ =
gi

(2π)3

∫
d3~p E(~p)f(~p) (A.6)

Again, in the non-relativistic limit this can be evaluated analytically:

ρnr =
gi

(2π)3

∫
d3~p

(
m+

|~p|2

2m

)
e
−β

(
m+

|~p|2
2m

)

⇔ ρnr = m
gi

(2π)3

∫
d3~p e

−β

(
m+

|~p|2
2m

)
+

e−
m
T

2m

gi
2π2

∫
d|~p||~p|4e

−β
2m

|~p|2

(A.7)

where we have gone into spherical coordinates and integrated over the solid angle
dΩ, which results in a factor of 4π. With the integral∫ ∞

0

x4e−ax2

=
3
√
π

8a5/2
(A.8)
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from [114] and the definition for the particle density from A.5, this equation can be
further simplified to:

ρnr = m · nnr +
3T

2m
gi

(
mT

2π

)3/2

e−
m
T

⇔ ρnr = m · nnr

(
1 +

3

2

T

m

) (A.9)

Remembering that we are in the non-relativistic limit m
T
� 1, eq. A.9 can be further

simplified to give the formula:

ρnr = m · nnr (A.10)

A.3 Relativistic Particles

However, not all particles are non-relativistic and we cannot always neglect quan-
tum relativistic effects. Therefore, the particle and energy densities have to be cal-
culated for the distributions in eq. A.1. We can not use A.4 anymore, but have to
employ the full energy momentum relation

E2 = |~p|2 +m2 (A.11)

The phase-space distribution from eq. A.1 only depends on the absolute value of
momentum, so we will use spherical coordinates and rewrite the integral over |~p|
as an integral over energy. The differential of the absolute value of momentum is
substituted by:

|~p|2d|~p| =
√
E2 −m2EdE (A.12)

Thus, after performing the integral over the solid angle, eq A.3 for a boson or
fermion takes on the form:

nr =
gi

(2π)3
· 4π

∫ ∞

m

dE
E
√
E2 −m2

eβE ± 1
(A.13)

We can now introduce the dimensionless variables x = m
T

and z = E
T

, so that:

nr =
gi
2π2

T 3

∫ ∞

x

dz
z
√
z2 − x2

ez ± 1
(A.14)

For the Energy density, a similar result is obtained just by multiplying the inte-
grand from eq. A.13 with E and then performing the variable change. This yields:

ρr =
gi
2π2

T 4

∫ ∞

x

dz
z2
√
z2 − x2

ez ± 1
(A.15)

Unfortunately, these integrals are not always analytically solvable, but have to
be evaluated numerically. In the ultra-relativistic limit we have m

T
= x� 1, so that
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the integrals from equations A.14 and A.15 can be approximated as:

nr =
gi
2π2

T 3

∫ ∞

0

dz
z2

ez ± 1
(A.16)

ρr =
gi
2π2

T 4

∫ ∞

0

dz
z3

ez ± 1
(A.17)

The integrals on the right hand side arise very often in statistical mechanics and can
be solved with the Γ and ζ functions. The integrals are introduced in, for example,
ref. [115]. For bosons, the relevant integral is:∫ ∞

0

dx
xs−1

ex − 1
= Γ(s)ζ(s) (A.18)

For fermions, the result is slightly different:∫ ∞

0

dx
xs−1

ex + 1
= Γ(s)

(
1− 21−s

)
ζ(s) (A.19)

With the further definition that

Γ(n) = (n− 1)! ∀ n ∈ N (A.20)

and
ζ(2) =

π2

6
, ζ(4) =

π4

90
(A.21)

the particle density of a boson in the relativistic limit can be written as:

nr =
gi
2π2

T 3ζ(3)Γ(3) =
ζ(3)

π2
giT

3

ρr =
gi
2π2

T 4ζ(4)Γ(4) =
π2

30
giT

4

(A.22)

For fermions, the only difference is a factor 1− 21−s, which results in:

nr =
gi
2π2

T 3
(
1− 21−3

)
ζ(3)Γ(3) =

3

4

ζ(3)

π2
giT

3

ρr =
gi
2π2

T 4
(
1− 21−3

)
ζ(4)Γ(4) =

7

8

π2

30
giT

4

(A.23)

A.4 Equations of State

Also of interest is the pressure of the gas, mainly for the calculations of the
Entropy as we will see later. However, instead of deriving it the same way the
energy density has been derived, the very important concept of equations of state
for Cosmology will be introduced. An equation of state is an equation which relates
state variables in equilibrium. The best example of such an equation is the ideal gas
equation:

pV = NT (A.24)
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However, what is generally meant by an equation of state in the context of cos-
mology is an equation which relates energy density to pressure, namely:

w =
p

ρ
(A.25)

where w is any real number.
For non-relativistic particles, this factor is relatively easy to compute, because

the ideal gas equation A.24 holds in the non-relativistic limit. Rearranging eq. A.24,
we obtain:

p = T
N

V
= Tnnr =

T

m
ρnr (A.26)

Therefore, as we are in the non-relativistic limit T
m
� 1 :

w =
p

ρnr
=

T

m
≈ 0 (A.27)

Thus, for non-relativistic particles:

w = 0 (A.28)

To calculate the same relation for a relativistic gas, it is useful to introduce the
grand canonical potential and the grand canonical partition function for bosons and
fermions

Φ(V, T, µ) = −T lnZ (A.29)

with the grand canonical partition function Z for bosons and fermions

Z =



∏
r

1

1− e−β(Er−µ)
for bosons

∏
r

(
1 + e−β(Er−µ)

)
for fermions

(A.30)

where r runs over all possible energy states of the system. The grand canonical
potential is the quantity from which all thermodynamic observables can be derived
for a system whose natural variables are volume, temperature and chemical poten-
tial. As it is a potential, it has to be an extensive quantity. However, the only
extensive quantity it depends on is the volume. Therefore, Φ ∝ V . From the
differential of the grand canonical potential

dΦ = −SdT − pdV −Ndµ (A.31)

it follows that
Φ = −pV = −T lnZ (A.32)

In order to derive the relativistic equation of state, all that is left now is to calculate
the right hand side of A.32. To that end, we will assume again that the eigenstates
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of the system are so dense in the phase-space that we can approximate the sum over
all eigenstates by an integral. Thus:

pV

T
= lnZ = ±

∑
r

ln
(
1± e−β(Er−µ)

)

≈ ±gi · V
2π2

∫
d|~p||~p|2 ln

(
1± e(−β(Er−µ))

) (A.33)

The V on the right-hand side of the equation comes from the integration over the
spatial coordinates and cancels out with the Volume on the left hand side of the
equation. We can now partially integrate this term. The derivative with respect to
momentum of the logarithm in the integrand is:

± ∂

∂|~p|
(
ln
(
1± e−β(Er−µ)

))
= − βe−β(Er−µ)

1± e−β(Er−µ)

∂E

∂|~p|

= − 1

T

1

eβ(Er−µ) ± 1

∂E

∂|~p|
= − 1

T
f
∂E

∂|~p|

(A.34)

Thus, by multiplying eq. A.33 with T on both sides after performing the partial
integration step, the temperature cancels out. The boundary term vanishes because
the phase space distribution approaches 0 as p approaches infinity, so eq. A.33
reduces to:

p =
1

3

gi
2π2

∫
d|~p| |~p|3

eβ(E−µ) ± 1

∂E

∂|~p|
From the energy momentum relation we know that ∂E

∂|~p| =
E
|~p| , so the final result is:

p =
1

3

gi
2π2

∫
d|~p| |~p|2E

eβ(E−µ) ± 1
=

1

3
ρ (A.35)

The equation of state for relativistic particles takes on the form:

p

ρ
=

1

3
(A.36)

A.5 Entropy

We now have all the tools at hand to introduce yet another very important
quantity, the entropy, or rather the entropy density. To that end, we will recall
the first law of thermodynamics in its differential form. While generally µ is very
significant, we will, as we have done up to now, assume its contribution is negligible
and we assume there are no further generalized forces. Thus:

dE = TdS − pdV ⇒ dS =
p

T
dV +

1

T
dE (A.37)

From the differential for Φ (eq. A.31), the definition for the entropy in the grand
canonical ensemble can be abstracted:

S(V, T ) = −∂Φ

∂T

∣∣∣∣
V,µ

(A.38)
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With equations A.30 and A.32, this can be evaluated to:

S(V, T ) = − ∂

∂T
(−T lnZ)

∣∣∣∣
V

= lnZ + T
∂ lnZ

∂T

∣∣∣∣
V

=
p(T )V

T
+ T

∂ lnZ

∂T

∣∣∣∣
V

(A.39)

Let us have a closer look at ∂ lnZ
∂T

. Our starting point for lnZ will be eq. A.33. As
the boundaries do not depend on the temperature, the derivative can be applied
before integrating:

∂ lnZ

∂T

∣∣∣∣
V

= ±gi · V
2π2

∫
d|~p||~p|2 ∂

∂T

(
ln
(
1± e−βE

))
(A.40)

The derivative in the integrand evaluates to:

± ∂

∂T

(
ln
(
1± e−βE

))
=

1

T 2

E

eβE ± 1
(A.41)

so that
∂ lnZ

∂T

∣∣∣∣
V

=
V

T 2

gi
2π2

∫
d|~p||~p|2 E

eβE ± 1
=

V

T 2
ρ(T ) (A.42)

In the last equation we have simply used the definition of the energy density from
eq. A.6. Inserting it all into equation A.39:

S(V, T ) =
V

T
(ρ(T ) + p(T )) (A.43)

or, defining the entropy density as ∂S
∂V

∣∣
T
:

s =
1

T
(ρ(T ) + p(T )) =

(1 + w)

T
ρ(T ) (A.44)

While we have used the relativistic phase space distribution, the same relation
holds in the non-relativistic limit, remembering that in that case βE � 1, so that
the logarithm in equation A.33 can be approximated for x� 1 as:

ln (1 + x) ≈ x (A.45)

Thus, equation A.44 holds for all cases.
It is interesting to see how the entropy density evolves with time, more concretely,

we will see that in a co-moving volume Entropy is conserved. Even though the
necessary equations for such an analysis will be introduced later on in section B, the
derivation is more suitable at this point.

Essentially, we will look at how the entropy evolves with time in a cube of time-
dependent side-length a(t). Thus, our volume is just V = a3. The density and
pressure change according to eq. B.8, which can be cast into the form:

dp

dt
a3 =

dp

dT

dT

dt
a3 =

d

dt

(
a3(p+ ρ)

)
(A.46)

We will now try to derive dp
dT

. We will start with the differential for the entropy
written, unusually, in terms of the energy density as:

dS =
1

T
d(ρV ) +

p

T
dV =

V

T

dρ(T )

dT
dT +

1

T
(ρ(T ) + p(T )) dV
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Thus, the derivatives of entropy with respect to V and T take on the following
form:

∂S

∂T

∣∣∣∣
V

=
V

T

dρ(T )

dT

∂S

∂V

∣∣∣∣
T

=
1

T
(ρ(T ) + p(T ))

Assuming that entropy is a smooth function and we can change the order in
which we apply the derivatives, we can set

∂2S

∂V ∂T
=

∂2S

∂T∂V

This yields:

∂

∂V

(
V

T

dρ(T )

dT

)
=

∂

∂T

(
1

T
(ρ(T ) + p(T ))

)
⇔ 1

T

dρ(T )

dT
= − 1

T 2
(ρ(T ) + p(T )) +

1

T

dρ(T )

dT
+

1

T

dp(T )

dT

(A.47)

Thus:
dp(T )

dT
=

1

T
(ρ(T ) + p(T )) (A.48)

This can be inserted into equation A.46:

a3

T
(ρ(T ) + p(T ))

dT

dt
=

d

dt

(
a3(p+ ρ)

)

⇔ a3

T 2
(ρ(T ) + p(T ))

dT

dt
=

1

T

d

dt

(
a3(p+ ρ)

)

⇔ − d

dt

(
1

T

)
· (ρ(T ) + p(T )) =

1

T

d

dt

(
a3(p+ ρ)

)
which can be rewritten as:

d

dt

(
a3

T
(ρ(T ) + p(T ))

)
= 0 (A.49)

Remembering that V = a3 and comparing this to eq. A.53 we see that the
entropy inside a co-moving volume is conserved.

A.6 Effective Degrees of Freedom

Up until now, all the results are valid for an ideal gas made up of a single particle
species. However, the Universe is comprised of many different particle species, so,
using the results derived up to this point, we will proceed to find a description of
the total energy and entropy density in the Universe.

While, generally, mixing two gases of different particle species gives rise to very
interesting effects and such a system is not easy to describe, in our model of the
Universe, the procedure is very straightforward. The only ingredients for such a
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recipe are the formulas derived for the densities of a specific particle and a precise
knowledge of the particle species in equilibrium at any given point, the moment a
particle species decouples from equilibrium and its temperature after this moment.

Knowing this, the total energy density, for example, is just the sum of the energy
densities of all species i, or:

ρtot =
∑
i

ρi =
∑
i

gi
2π2

T 4
i

∫ ∞

xi

dzi
z2i
√
z2i − x2

i

ezi ± 1
(A.50)

Here, we have already accounted for the different temperatures the particles might
have. For particles in thermal equilibrium, these are all the same, as they interact.
After a species decouples, it does not interact with the particles still in equilibrium
on average, so its temperature might differ from that of photons. This is what
happens, for example, with neutrinos and photons. The internal temperature of
neutrinos is lower than that of photons by a factor

(
4
11

)1/3
For massless particles we have already seen that the integral in A.50 can be

solved analytically, so that the total energy density is just ∝ T 4
i . In fact, in the

ultra-relativistic limit, each particle’s contribution to the total energy density is just
dependent on its internal degrees of freedom, this being the most a particle can
contribute.

For massless particles, as the solution of the integral is not dependent on temper-
ature, the relative contribution of one degree of freedom does not change. However,
for massive particles, the contribution to the total energy density decreases with
temperature, and, as they slow down and stop being relativistic, even gets exponen-
tially suppressed by the Boltzmann factor. The effective contribution of one degree
of freedom of a massive particle as a function of temperature is shown on figure A.2.
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Figure A.2: Effective contribution of a degree of freedom of a massive particle as a
function of the ratio of mass to temperature x = m/T , both for bosons and fermions.
The gray lines show the constant value for a massless particle.

This leads to the idea that one may parametrize the energy density in a form
similar to eq. A.22, but with the internal degrees of freedom gi containing the in-
formation of how much each degree of freedom contributes at a given temperature
relative to its maximal contribution, that is parametrizing the temperature depen-
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dence which differs from the simple Stefan Boltzmann law ∝ T 4 by introducing the
effective degrees of freedom of the universe.

Taking the temperature of a photon as a reference, Tγ := T , as it stays in equi-
librium the longest and always contributes fully to the energy density, we can write:

ρtot =
π2

30
geff (T ) · T 4 (A.51)

where geff is defined as:

geff =
∑
i

ρi =
∑
i

π4

15
gi

(
Ti

T

)4 ∫ ∞

xi

dzi
z2i
√

z2i − x2
i

ezi ± 1
(A.52)

Essentially the only thing we have done compared to A.50 is to factor out the
energy density of a photon with one degree of freedom, but the idea behind this small
manipulation is the important part. As non-relativistic particles barely contribute
to the total energy density, the exact temperature dependence of the total energy
density does not differ greatly from ∝ T 4, except for some moments where it changes
very fast due to a particle becoming non-relativistic as the Universe cools down. The
idea is to simplify the temperature dependence of the energy density from eq. A.6
by introducing the effective degrees of freedom, which essentially contain all of the
information on the particle content and evolution of the Universe. The evolution of
this parameter as a function of temperature is shown on figure A.3a.
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Figure A.3: Effective degrees of freedom for the energy density. Figure A.3a shows
the calculation according to eq. A.56 and a value for the QCD phase transition
TQCD = 150MeV. Figure A.3b shows a close-up on the region of the phase transition
for different values for TQCD and the effective degrees of freedom for the quark gluon
plasma and the hadron gas respectively

A similar treatment can be applied to the entropy density, so that:

s =
∑
i

1

Ti

(ρi(T ) + pi(T )) =
∑
i

(1 + wi)

Ti

ρi(T ) (A.53)

In equation A.50 we have assumed the relativistic phase-space distribution for all
particles. Thus, wi =

1
3
. While for non-relativistic particles this is not the correct
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equation of state, they contribute so little that this effect is negligible. Thus, the
total entropy density can be written in a similar form to the energy density:

stot =
2π2

45
gseffT

3 (A.54)

with the effective entropy degrees of freedom defined as:

gseff =
∑
i

ρi =
∑
i

π4

15
gi

(
Ti

T

)3 ∫ ∞

xi

dzi
z2i
√

z2i − x2
i

ezi ± 1
(A.55)

The only difference with respect to A.52 is that Ti

T
goes with the power of three

instead of four. Therefore, while the particle’s temperature does not differ from the
photon temperature, the energy and entropy degrees of freedom are approximately
the same. They only differ noticeably after neutrino decoupling, as the effective
temperature of the neutrinos is smaller than that of photons by a factor (4/11)

1
3 .

Therefore, unless explicitly stated otherwise, it has been assumed that these are
equal.

The only thing left is to clarify the particle content of the Universe at any given
moment contributing to the effective degrees of freedom. We will start at high
temperatures and assume only the particle content of the Standard Model. Some
sort of Dark Matter particle will definitely play a role for high temperatures as well,
but under the assumption that the particle is non-relativistic before freeze-out, its
contribution can be neglected. We will refrain from making any assumptions to the
contribution long before freeze-out, as it would be a wild guess at best.

Therefore, for high temperatures, we have 28 degrees of freedom from bosons and
90 from fermions. From A.23 we know that fermions contribute less to the energy
density by a factor of 7/8. This puts the total number up to 28+ 7/8 · 90 = 106.75.
With this we can calculate, according to eq. A.52, the effective degrees of freedom
as a function of temperature.

However, there is one event in the evolution of the Universe which very sig-
nificantly changes the number of degrees of freedom: the phase transition from a
quark-gluon-plasma to a hadron gas at around T ≈ 160MeV. After the transi-
tion, quarks and gluons are confined into hadrons and we can no longer assume
they are free, separate particles. Essentially what this means is that the particles
in equilibrium, which interact with leptons and photons, which contribute to the
effective degrees of freedom, are no longer quarks and gluons, but rather all possible
hadrons. Most of them are very heavy compared to the temperature and contribute
only very little to them, an exception in this case are pions. However, due to the
almost exponentially increasing number of hadrons and excited hadron states, even
though they are non-relativistic, the effective degrees of freedom are extremely high
and increase very rapidly. This strong increase in the degrees of freedom can be
observed on figure A.3a, where the effective degrees of freedom of the hadron gas
phase are shwon in gray dashed lines. For a list of all the hadrons taken into account
to calculate geff see [116].

One further information that is extremely important is the order of the phase
transition. It is a cross-over transition, meaning that the entropy and energy densi-
ties have to be, at least, steady and differentiable. To that end, we have smoothed
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out the effective degrees of freedom during the phase transition with a tanhx func-
tion, taking advantage of the fact that it very rapidly changes from −1 to 1. Thus,
figure A.3a in fact shows:

geff (T ) = ghgeff (T ) +
1 + tanh ((a · (T − TQCD))

2

(
gqgpeff (T )− ghgeff (T )

)
(A.56)

where the superscripts hg and qgp indicate that these are effective degrees of freedom
in the hadron gas and quark-gluon-plasma phase respectively. The factor a controls
how fast the transition occurs. The value chosen for TQCD has a significant effect
during the phase transition, so it is important especially for the low mass regime for
our calculations later on. Figure A.3b shows geff for different temperatures of the
phase transition. The value used for all numerical calculations is 150MeV.
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Appendix B

Standard Cosmology

In recent years, the amount of experimental techniques available to astrophysicists
has increased greatly, allowing for the first time to really put cosmological models to
the test with precise measurements at all scale, from the galactic to the cosmological
scale.

While these have disproved many theories and might actually have raised more
questions than they have answered, some very important and general assumptions
have, up to now, stood the test of time and are becoming the solid foundation upon
which future improvements and ideas in Cosmology will most likely have to be based
on, a Standard Model in Cosmology in a way.

The exact definition of a Standard Model of Cosmology is hard to give, mainly
because it changes very rapidly with time due to recent experiments and there is
not an overall consensus in most details as there might be on the Standard Model
of Particle Physics.

However, cosmologists agree on a set of guidelines a cosmological model should
follow given the huge amount of experimental data pointing towards this conclusion.
These guidelines will be our focus now.

The first and most important idea is that of an isotropic and homogeneous Uni-
verse. This is originally based upon the Copernican Principle, which states that
Humanity and Earth do not occupy a privileged point in space. Actually the oppo-
site, we are nothing more than a small grain of sand in a vastly immense desert we
call Universe and there is nothing special about our grain of sand for the underlying
laws of physics. Therefore, these should behave the same at any point in space and
in every direction we look. Any other assumption would dispute the Copernican
Principle.

While philosophycally speaking this is a logical argument, physics needs exper-
imental proof of such assumptions. The biggest proof is the Cosmic Microwave
Background Radiation (CMB), which shows a completely homogeneous and isotropic
distribution except for some minimal density fluctuations which arise from quantum
fluctuations before inflation.

The CMB is actually one of the most important sources of information, because
it offers the possibility of measuring some crucial cosmological parameters to re-
markably great accuracy, like the overall energy density of the Universe, as well as
the abundance of the different components that make up the Universe.
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Surprisingly, most of the energy density does not come from the matter we know
and which surround us. In fact, according to measurements by the WMAP collab-
oration ([117]), only 4.5% of the energy density is made of baryonic matter. The
most important contribution, about 72.9%, stems from some unknown form of en-
ergy known as Dark energy. And, last but not least, about 22.6% is made up of
Dark Matter, which will be the main focus of this thesis.

The final assumption is that Einstein’s General Relativity (GR) describes the
interactions of particles at a large scale, while the Standard Model (SM) or rather a
Quantum Field Theory describing the particle content of the Universe (this includes
possible extensions to the SM) describes the interactions at the smallest scale. It
should be noted that of course a more general approach which includes and extends
both of these theories is also needed, especially for an accurate description of the
very early Universe, but there is no evidence as to which of the possible theories is
true.

Therefore, to our best knowledge, the equations governing the evolution of the
Universe are Einstein’s field equations([118]):

Rµν −
1

2
gµνR = −8πGNTµν (B.1)

where Rµν is the Ricci tensor, the Riemannian curvature tensor contracted with
the metric gµν , R is the Ricci scalar, Tµν is the energy momentum tensor and GN

is Newton’s gravitational constant. Thus, the content of this set of differential
equations is clear: the geometry of the Universe, described by the curvature tensor,
is essentially defined by its energy content. This information is contained in the
energy momentum tensor.

We will make use of the first assumption made about the Universe being ho-
mogeneous and isotropic in order to considerably simplify the calculation of these
equations. With this assumption, the metric describing the Universe can be assumed
to be the Friedmann-Lemaître-Robertson-Walker(FLRW)-metric. A line element in
the FLRW metric in spherical coordinates has the form [118]:

ds2 = dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ + r2 sin2 θdφ2

)
(B.2)

a(t) is the scale factor of the Universe and k is an integer valued variable which
indicates the curvature of the Universe. The possible values for k are:

k =


1 closed
0 flat
−1 open

(B.3)

The line element from 3.1 doesn’t have any mixed elements, therefore the metric
tensor defined as

ds2 = gµνdx
µdxν

has to be diagonal. In fact its exact form can be extracted from eq. 3.1:
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gµν =


1 0 0 0

0 −a(t)2

1−kr2
0 0

0 0 −a(t)2r2 0
0 0 0 −a(t)2r2 sin2 θ

 (B.4)

The energy momentum tensor also simplifies greatly as it takes on the following
diagonal form [119]:

Tµν =


ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

 =


ρ 0 0 0
0 −wρ 0 0
0 0 −wρ 0
0 0 0 −wρ

 (B.5)

where ρ stand for the energy density and p for the pressure.
With this information, following ref. [118], the equations describing the evolution

of the scale parameter can be obtained:(
ȧ(t)

a(t)

)2

+
k

a(t)2
=

8πGN

3
ρ (B.6)

2ä(t)

a(t)
+

(
ȧ(t)

a(t)

)2

+
k

a(t)2
= −8πGNp (B.7)

Furthermore, using the conservation of the energy momentum tensor, following
[118], a third very important equation can be derived:

a3
dp

dt
=

d

dt

(
a3 (ρ+ p)

)
(B.8)

Out of these three equations only two are linearly independent. Usually, B.6 and
B.8 are used, as it is easier to work with them. However, B.7 is also important, for
example in order to derive the time dependence of the scale parameter.

Equation B.6, the Friedmann equation, is probably the most known out of the
three. It is useful to introduce the Hubble parameter defined as:

H(t) =
ȧ(t)

a(t)
(B.9)

Its value today is extremely important as we shall see later on, but it is also a
great puzzle. It can be abstracted from measurements of the CMB. The WMAP
collaboration ([117]) found the value:

H0 = (70.2± 1.4) km/(sMpc) (B.10)

However, the Hubble parameter can be measured by a myriad other ways. The
problem is that the results from different measurements do not seem to agree on
an exact value, which is becoming ever more problematic with the uncertainties
becoming smaller and smaller. They all agree on the order of magnitude of the
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parameter. Thus, in order to avoid uncertainties from the this value, it is useful to
parametrize the Hubble parameter as:

H0 = h · 100 km/(sMpc) (B.11)

where the reduced Hubble parameter ranges from h ≈ 0.6− 0.8.
With the Hubble parameter defined, the Friedmann equation can be cast into

the more familiar form:

H(t)2 +
k

a(t)2
=

8πGN

3
ρ (B.12)

Equation B.12 describes the dynamics of the Universe. With it, the geometric
form of the Universe can be calculated, whether it is flat, positively curved, like a
sphere, or negatively curved. It predicted the expansion of the Universe before the
measurements by Hubble could confirm it. The answer to the age old question of
the age of the Universe, or rather the time it has been expanding for, can also be
calculated with the Friedmann equation. Needless to say, it is extremely significant.
From B.3 we know that for a flat Universe k = 0. In that case, the Friedmann
equation yields:

(H(t))2 =
8πGN

3
ρ (B.13)

This allows us to introduce the critical density ρc:

ρc =
3 (H(t))2

8πGN

(B.14)

It is useful to normalize the Friedmann equation with the critical density. The
density parameter is defined as:

Ω =
∑
i

Ωi =
∑
i

ρi
ρc

(B.15)

where the summation over i runs over all the components contributing to the energy
density. Generally, these are grouped by the different equations of state into a mat-
ter, radiation and vacuum component, as these evolve with time and temperature
differently, as we shall see later on. Also, even though this is not really a particle
component, Ωk can also be introduced to describe the term dependant on the value
of k:

Ωk = −
k

H2R2
(B.16)

With B.15 we can therefore rewrite the Friedmann equation B.12 as:

−Ωk =
k

H2a2
= Ω− 1 (B.17)

From B.17, it is clear to see:

• if Ω > 1, that is, if the total density is greater than the critical density, then
k > 1 and the Universe is closed.

• if Ω < 1, that is, if the total density is smaller than the critical density, then
k < 1 and the Universe is open.

136



Probing New Physics with Big Bang Nucleosynthesis

It is important to note that the different components in B.15 evolve with time
differently. In order to derive said time-dependence, we will start at eq. B.8. We
will perform this analysis for a generic particle with the equation of state ρ = wp,
so that it is valid for all three components.

Applying the time derivative on the right-hand side of B.8 yields:

ṗa3 = ṗa3 + ρ̇a3 + 3H(ρ+ p)a3 (B.18)

The derivative of the pressure with respect to time cancels out. Using the equa-
tion of state, eq. B.18 can be cast into the form:

ρ̇+ 3H(ρ+ P ) = ρ̇+ 3H(1 + w) · ρ = 0

⇔ ρ̇

ρ
= −3H(1 + w)

This is a differential equation which can be solved upon integration. We will
integrate from a time t up to present time t0:∫ t0

t

dt′
ρ̇

ρ
=

∫ ρ0

ρ(t)

dρ′
1

ρ′
=

∫ t0

t

dt′ − 3H(t′)(1 + w)

⇒ ln
ρ0
ρ(t)

= −3(1 + w) ln
a(t0)

a(t)

or equivalently:

ρ(t) = ρ0 ·
(
a(t0)

a(t)

)3(1+w)

(B.19)

Given that the Universe expands as described by the Friedmann equation, the
wavelength of light travelling through space will become redshifted, because the
wavelength increases as space itself is being created. The relative deviation from
its emission wavelength can be parametrized by the redshift parameter z defined by
the relation:

1 + z =
a(t0)

a(t)
(B.20)

With this parameter, equation B.19 reads:

ρ(z) = ρ0 · (1 + z)3(1+w) (B.21)

This leads to the following dependencies:

• for radiation w = 1
3

(A.36), so that ρ ∝ (1 + z)4 ∝ a−4

• from A.28 we know w = 0 for matter (non-relativistic particles). Thus ρ ∝
(1 + z)3 ∝ a−3

• While the equation of state for vacuum energy has not been derived, we define
vacuum energy as an inherent property of space, so that it can not change
with time. Thus, equation B.21 tells us that w = −1

• For Ωk this analysis was not necessary, as we can see directly from B.12 that
Ωk ∝ (1 + z)2 ∝ a−2
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With this information and normalizing the Friedmann equation with the value
of the critical density today, it is possible to write the Friedmann equation in terms
of the redshift parameter z as:

H2(z)

H2
0

= Ωvac + Ωk(1 + z)2 + Ωm(1 + z)3 + Ωr(1 + z)4 (B.22)

Equation B.12, inserting the energy density in terms of the temperature directly
gives us an expression for H(T ). Equation B.22 fulfills the same need, but in terms
of the redshift parameter z. However, one crucial dependency is still missing, namely
H(t). To that end, we will subtract eq. B.6 from B.7. to obtain:

ä

a
= −4πGN

3
(ρ+ 3p) = −4πGN

3
ρ (1 + 3w) (B.23)

The case where w = −1 is slightly different, as ρ is constant, which results in an
exponentially increasing scale factor. This is the case for the inflation phase of the
early Universe. We are however more interested in the processes after inflation, so
we will take w 6= −1, so that 1 + w 6= 0.

To solve this equation, the first ansatz that comes to mind is a power law ansatz
R = c1t

α, where c1 is just a constant dependent on the initial conditions of the
problem. However, as we are interested in the Hubble parameter, this constant
cancels out and it is not necessary to further specify it. Inserting this ansatz into
eq. B.23 and using B.19 to write the energy density as ρ = c2 ·R−3(1+w) yields:

1

c1tα
d2c1t

α

dt2
= −4πGN

3
(1 + 3w) c2 ·R−3(1+w)

⇔ α(α− 1)c1t
α−2

c1tα
= −4πGN

3
(1 + 3w) c2R

−3(1+w)

Solving this equation for R results in:

a(t) = −4πGN(1 + 3w)

3α(α− 1)
t

2
3(1+w) (B.24)

Therefore, the time dependence of the scale parameter is:

a(t) ∝ t
2

3(1+w) (B.25)

Using the equations of state for matter (A.28) and radiation (A.36), the scale pa-
rameter goes as:

a(t) ∝

{
t
1
2 for radiation
t
2
3 for matter

(B.26)

so that the Hubble parameter as a function of time may be written as:

H(t) =

{
1
2t

for radiation
2
3t

for matter
(B.27)
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This equation, along with B.12 allows us to find a relation between the temper-
ature of the Universe and the time since its creation. As the Universe is radiation
dominated for the most part of the development in the early Universe, it is a good
approximation to assume that this, in fact, is the only contribution to the total
energy density. The curvature parameter is also assumed to be negligible. The
Friedmann equation simplifies to:

H2 =
8πGN

3
ρr =

8π3GN

90
geff (T ) · T 4 (B.28)

Thus, in a radiation dominated universe, the Hubble parameter takes on the simple
form:

H(T ) =

√
8π3

90
·
√

GN · geffT 2 = 1.66
√
geff

T 2

mPl

(B.29)

where we have introduced the Planck mass:

mPl =
1√
GN

= 1.221 · 1019GeV (B.30)

Setting B.29 equal to H(t) = 1
2t

and solving for time, we obtain the relation
between time and temperature:

t =
1

2 · 1.66
mPl

geffT 2
= 0.3

mPl√
geffT 2

(B.31)

This is a very important relation, as we will generally use temperature to express
the evolution of the Early Universe, as most changes happen in the first seconds
of the Universe, which is small compared to the 13.7 billion years of its history.
However, the orders of magnitude the Universe changes in temperature in those
few seconds and the consequences this has make it a more suitable to describe the
evolution of the Early Universe.
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Appendix C

Boltzmann Equation

The Boltzmann equation describes the time evolution of the phase-space distri-
bution and, thus, of all observables that can be derived from it (n, ρ, ...). In its most
general form, the Boltzmann equation can be written as follows:

L̂f(x, p) = Ĉf(x, p) (C.1)

f is the phase-space distribution. The operator on the left-hand side is the
Liouville operator, which describes the time-dependence of f . The operator on the
right-hand side is the Collision operator. Essentially, what this equation is telling
us, is that the change in time of the phase-space distribution of a particle is given
by its collisions and interactions with other particles.

C.1 The Liouville Operator

Let us first have a look at the left-hand side of the equation. The relativistic
form of the Liouville operator for a particle of mass m is nothing more than the
total derivative of f with respect to proper time τ multiplied by said mass. As
for the rest of the thesis, we will use Einstein’s summation convention of summing
over repeated indices, where one is covariant and the other contravariant. Using the
chain rule we can now write this as:

L̂f(x, p) = m
df(x, p)

dτ
= m

∂f(x, p)

∂xµ

dxµ

dτ
+m

∂f(x, p)

∂vµ
dvµ

dτ

With four-velocity and four-momentum defined as:

pµ = mvµ (C.2)

vµ =
dxµ

dτ
(C.3)

we get the following equation:

m
df(x, p)

dτ
= m

∂f(x, p)

∂xµ
vµ +m2∂f(x, p)

∂pµ
d2xµ

dτ 2

which is equivalent to:

m
df(x, p)

dτ
=

∂f(x, p)

∂xµ
pµ − ∂f(x, p)

∂pµ
Γµ

σνp
σpν (C.4)
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In this last step we have used Einstein’s geodesic equation ([118])

d2xµ

dτ 2
+ Γµ

σν

dxσ

dτ

dxν

dτ
= 0 (C.5)

where the Christoffel Symbols Γµ
σν are defined with the space-time metric tensor

gµν as:

Γµ
σν =

gρµ

2

(
∂gνρ
∂xσ

+
∂gσρ
∂xν

− ∂gνσ
∂xρ

)
(C.6)

The geodesic equation can be interpreted as a kind of force equation analogous
to Newton’s second law. It describes the motion of a particle freely moving in a
gravitational field. The most important part about this equation is that it relates
the motion of the particle to a purely geometrical quantity, the Christoffel Symbols.
This means that the motion of a particle is just influenced by how the masses
surrounding it have curved space-time.

Thus, before we go any further, we have to make some assumptions as to how the
Universe looks at a very large scale. These are also core assumptions of the Standard
Model of Cosmology, namely isotropy and homogeneity. For our calculation this
means two things:

• The phase-space density has to be invariant under translations and rotations
in space. Therefore f(x, p) = f(|~p|, t) or equivalently f = f(E, t) and all
derivatives apart from the ones with respect to x0 and p0 are zero. This leaves
us with:

m
df(E, t)

dτ
=

∂f(E, t)

∂x0
p0 − ∂f(E, t)

∂p0
Γ0

σνp
σpν (C.7)

• We can assume that the FLRW metric from eq. 3.1 describes the Universe.

We can now calculate the Christoffel Symbols according to equation C.6. As we
only need Γ0

σν , the formula simplifies to:

Γ0
σν =

gρ0

2

(
∂gνρ
∂xσ

+
∂gσρ
∂xν

− ∂gνσ
∂xρ

)
(C.8)

The metric tensor is diagonal, so only the elements where ρ = 0 are unequal to zero.

⇒ Γ0
σν =

g00

2

(
∂gν0
∂xσ

+
∂gσ0
∂xν

− ∂gνσ
∂x0

)
(C.9)

The same argument holds now for ν and σ. Furthermore, as g00 = 1, all derivatives
of that element of the metric tensor vanish and we are left with:

Γ0
σν = −1

2

(
∂gνσ
∂x0

)
(C.10)

The only term in the metric tensor with an explicit time-dependence is the scale
factor a(t). From eq. 3.1 we can see that the elements dependent on a(t) are
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gii ∝ a(t)2, for i = 1, 2, 3. Thus, all non-zero derivatives of the metric tensor with
respect to x0 = t are of the form:

∂gii
∂t

=
∂

∂t

⇔ ∂gii
∂t

= const. · 2a(t) ˙a(t)

⇔ ∂gii
∂t

= 2
˙a(t)

a(t)
· gii

Inserting this into eq. C.10 yields:

Γ0
µν =

{
0 if µ, ν = 0

−
˙a(t)

a(t)
gµν otherwise

(C.11)

We can now insert this into equation C.7 to get:

m
df(E, t)

dτ
= E

∂f(E, t)

∂t
+

∂f(E, t)

∂E

˙a(t)

a(t)
·
(
g11p

1p1 + g22p
2p2 + g33p

3p3
)

(C.12)

The metric tensor is diagonal and, just as with the Minkowski metric in special
relativity, the general metric tensor for the absolute value of a three dimensional
vector in curved space is encoded in the spatial components gii of the metric tensor,
albeit a different sign. Thus:

giip
ipi = −|~p|2 (C.13)

so that eq. C.12 is equivalent to:

L̂f(E, t) = E
∂f(E, t)

∂t
−

˙a(t)

a(t)
|~p|2∂f(E, t)

∂E
(C.14)

Coming back to the task at hand, which is to derive from the Boltzmann equation the
time evolution of the particle density, we will now take the collision term back into
account. We will divide by E on both sides and then integrate the whole equation
over the momentum of a particle with mass m, energy E, momentum ~p and degrees
of freedom g:

g

(2π)3

∫
d3~p

(
∂f(E, t)

∂t
−

˙a(t)

a(t)

|~p|2

E

∂f(E, t)

∂E

)
=

g

(2π)3

∫
d3~p

E
Ĉf(E, t) (C.15)

As the bounds of the integral do not depend on t, we can apply the time derivative
on the integral after having integrated over the phase space distribution. This allows
us, with the definition of the particle number density from eq. A.3, to write:

g

(2π)3

∫
d3~p

∂f(E, t)

∂t
=

∂

∂t

g

(2π)3

∫
d3~pf(E, t) =

∂n

∂t
(C.16)

For the second term on the left-hand side of eq. C.15 we can employ the rela-
tivistic energy momentum relation to express the absolute value of momentum in
terms of energy |~p| =

√
E2 −m2. This allow us to write:

1

E

∂f

∂E
=

1

E

∂f

∂|~p|
∂|~p|
∂E

=
1

E

∂f

∂|~p|
E√

E2 −m2
=

1

|~p|
∂f

∂|~p|

⇔ 1

E

∂f

∂E
=

1

|~p|
∂f

∂|~p|

(C.17)
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Inserting this into equation C.15 yields:

− g

(2π)3

∫
d3~p

ȧ(t)

a(t)

|~p|2

E

∂f(E, t)

∂E
= − g

(2π)3

∫
d3~p

ȧ(t)

a(t)
|~p|∂f(E, t)

∂|~p|

This can be rewritten using spherical coordinates:

− ȧ(t)

a(t)

g

(2π)3

∫
dΩ

∫
d|~p| |~p|3∂f(E, t)

∂|~p|
(C.18)

The integral over the absolute value of momentum can be partially integrated.
The boundary conditions disappear, because f approaches 0 as |~p| tends to infinity
and |~p| is 0 at the origin, whereas the phase-space distribution has a constant value.
Thus, eq. C.18 is equivalent to:

3
ȧ(t)

a(t)

g

(2π)3

∫
dΩ

∫
d|~p| |~p|2f(E, t) = 3

ȧ(t)

a(t)

g

(2π)3

∫
d~p |~p|2f(E, t)

= 3
ȧ(t)

a(t)
n

(C.19)

We can insert equations C.16 and C.19 back into C.15. If we also use the Hubble
Parameter from eq. B.9, eq. C.15 now has the following form:

ṅ+ 3Hn =
g

(2π)3

∫
d3~p

E
Ĉf(E, t) (C.20)

C.2 The Collision Term

We will now have a closer look at the right hand side of eq. C.20. It contains the
collision term. Instead of deriving this term, we will motivate its dependencies. A
more thorough derivation yielding the same results is also possible from the BBGKY
hierarchy [51].

The collision term describes the interactions of particles that affect kinetic equi-
librium. Therefore, the first step is determining which reactions actually change the
phase-space distribution of the particle we are interested in. In general, the reaction
is of the form:

a+ b+ ... ←→ j + k + ... (C.21)

Though the general case is analogous, we will assume that only two types of par-
ticles are colliding for simplicity reasons, namely a and b and turning into i and j.
For Big Bang Nucleosynthesis these reactions would be the weak force reactions
turning neutrons into protons. For WIMP Dark matter this would be the annihila-
tion of particle and anti-particle to produce a pair of Standard Model particles. In
the following derivation the subscript on the variables will imply that this quantity
describes this particle only.

Having established this, let us now have a look at the Collision Term and what it
is comprised of. We are interested in determining the density na for particle a. The
collision term describes the likelihood of a collision yielding a specific final result.
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Thus, of course, it has to be proportional to the absolute value of the transitional
matrix element squared:

ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) ∝ |Mi→f |2

This matrix element has to be summed over all possible combinations of the initial
and final spins of the particles.

Furthermore, because particles are interacting in the Early Universe, not in a
controlled system as in an experiment, energy and momentum are not fixed. Ac-
tually, depending on the temperature, these quantities follow a distribution, the
phase-space distribution f that has been used up to this point. Therefore, the inte-
grand has to be proportional to the phase-space distribution of the particles in the
initial state of the reaction, which for now will be taken to be a and b:

ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) ∝ fafb(1± fj)(1± fk)|Mi→f |2

where the ∝ 1 ± fi,j accounts for the quantum effects of stimulated emission for
bosons and Pauli-blocking for Fermions.

Additionally, even though energy and momentum are distributed according to f ,
the reactions must always obey energy and momentum conservation. This can be
achieved by integrating over a delta function which enforces said law of conservation:

ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) ∝ fafb(1± fj)(1± fk)|Mi→f |2(2π)4δ4(pa + pb − pj − pk)

All that is left now is to integrate over the lorentz-invariant phase space

dΠs =
gs

(2π)3
d3~ps
2Es

(C.22)

of the particles taking part in the reaction, so that the resulting collision term for
the reaction a+ b→ j + k:

ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) = −(2π)4
∫

dΠa

∫
dΠb

∫
dΠj

∫
dΠk

· δ4(pa + pb − pj − pk)|Mi→f |2fafb(1± fj)(1± fk) (C.23)

The minus sign indicates that this reaction diminishes the total number of particles
a, as they are annihilating with b to j and k.

What we have not accounted for yet is the fact that the particles j, k can react
back to a and b, thus increasing their particle density. This can easily be helped,
as the only thing we need to do is add the same terms from eq. C.23, but as the
particles we are starting with are j and k and the reaction goes from the final to the
initial state, we have to swap the indices and modify the matrix element if CP is
not conserved.

The resulting collision term which accounts for both directions of the reaction is:
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ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) = −(2π)4
∫

dΠa

∫
dΠb

∫
dΠj

∫
dΠk δ

4(pa+pb−pj−pk)

·
(
fafb(1± fj)(1± fk)|Mi→f |2 − fjfk(1± fa)(1± fb)|Mf→i|2

)
(C.24)

From this equation, it is apparent that the evolution of the phase space density
of particle a is coupled to that of particles b, j, k. Thus, in general, the Boltzmann
equation is a system of partial differential equations, one for each particle taking
part in the reaction. This is the form of the Boltzmann equation from which we will
derive the equation governing the nucleon freeze-out.

For the case of nuclear reactions, we will further simplify the term in eq. C.24
by making some simplifying assumptions. First, we will assume that the particles
are in kinetic equilibrium. Thus, their phase-space density has equilibrium form.
For massive particles, like nuclei, this is the Boltzmann distribution. In that case,
f � 1, so that 1± f ≈ 1.

The second assumption we make is that CP symmetry is conserved. Concretely
for our process this means that the matrix element is the same regardless of the
direction in which the reaction is happening, because if CP is conserved, then so is
T because of the CPT theorem.

First discovered in Kaon Oscillations, it is known that CP symmetry is not con-
served in the Standard model. However, the symmetry breaking phase in the CKM
matrix is so small that the effect is barely noticeable and, for our considerations,
CP can be assumed to be approximately conserved. Both assumptions allow us to
write the collision term from eq. C.24 into the form:

ga
(2π)3

∫
d3~pa
Ea

Ĉfa(Ea, t) = −
∫

dΠa

∫
dΠb (fafb − fjfk)

·
∫

dΠj

∫
dΠk(2π)

4|Mi→f |2δ4(pa + pb − pj − pk) (C.25)

We will now set the left hand side of equation C.25 equal to the time dependence
of the particle density of particle a (eq. C.20). We can compare this to the general
definition for the cross section given by the Lorentz-invariant version of Fermi’s
Golden Rule (see e.g. [118]):

σa+b→j+k =

∫
dΠj

∫
dΠk(2π)

4 |Mi→f |2δ4(pa + pb − pj − pk)

4
√

(pa · pb)2 −m2
am

2
b

(C.26)

Apart from the factor
(
4
√

(pa · pb)2 −m2
am

2
b

)−1

, this is identical with what we
find in equation C.25. If we multiply equation C.26 with the inverse of this term on
both sides we can insert this directly into eq. C.25 to obtain:

ṅa + 3Hna = −
∫

d3~pa

∫
d3~pb

gagb
√
(pa · pb)2 −m2

am
2
b

EaEb

σ (fafb − fjfk) (C.27)
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The factor 4 cancels out with the factors 1
2

of the phase-space from eq. C.22. We
will now define the Møller velocity as in [120]:

vmol =
gagb

√
(pa · pb)2 −m2

am
2
b

EaEb

(C.28)

As the Møller velocity is the only velocity we will use, we will not carry the
subscript all the time and just call it v. This now yields the slightly more simple
formula for the collision term:

ṅa + 3Hna = −
∫

d3~pa

∫
d3~pb σv (fafb − fjfk) (C.29)

The phase space distribution is normalized to yield N if integrated over the phase
space. In order to interpret the phase space distributions correctly as probability
density functions, it is necessary to normalize them to one. The expectation value
of an operator A for a general phase space distribution f on the phase space Γ then
looks as follows:

〈A〉 =
∫
dΓAf∫
dΓf

In our case, we have a phase space distribution f which is the product of fa and fb
or fj and fk, which are assumed to be independent, and the combined phase space
is the dot product of the phase space for particles a and b. By convention, we will
use the equilibrium distribution without a chemical potential, which for a pair of
nuclei yields :

〈A〉 =
∫
dΓAe−

Ea
T e−

Eb
T∫

dΓe−
Ea
T e−

Eb
T

The phase space distribution is independent of the position, so the integral over
position space just yields the volume both in the numerator and the denominator.
If we take A to be the cross section times the Møller velocity, its expectation value
can be written as:

〈σv〉 =
∫
d3~pa

∫
d3~pb σvf

eq
a f eq

b∫
d3~pa

∫
d3~pb f

eq
a f eq

b

(C.30)

With the definition of the particle density from eq. A.3, this may be rewritten as:

〈σv〉 =
∫
d3~pa

∫
d3~pb σvf

eq
a f eq

b

neq
a neq

b

(C.31)

⇔ 〈σv〉neq
a neq

b =

∫
d3~pa

∫
d3~pb σvf

eq
a f eq

b (C.32)

Looking at the right hand side of eq. C.29 more closely, it is clear to see that the
latter expression of the above equation has exactly the same form, except for the
use of the equilibrium phase-space distribution instead of the normal distribution
with a chemical potential. Given the simple form of the Boltzmann distribution, we
can simply write:

e
µ
T =

n

neq
(C.33)
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so that eq. C.29 may be written as:

ṅa + 3H(t)na = −〈σv〉
(
nanb −

neq
a neq

b

neq
j neq

k

njnk

)
(C.34)

This is the form of the Boltzmann equation we will use for the nuclear reaction
rates. This form, although in order to solve it numerically we will modify it a
little bit, is very useful to understand the underlying physics and to reason why the
equation should look like this.

C.3 Physical Interpretation

Figure C.1: Particle interactions in a co-moving volume in the early Universe mod-
elled as particles interacting inside an expanding cube of side length a(t)

With that in mind, let us look at the evolution of a set of particles in a co-
moving volume. That is, let us make a model of our Universe, as in figure C.1, by
assuming a cube with time-dependant side length a(t), which corresponds to the
scale parameter, in which we have a gas of different particles at temperature T. At
first, we will not allow them to interact with each other. Thus, the total number of
particles remains constant. The number of particles of type a in the cube is given
by

Na(t) = na · a(t)3 (C.35)

Therefore:

dNa

dt
= a(t)3ṅa + 3a(t)2ȧ(t)na = a(t)3 (ṅa + 3H(t)na) = 0 (C.36)

However, if we allow the particles to interact with each other, they will be de-
stroyed or created the same way they do in the Early Universe. Therefore, the
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change in time of the particle number will be determined by the rate at which par-
ticles get created or destroyed. The time dependence will be equal to the difference
in the reaction rate Γ. This also explains why, in equilibrium, the particle density
remains constant.

dNa

dt
= Γprod. − Γdestr. (C.37)

Now, in our cube Universe, we will have the same reactions as in eq. C.21. We
will assume that particles a and b are moving about with a certain velocity v and
colliding head on with each other, the same for particles j and k.

The reaction rate is given by the amount of collisions which result in the desired
end-products. This is where the cross-section becomes important, as it describes
the effective surface upon which every reaction yields the desired end products. It
is a measure of how effective the collisions are in producing the particles we want.
Thus, the rate is proportional to the quotient between the total surface a(t)2 and
the effective surface of scattering.

Γ ∝ σ

a(t)2
(C.38)

The amount of collisions is, of course, proportional to the number of particles in
the cube of both types. The more particle in a co-moving volume, the more likely a
reaction.

Γ ∝ NaNb (C.39)

All that is left now is to divide the number of reactions by the time ∆t it takes
for one interaction to happen. Assuming they are colliding head on, the maximal
time for a collision to happen is the time it takes one particle to travel from one end
of the cube to the other.

∆t =
a(t)

v
(C.40)

Piecing all the pieces of the puzzle together we obtain the reaction rate:

Γ = NaNb ·
σ

a(t)2
· 1

∆t
=

naa(t)
3nba(t)

3σv

a(t)3
= a(t)3σvnanb (C.41)

The production rate is proportional to the density of j and k, while the annihila-
tion rate is proportional to the density of a and b. Additionally, we will assume that
the chemical potential of the particles is negligible, such that there is no preferred
direction of the reaction and 〈σtotv〉 is the same in both directions. 1 Inserting this
result for the reaction rates and C.36 into equation C.37 yields

a(t)3 (ṅa + 3H(t)na) = a(t)3σv (njnk − nanb) (C.42)

Or the more familiar form:

ṅa + 3H(t)na = −σv (nanb − njnk) (C.43)

1This amounts to setting neq
a neq

b

neq
j neq

k
= 1
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which is identical to C.34, albeit the thermal averaging of the cross section times
velocity.

Thus, the Boltzmann equation in the form C.34 has the features we would have
expected from it. It describes the time dependence of the number of particles in the
universe and states that it is equal to the difference in the production and destruction
rate.
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