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Abstract
Oscillation experiments have demonstrated that at least two neutrinos possess small
but non-vanishing masses. The seesaw mechanisms, which include heavy particles
such as Right-Handed Neutrinos (RHNs), are possible explanations for the observed
neutrino masses. In the low-energy limit, the effect of heavier particles is effectively
described by the dimension-five Weinberg operator. This thesis calculates the full
two-loop beta functions of the Weinberg operator and examines its phenomenological
implications. If one neutrino remains massless at tree level, the running effects
generate a small third neutrino mass, serving as a lower limit on the lightest neutrino
mass. Furthermore, the running behavior and fixed points of Majorana phases are
analyzed analytically and numerically.

Similar two-loop diagrams that increase the rank of the active neutrino mass
matrix also exist for the RHN mass matrix. If at least one RHN has a mass around
the Planck scale, while some other RHNs remain massless at the tree level, quantum
corrections radiatively generate the remaining masses at the seesaw scale. This work
presents an extension of the Standard Model (SM) in the framework of left-right
symmetry models, which includes both massless RHNs and massive RHNs around
the Planck scale and allows for rank-increasing two-loop contributions.

Zusammenfassung
Oszillationsexperimente haben gezeigt, dass mindestens zwei Neutrinos kleine, aber
nicht verschwindende Massen besitzen. Eine mögliche Erklärung für die Neutrino-
massen sind die “Seesaw”-Mechanismen, welche schwere Teilchen wie rechtshändige
Neutrinos (RHN) beinhaltet. Im Niederenergielimit wird die Wirkung schwerer
Teilchen effektiv durch den Dimension-fünf Weinberg-Operator beschrieben. In dieser
Arbeit wird die vollständige Zweischleifen-Beta-Funktion des Weinberg-Operators
berechnet und ihre phänomenologischen Implikationen untersucht. Ein zunächst
masseloses Neutrino erhält eine kleine, aber nicht verschwindende Masse durch
diese Quantenkorrekturen, die als untere Grenze für die leichteste Neutrinomasse
dient. Außerdem werden das Laufverhalten und die Fixpunkte der Majorana-Phasen
sowohl analytisch als auch numerisch analysiert.

Ähnliche Zweischleifendiagramme, die den Rang der aktiven Neutrinomassenma-
trix erhöhen, existieren auch für die RHN-Massenmatrix. Wenn mindestens ein RHN
eine Masse um die Planck-Skala hat, während einige andere RHNs zunächst masselos
bleiben, erzeugen Quantenkorrekturen die verbleibenden Massen um die “Seesaw”-
Skala. In dieser Arbeit wird eine Erweiterung des Standard Models im Rahmen von
Links-Rechts-Symmetrischen Vervollständigungen vorgestellt, die sowohl masselose
RHNs als auch massereiche RHNs um die Planck-Skala herum einschließen und
Rang erhöhende Beiträge durch Zweischleifenkorrekturen ermöglichen.
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1. Introduction

Neutrinos are assumed to be massless in the Standard Model (SM) of particle physics.
However, oscillation experiments have shown that solar, atmospheric, and reactor neutrinos
undergo mixing, indicating the existence of at least two massive active neutrinos (see
for example [1]). Unlike the quark sector, the mixing angles in the neutrino sector are
relatively large, and the CP-violating phase is not suppressed. Furthermore, observations
of cosmological structure formation [1] and beta decay spectra [2] have set upper bounds
on the masses of neutrinos, which are many orders of magnitude smaller than all other SM
masses. Despite this experimental progress, the ordering of masses as well as the nature
of the neutrino - whether it is Dirac or Majorana - remains unknown. The observation
of neutrinoless double beta decay would uniquely determine neutrinos to be Majorana
particles. Sensitivity improvements in cosmological observation and direct measurements
will eventually distinguish between different orderings.

To account for these findings, the SM must be extended to accommodate neutrino
masses. Additionally, from a theoretical point of view, their smallness compared to
all other SM particles should be explained in a natural way, which does not require
extended fine-tuning of parameters. Neutrino mass models are often linked to other open
questions in particle physics and cosmology, such as dark matter [3, 4] and baryogenesis
via leptogenesis [5]. They may also be embedded into higher symmetry structures, such
as grand unifying theories [6].

The seesaw type-I model extends the SM by Right-Handed Neutrinos (RHNs) [7–11],
which makes it particularly simple and hence appealing. RHNs transform trivially under all
gauge groups and thus allow for Majorana mass terms. The seesaw model is natural in the
sense that active neutrinos become lighter while their right-handed counterparts become
heavier. The type-I seesaw model and other extensions that introduce new particles at
high scales can be described by effective field theories at low-energy observational scales in
a model-independent manner. The introduction of Majorana neutrino masses is achieved
through the unique dimension-five Weinberg operator [12], and their smallness corresponds
to cut-off suppression, which marks the validity range of the effective description. Due to
the large separation of scales, the running of parameters induced by quantum corrections
becomes significant. Although the one-loop renormalization of the Weinberg operator
is complete [13–15], the two-loop beta functions are not yet finalized. However, at this
order in perturbation theory, specific diagrams exist that radiatively generate neutrino
mass and increase the rank of the mass matrix [16]. One potential scenario includes
two massive neutrinos and one massless neutrino at the cut-off scale. As a consequence,
fewer parameters are needed, and predictivity is enhanced. Oscillation experiments
do not rule out this case, making the two-loop beta function theoretically interesting.
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INTRODUCTION

The radiative mass corrections constitute a lower bound on neutrino masses and yield
interesting phenomenological consequences that have not been considered so far. Moreover,
completing the two-loop beta function improves the accuracy of numerically evaluating
the running behavior of mixing parameters.

Equivalent rank-increasing diagrams for the RHN mass matrix also exist [17–19].
Assuming Majorana masses around the Planck scale translates to lepton number breaking
at the aforementioned energies. The breaking of all global symmetries through gravity
motivates this assumption [17]. If some RHNs remain massless at the Planck scale, two-
loop quantum corrections induce lighter states around the seesaw scale. Therefore, no new
scale or additional free parameters are required, and predictivity is enhanced. However,
the exact form of the mass matrix at the Planck scale requires further justification. This
study explores gauge extensions to the Standard Model, which are unaffected by gravity.
Left-Right (LR) symmetry models naturally include Right-Handed Neutrinos and can be
incorporated into larger unifying theories, making them appealing.

The thesis is structured as follows: chapter 2 provides a summary of the SM and mass
generation via Spontaneous Symmetry Breaking (SSB). It also explains how particle
oscillations arise in the quark and lepton sectors and clarifies the difference between Dirac
and Majorana masses. The chapter reviews the three seesaw mechanisms as well as the LR
extension, which provides the necessary neutrino masses. Finally, the chapter introduces
the effective description of neutrino masses. Chapter 3 provides the necessary ideas and
calculation techniques for renormalizing the Weinberg operator and explains the use of the
Background Field Method (BFM) in this context. The rank-increasing contributions are
explicitly calculated, and the results are shown for the complete two-loop beta functions.
In chapter 4, the phenomenological implications of the beta functions are analyzed with
regard to neutrino mixing parameters and masses. Analytical results are derived and
checked by numerical evaluation. Chapter 5 deals with RHN mass models. The thesis
presents general considerations before analyzing specific gauge extensions to the SM. LR
symmetric models are of particular interest. Finally, chapter 6 summarizes the findings of
this thesis.
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2. Neutrino Masses

The Standard Model (SM) of particle physics is the most rigorously tested and precise
theory of nature. It describes particles as excitations of quantum fields. All fermions –
except the neutrino – obtain their mass through the Higgs mechanism, which is responsible
for electroweak symmetry breaking. The Higgs mechanism is summarised below to
illustrate the difference between neutrinos and other charged fermions in mass generation.
Additionally, the concept of particle oscillations is introduced.

2.1. Standard Model

The SM is based on the direct product of the simple gauge groups SU(3) × SU(2)L × U(1)𝑌.
The fermionic fields transform in the trivial and (anti-)fundamental representations and
are denoted as (𝑅(SU(3)), 𝑅(SU(2)), 𝑌 ), where 𝑅(𝐺) is the representation of the group
and 𝑌 the hypercharge of the field under U(1)𝑌. The trivial representation is denoted by
1 and the (anti-) fundamental representation of SU(𝑁) by N (N), while higher numbers
correspond to higher multiplets. According to this classification, the SM fermions expanded
in the SU(2)L indices are:

left-handed fermions: ℓ = ( 𝜈
𝐸L

) = (1, 2, −1),

right-handed fermions: 𝐸R = (1, 1, −2),

left-handed quarks: 𝑄L = ( 𝑈L
𝐷L

) = (3, 2, 1/3),

right-handed quarks: 𝐷R = (3, 1, −2/3), 𝑈R = (3, 1, 4/3).

To deal with gauge anomalies, it is advantageous to work with fermions of the same
chirality (section 5.1). Utilizing the charge conjugation operator

𝜓𝑐 = ( 𝜓c
L

𝜓c
R

) = 𝐶𝜓T = i𝛾0𝛾2𝜓T = ( i𝜎2𝜓∗
R

−i𝜎2𝜓∗
L, ) (2.1)

which switches chirality, the re-expressed fermions are: 𝑒𝑐
𝑅 = (1, 1, −2), 𝑢c

R = (3, 1, −4/3),
𝑑c

R = (3, 1, 2/3). Based upon the previously introduced symmetry groups and matter
fields, the most general gauge invariant chiral Lagrangian contains the following terms:

ℒGauge = ̄𝜓(𝑖𝜕𝜇 + 𝑔𝐴𝐴𝑎
𝜇𝑇 𝑎

𝑅)𝛾𝜇𝜓 − 1
4

𝐹 𝑎
𝜇𝜈𝐹 𝑎𝜇𝜈 + ℒGF + ℒFP, (2.2)

3



NEUTRINO MASSES

where 𝜓 = ℓ, 𝐸𝑅, 𝑄𝐿, 𝐷𝑅, 𝑈𝑅 represents all fermionic fields, 𝐴𝑎
𝜇 = 𝐺𝑎

𝜇, 𝑊 𝑎
𝜇 , 𝐵𝜇 all gauge

boson fields with the respective representation 𝑇 𝑎
𝑅 for the fermion 𝜓 and 𝐹 𝑎

𝜇𝜈 = 𝜕𝜇𝐴𝑎
𝜈 +

𝜕𝜈𝐴𝑎
𝜇 + 𝑔𝐴𝑓𝑎

𝑏𝑐𝐴𝑏
𝜇𝐴𝑐

𝜈. ℒGF and ℒFP denote the gauge fixing and ghost term, respectively,
which follow from the Faddeev-Popov quantization procedure for non-abelian gauge
theories. They read [20]:

ℒGF = − 1
2𝜉

𝒢𝑎[𝐴]2, (2.3)

ℒFP = ̄𝜃𝑎
𝐴

𝛿𝒢𝑎[𝐴]
𝛿𝜔𝑏 𝜃𝑏

𝐴, (2.4)

where 𝒢𝑎[𝐴] describes the gauge fixing condition and 𝜃𝑎
𝐴 the anticommunting scalar ghost

fields related to the gauge field 𝐴. While 𝒢𝑎[𝐴] is often chosen to be the Feynman gauge
(𝜉 = 1), in this work, the background field gauge is used, as it offers great advantages
regarding the renormalization of gauge theories. A detailed introduction to the background
field method can be found in section 3.2.

2.1.1. Higgs Mechanism

Mass terms for chiral fermions of the form 𝑚 ̄𝜓𝐿𝜓𝑅 violate gauge invariance due to their
non-trivial transformation behavior under SU(2)L. The mechanism that gives the charged
fermions their mass proceeds via the coupling to a scalar field, the so-called Higgs field
𝐻 = (1, 2, 1), which transforms as a SU(2)L doublet. The associated potential can be
parameterized as follows:

𝑉 (𝐻†𝐻) = 𝜇2(𝐻†𝐻) + 𝜆(𝐻†𝐻)2, (2.5)

where in case of 𝜇2 < 0, the Ground State (GS) of 𝐻 (Vacuum Expectation Value (VEV))
is non-zero (fig. 2.1). The Higgs field can be developed around that GS (𝑣) [21], which is
conventionally chosen to be real-valued [22]:

𝐻 = 1√
2

(
𝐻+

1√
2(𝑣 + ℎ(𝑥) + i𝐴) ) , (2.6)

in terms of the physical Higgs boson ℎ and the three Nambu-Goldstone bosons 𝐴, 𝐻±.

2.1.2. Spontaneous Symmetry Breaking

Since the potential is invariant under rotation in the complex 𝐻-plane, infinite VEVs exist.
By using the SU(2)L generators 𝑇𝑎 = 𝜎𝑎

2 (𝜎𝑖 being the Pauli matrices) and the radial
parameterization of the Higgs field around the GS, eq. 2.6 simplifies to [22, 23]:

𝐻 = 𝑒i𝑇 𝑎𝜉𝑎 (
0

1√
2(𝑣 + ℎ(𝑥)) )

𝑆𝑈(2)𝐿×𝑈(1)𝑌
−−−−−−−−−→ (

0
1√
2(𝑣 + ℎ(𝑥)) ) , (2.7)

where the VEV 𝑣 and the radial excitation ℎ(𝑥) are real-valued [23]. The pre-factor
𝑒i𝑇 𝑎𝜉𝑎 , which unifies all imaginary parts, is eliminated in the unitary gauge through a

4



STANDARD MODEL

H0 =
v√
2

ReH

V (H†H)

1

Figure 2.1.: Higgs potential with 𝜇2 < 0 along the real part ℜ of 𝐻 along one slice in
SU(2) plane. The vacuum expectation value (𝐻0) is non-zero.

gauge transformation. However, this results in the system no longer being gauge invariant
because a specific VEV breaks the symmetry, a phenomenon known as Spontaneous
Symmetry Breaking (SSB) (see eq. 2.7). The radial excitation ℎ(𝑥) is identified as the
Higgs boson, while the massive gauge fields absorbed the radial 𝜉𝑎 fields [23]. After SSB,
the VEV of the Higgs doublet remains invariant under one specific transformation, which
is a combination of the SU(2)L generator 𝑇 3 and the hypercharge 𝑌:

𝑄EM = 𝑇3𝐿 + 1
2

𝑌𝜙, (2.8)

which is neutral for the second component of 𝐻. This remaining U(1) symmetry relates
to the well-known electromagnetism with the photon as massless gauge boson [23].

The coupling of boson and fermion fields with the Higgs field maintains the local
symmetries and results in mass terms for the fermions and the electroweak bosons after
SSB. In the latter case, the explicit form for the coupling and resulting 𝑊 and ℎ mass
terms is given by [21]:

ℒHiggs = (𝐷𝜇𝐻)†(𝐷𝜇𝐻) − 𝑉 (𝐻†𝐻) ⊃ 2𝜆𝑣2ℎ2 + 1
4

𝑔2𝑣2𝑊 +
𝜇 𝑊 −

𝜇 , (2.9)

where the charged 𝑊 ±
𝜇 = 1√

2(𝑊 1
𝜇 ∓ i𝑊 2

𝜇) are superpositions of two SU(2) generators. The
mixing of 𝑊 3

𝜇 and 𝐵𝜇 gives the massless photon and massive 𝑍 boson. These concepts
will later be relevant for understanding the symmetry-breaking patterns of extensions to
the SM.

2.1.3. Fermion Masses

Fermion masses are generated through Yukawa couplings 𝑌Ψ

ℒYuk = −𝑄𝛼L (𝑌u)𝛼𝛽 𝐻𝑈𝛽R − 𝑄𝛼L(𝑌d)𝛼𝛽𝐻𝐷𝛽R − ℓ𝛼L(𝑌𝑙)𝛼𝛽𝐻𝐸𝛽R + h.c., (2.10)

where Greek indices refer to the generation of the quarks and leptons, respectively.
𝐻 = 𝑖𝜎2𝐻∗ = (1, 2, −1) is the conjugated Higgs field, which also transforms as a SU(2)L
doublet (SU(2) is pseudoreal) but with inverse hypercharge.

5



NEUTRINO MASSES

After SSB, the (conjugated) Higgs fields acquire its VEV in the (first) second component,
which leads to mass matrices

𝑀u = 𝑣√
2

𝑌u, 𝑀d = 𝑣√
2

𝑌d, 𝑀𝑙 = 𝑣√
2

𝑌𝑙. (2.11)

The Left-Handed Neutrinos (LHNs) (also called active neutrinos) stay massless, as there
are no Right-Handed Neutrinos (RHNs) 𝑁 = (1, 1, 0) within the SM, which enable a mass
term of the form: ℓ𝛼L(𝑌𝜈)𝛼𝛽𝐻𝑁𝛽R.

2.1.4. Particle Oscillations

The mass matrices obtained in section 2.1.3 are, in general, non-diagonal with arbitrary
complex entries. The flavor eigenstates present in the tree-level Lagrangian thus do not
correspond to the mass eigenstates. Through field redefinitions of the type 𝜓 = 𝑈𝜓𝜓′

(𝜓 = ℓ, 𝐸𝑅, 𝑈𝐿, 𝐷𝐿, 𝐷𝑅, 𝑈𝑅), the mass matrices can be diagonalized (𝐷𝜓) via the Singular
Value Decomposition (SVD) procedure:

𝑈†
𝑈𝐿

𝑀𝑈 𝑈𝑈𝑅
= 𝐷𝑈,

𝑈†
𝐷𝐿

𝑀𝐷 𝑈𝐷𝑅
= 𝐷𝐷,

𝑈†
ℓ 𝑀ℓ 𝑈𝐸𝑅

= 𝐷ℓ.

(2.12)

The procedure is slightly modified for Majorana mass terms, which are introduced in
eq. 2.20 in the next section. In this case, one unitary matrix is sufficient for the SVD of
the symmetric Majorana mass matrix

𝑈𝑇
𝜈 𝑀𝜈𝑈𝜈 = 𝐷𝜈. (2.13)

Subsequently, the weak current from eq. 2.2 after SSB is modified in terms of the mass
eigenstates 𝜓′

𝑈𝐿𝛾𝜇𝐷𝐿 = 𝑈 ′
𝐿𝛾𝜇 ̃𝑈CKM 𝐷′

𝐿

𝐸𝐿𝛾𝜇𝜈𝐿 = 𝐸′
𝐿𝛾𝜇 ̃𝑈PMNS 𝜈′

𝐿,
(2.14)

with
̃𝑈CKM = 𝑈†

𝑈𝐿
̃𝑈𝐷𝐿

, ̃𝑈PMNS = 𝑈†
𝐸𝐿

̃𝑈𝜈. (2.15)

The rotation matrices are called Cabibbo-Kobayashi-Maskawa (CKM) matrix and
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix for quarks and leptons, respec-
tively. Both ̃𝑈CKM and ̃𝑈PMNS contain unphysical Degrees-of-Freedom (DOFs), which can
be removed by global phase transformation of the fermionic fields. In the case of up- and
down-type quarks, three (two) individual phase transformations 𝑃𝑈 = diag(𝑒i𝜙𝑢 , 𝑒i𝜙𝑐 , 𝑒i𝜙𝑡)
(𝑃𝐷 = diag(𝑒i𝜙𝑑 , 𝑒i𝜙𝑠 , 1)) on 𝑈 ′

𝛼𝐿/𝑅 −→ 𝑃𝑈 𝑈 ′
𝛼𝐿/𝑅 (𝐷′

𝛼𝐿/𝑅 −→ 𝑃𝐷 𝐷′
𝛼𝐿/𝑅) can be made,

without changing the diagonal mass matrix. Global phase transformations are unphysical;
hence, only two independent transformations exist for 𝐷𝛼𝐿.
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This transformation is no longer possible for Majorana neutrinos. While the equivalent
phase redefinitions 𝑃𝐸 = diag(𝑒i𝜙𝑒 , 𝑒i𝜙𝜇 , 𝑒i𝜙𝜏) exist for 𝐸′

𝛼𝐿/𝑅 −→ 𝑃𝐸 𝐸′
𝛼𝐿/𝑅, the same does

not hold for 𝜈𝛼𝐿 because it would change the mass matrix according to eq. 2.13. Only 3
DOFs can be removed compared to the five from the quark sector:

𝑉CKM = 𝑃 †
𝑈

̃𝑈CKM𝑃𝐷, 𝑉PMNS = 𝑃 †
𝐸

̃𝑈PMNS, (2.16)

defining the PMNS matrix. The standard parameterization for the CKM and PMNS
matrix [24] will be used throughout this work:

𝑉 = ⎛⎜⎜
⎝

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−i𝛿

−𝑐23𝑠12 − 𝑠23𝑐12𝑠13𝑒i𝛿 𝑐23𝑐12 − 𝑠23𝑠12𝑠13𝑒i𝛿 𝑠23𝑐13
𝑠23𝑠12 − 𝑐23𝑐12𝑠13𝑒i𝛿 −𝑠23𝑐12 − 𝑐23𝑠12𝑠13𝑒i𝛿 𝑐23𝑐13

⎞⎟⎟
⎠

(2.17)

for the CKM matrix and

𝑉 ⋅ ⎛⎜⎜
⎝

𝑒i𝜌 0 0
0 𝑒i𝜎 0
0 0 1

⎞⎟⎟
⎠

(2.18)

for the PMNS matrix. The two phases eliminated in the quark sector by the down-type
quarks were reintroduced. 𝑐𝑖𝑗 (𝑠𝑖𝑗) abbreviates cos 𝜃𝑖𝑗 (sin 𝜃𝑖𝑗), with 𝜃𝑖𝑗 being the mixing
angle between the generations 𝑖 and 𝑗. 𝛿 is referred to as the Dirac phase because it
emerges for both Majorana and Dirac particles, while the Majorana phases 𝜌 and 𝜎 only
appear in the Majorana case. All three provide a source for CP violation.

Particles are produced in the flavor basis but will propagate in the mass basis, giving rise
to neutrino oscillation. Table 2.1 [25] summarizes the experimental data from oscillation
experiments regarding the three mixing angles, the Dirac phase, and the mass differences
Δ𝑚2

𝑖𝑗 = 𝑚2
𝑖 − 𝑚2

𝑗 which are responsible for the oscillation length.
From the oscillation length, only the absolute value of the mass difference Δ𝑚2

𝑖𝑗 can be

Normal Ordering [3𝜎] Inverted Ordering [3𝜎]

sin2 𝜃12 0.304+0.039
−0.035 0.304+0.039

−0.035

sin2 𝜃23 0.573+0.043
−0.158 0.575+0.042

−0.156

sin2 𝜃13 0.2219+0.0191
−0.0187 0.02238+0.00190

−0.00186

𝛿 [°] 232+118
−88 276+68

−82
Δ𝑚2

21
10−5eV2 7.42+0.62

−0.60 7.42+0.62
−0.60

Δ𝑚2
32

10−3eV2 +2.517+0.081
−0.082 −2.498+0.084

−0.083

Table 2.1.: Neutrino Oscillation Parameters. Summarized are the global fits regarding
oscillation experiments for normal and inverted ordering [25].
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determined, allowing for two possible mass orderings:

𝑚3 > 𝑚2 > 𝑚1 NormalOrdering(NO),
𝑚2 > 𝑚1 > 𝑚3 InvertedOrdering(IO).

(2.19)

Table 2.1 includes the experimental data for both mass orderings. Since Δ𝑚2
21 and Δ𝑚2

32
are non-zero, at least two neutrinos must be massive.

2.2. Neutrino Mass Models

Neutrino mass models describe renormalizable extensions to the SM, so-called Ultraviolet
(UV) completions, as opposed to the model-independent Effective Field Theory (EFT)
approach, which will be introduced in section 2.3.3. These models are categorized as
Majorana or Dirac types depending on the nature of the neutrino. Dirac mass terms
include distinct left- and right-handed fields 𝑚𝜓𝑅𝜓𝐿, while Majorana mass terms only
contain either one:

ℒ𝑀 = 𝑁𝛼𝑅i/𝜕𝑁𝛼𝑅 − 1
2

𝑀𝛼𝛽𝑁𝑐
𝛼𝑅𝑁𝛽𝑅 − 1

2
𝑀†

𝛼𝛽𝑁𝛼𝑅𝑁𝑐
𝛽𝑅. (2.20)

𝛽 = 1, ..., 𝑛R denotes the generation index analogous to the SM with 𝑛R being the number
of generations, and the hermitian conjugated was explicitly written in this case. The
structure 𝑁𝑐

𝛼𝑅𝑁𝛽𝑅 demands a symmetric mass matrix and implies that the Majorana
particle (later the RHN) cannot carry any charges. Furthermore, it excludes certain
representations of the gauge groups (such as the fundamental). Hence, only the neutrino
can be of Majorana type after SSB. For Dirac neutrinos, particle and antiparticle are
distinct, while a Majorana neutrino is its own antiparticle.

2.2.1. Type-I Seesaw Model

The inclusion of RHNs 𝑁𝑅 = (1, 1, 0) is the most straightforward method to generate
neutrino masses and account for their smallness. RHNs transform trivially under the
SM gauge group and can, therefore, acquire a Majorana mass. The extension of the SM
Lagrangian reads:

ℒRHN = −1
2

𝑀𝛼𝛽𝑁𝑐
𝛼𝑅𝑁𝛽𝑅 − ℓ𝛼L𝑌𝛼𝛽𝐻𝑁𝛽R + h.c. (2.21)

After SSB, the Yukawa coupling provides Dirac masses as for the other SM fermions along
with an additional Majorana mass term. Rewriting this in terms of a standard Majorana
mass matrix for the multiplet (𝜈𝑐

𝛼𝐿, 𝑁𝛽𝑅) gives:

ℒ ⊂ −1
2

(𝜈𝛼𝐿
T 𝑁𝑐

𝛽𝑅
T) (

0 𝑣√
2𝑌𝛼𝛽′

𝑣√
2𝑌 T

𝛽𝛼′ 𝑀𝛽𝛽′
) ( 𝜈𝑐

𝛼′𝐿
𝑁𝛽′𝑅

) . (2.22)

Again, the mass matrix is non-diagonal, and flavor eigenstates need to be redefined
via (𝜈𝑐

𝐿, 𝑁𝑅) = 𝑈(𝜈′𝑐
𝐿, 𝑁 ′

𝑅) and 𝑈𝑇𝑀𝑈 = 𝐷 as in eq. 2.13. Consequently, left- and
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`

〈H〉

`

〈H〉

N

1

Figure 2.2.: Tree level diagrams for type-I seesaw mechanism. It describes the Majorana
mass generation for left-handed neutrinos 𝜈 after SSB ⟨𝐻⟩ by including a
fermion singlets 𝑁 (right-handed neutrinos).

right-handed neutrinos mix, but also LHNs among themselves, which gives rise to the
aforementioned neutrino-oscillations. The resulting mass eigenvalues are for 𝑀 ≫ 𝑣𝑌:

𝑚light = 𝑚𝜈′ ≈ −𝑣2

2
𝑌 𝑇𝑀−1𝑌

𝑚heavy = 𝑚𝑁′ ≈ 𝑀
(2.23)

As 𝑀 increases, 𝑚𝜈′ decreases, while the mixing between 𝜈 and 𝑁 (𝒪(𝑀−1)) becomes
smaller, hence the name seesaw model. Fig. 2.2 shows a diagrammatic representation of
the type-I seesaw model.

Nevertheless, not all active neutrinos necessarily acquire mass through this process.
The number of massless Majorana neutrinos at the tree level depends on the number
of generations of the RHN and reads 𝑛L − 𝑛R (𝑛L/R is the number of left-/right-handed
neutrino generations) [26].

2.2.2. Type-II and III Seesaw Models

Other possibilities that accommodate left-handed Majorana neutrinos exist besides heavy
fermion singlets.

In the type-II seesaw model (fig. 2.3 (a)), triplet scalars Δ = (1, 3, +2) are added to
generate the Majorana mass term [27, 28]:

ℒII = −1
2

ℓc
𝛼L (𝑌 Δ

𝜈 )
𝛼𝛽

i𝜎2 (�⃗� ⋅ Δ⃗) ℓ𝛼L − 𝜇Δ𝐻Ti𝜎2 (�⃗� ⋅ Δ⃗†) 𝐻 + h.c. (2.24)

Here, Δ is written in the adjoint basis – which transforms in the triplet representation.
The shown combination is gauge invariant, because the tensor representation of ℓ𝛼𝐿,
ℓ𝛽𝐿 (1, 2, −1) × (1, 2, −1) ⊂ (1, 3, −2) contains a triplet representation and thus gives a
singlet together with Δ. The invariance can also be seen from the explicit transformation
behavior under SU(2): ℓ −→ 𝑈ℓ and Δ −→ 𝑈Δ𝑈†. The neutrino mass follows from the
VEV of Δ and its relation to 𝑀Δ through the scalar potential and ultimately yields:

𝑚𝜈 = 𝑣2𝜇Δ𝑌 Δ
𝜈

2𝑀Δ
. (2.25)
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∆
` `

〈H〉 〈H〉

1

(a) Type-II

`

〈H〉

`

〈H〉

Σ

1

(b) Type-III

Figure 2.3.: Tree level diagrams for type-II (a) and type-III (b) seesaw mechanism. They
describe the Majorana mass generation for left-handed neutrinos 𝜈 after SSB
⟨𝐻⟩ by including a scalar triplet Δ or a scalar fermion Σ.

An easier way to obtain the same result is via the effective description of neutrino mass
and integrating-out (section 2.3.2) the heavy scalar triplet.

The type III seesaw model (fig. 2.3 (b)) combines the type I and II by introducing
fermionic triplets Σ to the SM. The resulting Lagrangian reads [29]:

ℒIII = −𝑀 𝑖𝑗
Σ Tr [Σ𝑐

𝑖𝑅Σ𝑗𝑅] −
√

2𝑌 𝑖𝛼
Σ 𝐻†Σ𝑖𝑅ℓ𝛼𝐿 + h.c., (2.26)

where Σ = �⃗� ⋅ Σ⃗ is also written in the adjoint basis and Σc = 𝐶Σ∗ according to the
definition in eq. 2.1. The easiest way to obtain the mass matrix is to revert to the effective
description, which gives after SSB:

𝑚𝜈 = −𝑣2

2
𝑌 𝑇

Σ 𝑀−1
Σ 𝑌Σ. (2.27)

Type-II and type-III predict neutrino masses inversely proportional to the mass of a heavy
particle, justifying the classification of seesaw models.

2.2.3. Left Right Symmetric Models

Another possibility for accommodating Majorana neutrinos is to extend the SM gauge
group and naturally include RHN in contrast to the seesaw models, which maintain the
gauge structure and only extend the matter content.

The SM breaks parity by differentiating between left-and right-handed particles in terms
of their SU(2)L representations. LR symmetric models [30–34] restore parity invariance
at high energies and break it dynamically via SSB, yielding the SM as low energy limit.
In analogy to the SU(2)L gauge group, SU(2)R is introduced. The full SM gauge groups
consist of

SU(3) × SU(2)𝐿 × SU(2)𝑅 × U(1) ̃𝑌, (2.28)

with a modified hypercharge ̃𝑌 that will break down to 𝑌. In the context of LR models,
representations are denoted with regard to ̃𝑌. Following the SU(2)L structure, 𝐷R and 𝑈R
are grouped into an SU(2)R doublet and RHNs are introduced to complete the right-handed
leptonic doublet with 𝐸R. The matter content with respect to eq. 2.28 reads:

10
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left-handed fermions: 𝐿𝐿 = ( 𝜈
𝐸𝐿

) = (1, 2, 1, −1),

right-handed fermions: 𝐿𝑅 = ( 𝑁𝑅
𝐸𝑅

) = (1, 1, 2, −1),

left-handed quarks: 𝑄𝐿 = ( 𝑈𝐿
𝐷𝐿

) = (3, 2, 1, 1/3),

right-handed quarks: 𝑄𝑅 = ( 𝑈𝑅
𝐷𝑅

) = (3, 1, 2, 1/3).

Gauge anomaly cancelation (section 5.1) is ensured and explicitly checked in section 5.4.
The matter content suggests that ̃𝑌 can be identified with 𝐵 − 𝐿 (baryon number – lepton
number). While being an anomaly-free global symmetry in the SM, 𝐵 − 𝐿 is promoted
to a gauge symmetry in LR models. To be consistent with current observations, it is
necessary that

SU(2)𝑅 × U(1) ̃𝑌 −→ U(1)𝑌 (2.29)

via SSB. Therefore, the breaking patterns should satisfy the relation:

𝑌 = ̃𝑌 + 2𝑇3𝑅, (2.30)

or reformulated using eq. 2.8 in terms of 𝑄EM

𝑄EM = 1
2

̃𝑌 + 𝑇3𝑅 + 𝑇3𝐿. (2.31)

In the following, only a brief summary of the standard symmetry-breaking mechanism
is provided since section 5.4 will introduce a modified approach that maintains one or
two RHNs massless at the tree level. The scalar sector includes three scalar fields, two
of which (Δ𝐿 = (1, 3, 1, 1), Δ𝑅 = (1, 1, 3, 1)) transform in the triplet representation and
one as bidoublet (Φ = (1, 2, 2, 0)):

ΔL = �⃗�
2

⋅ Δ⃗L = (𝛿+
L /

√
2 𝛿++

L
𝛿0

L −𝛿+
L /

√
2), ΔL −→ 𝑈LΔL𝑈†

L,

ΔR = �⃗�
2

⋅ Δ⃗R = (𝛿+
R/

√
2 𝛿++

R
𝛿0

R −𝛿+
R/

√
2), ΔR −→ 𝑈RΔR𝑈†

𝑅,

Φ = 𝜙L × 𝜙†
R = (Φ0

1 Φ+
1

Φ−
2 Φ0

2
) , Φ −→ 𝑈LΦ𝑈†

R.

(2.32)

The charges indicated in eq. 2.32 follow eq. 2.31 with 𝑇3L/R expressed in the according
representation: 𝑇3L/R(Δ) = [𝑇 fun

3L/R, Δ], 𝑇3L/R(Φ𝑖𝑗) = 𝑇3L𝜙𝑖L − 𝑇3R𝜙†
𝑗R. 𝛿0

𝐿/𝑅 and Φ will
aquire VEVs as they remain invariant under U(1)EM. Assuming 𝑣ΔR ≫ 𝑣Φ1,2 and thus
only taking into account the effect of ΔR, the symmetry will be broken according to eq
2.29. Φ takes the role of 𝐻 and gives the fermions their masses:

ℒYuk = −𝑄𝛼L (ℎ𝛼𝛽Φ + ℎ̃𝛼𝛽Φ̃) 𝑄𝛽R − 𝐿𝛼L (𝑔𝛼𝛽Φ + ̃𝑔𝛼𝛽Φ̃) 𝐿𝛽R + h.c. (2.33)
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with Φ̃ = i𝜎2Φ(−i)𝜎2 being the charge conjugated bidoublet (same transformation proper-
ties) and analog for the lepton doublets 𝐿L/R. However, for the latter, the scalar triplet
induces additional Majorana mass terms (compared to eq. 2.24 from seesaw type-II):

ℒM = −1
2

ℎΔ
𝛼𝛽𝐿𝑐

𝛼L/R𝑖𝜎2ΔL/R𝐿𝛽L/R, (2.34)

which leads to a modified seesaw mechanism for 𝑣Δ𝑅 ≫ 𝑣Δ𝐿. More detailed discussions
on the scalar and Yukawa sector follow in section 5.4.

2.3. Effective Description

The new particles introduced in the neutrino mass models are typically very heavy to
explain the tinny active neutrino masses via the seesaw mechanism. Therefore, they
cannot be directly observed in present-day experiments. Effective Field Theorys (EFTs)
[35, 36] describe the low energy limit in terms of low energy observables. The influence of
high-energy components is incorporated through a systematic expansion series based on
the cut-off scale Λ, which represents the typical energy or mass scale of the high-energy
contribution (referred to as the UV completion) to the theory. The EFT is derived by
systematically eliminating high-energy DOFs.

From a Lagrangian point of view, the expansion in Λ will take place in terms of operators
made up of fields with a lower mass scale:

ℒEFT = ℒ𝒟≤4 + 𝑐(5)

Λ
𝒪(5) + 𝑐(6)

Λ2 𝒪(6) + 𝑐(7)

Λ3 𝒪(7) + … (2.35)

until the desired precision 𝒪(ΛObs/Λ)𝑛. 𝒪(𝑛) describe higher dimensional operators built
from low mass fields that are contained in the low energy Lagrangian ℒ𝒟≤4 (dim(𝒪) <
4). 𝑐(𝑛) denote the dimensionless Wilson coefficients belonging to the corresponding
operator 𝒪(𝑛). In case of ℒ𝒟≤4 = ℒSM the EFT is called Standard Model Effective
Field Theory (SMEFT) and higher dimensional operators are build from the SM fields
ℓ, 𝐸𝑅, 𝑄𝐿, 𝑈𝑅, 𝐷𝑅, 𝐻.

2.3.1. Effective Action

The mapping between the operators appearing in the expansion and the UV completion, as
well as their corresponding Wilson coefficients, is determined by the matching procedure.
It ensures that UV theory and EFT produce the same results in the low energy limit or
Λ −→ ∞ respectively.

The functional approach compares the effective potentials Γ from the UV completion
and the EFT. They must be equal to produce matching amplitudes. To calculate the
effective potential, one starts with the generating functional 𝑍, which is defined as

𝑍[𝜙] = ∫ 𝒟[𝜙]𝑒i ∫ 𝑑4𝑥(ℒ[𝜙]+𝐽𝜙𝜙) (2.36)
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via the path integral. The effective action is defined as the Legendre transform of the
generating functional:

Γ[𝜙cl] = − i log 𝑍 [𝐽𝜙]⎵⎵⎵⎵
≡ 𝑊[𝐽𝜙]

− ∫ 𝑑4𝑥𝐽𝜙𝜙cl. (2.37)

The classical field 𝜙cl = ⟨Ω|𝜙|Ω⟩𝐽𝜙
corresponds to the vacuum expectation value and

satisfies
𝜙cl =

𝛿𝑊[𝐽𝜙]
𝛿𝐽𝜙

(2.38)

in agreement with the Legendre transformation. The effective action is the generating
functional for all One-Particle-Irreducible (1PI) correlation functions [37] and therefore
contains all quantum corrections. Hence, Γ describes a theory completely, demanding
that ΓEFT and ΓUV must agree to provide matching results.

2.3.2. Functional Matching

The definition of the effective potential of eq. 2.37 is extended with a heavy field Φ

ΓUV[𝜙cl, Φcl] = −i log 𝑍 [𝐽𝜙, 𝐽Φ = 0] − ∫ 𝑑4𝑥𝐽𝜙𝜙cl. (2.39)

The heavy particle current is set to zero 𝐽Φ = 0 such that Φ cannot be produced on-shell
but only runs inside loops [38]. The EFT is obtained by integrating out this heavy DOF.
The matching condition based on the effective potentials becomes

ΓEFT[𝜙cl] = ΓUV[𝜙cl, Φcl]. (2.40)

At tree level Φcl solves the classical Equations-of-Motion (EOM)

𝛿𝒮UV[𝜙, Φcl[𝜙cl]]
𝛿Φ

= 0. (2.41)

As a result, the effective Lagrangian ℒEFT at tree level is obtained by solving the EOM
for Φ

𝛿𝒮UV[𝜙, Φcl[𝜙cl]]
𝛿Φ

= 𝐹[𝜙] + (𝜕2 − 𝑀2) Φ = 0 (2.42)

and expanding the denominator unit to the desired order

Φcl = 1
𝑀2 𝐹[𝜙] + 𝜕2

𝑀4 𝐹[𝜙] + . . . (2.43)

to get local operators 𝒪(𝑛). As can be seen from eq. 2.43, Λ corresponds to the mass scale
of the heavy particle. Matching can be performed to higher loop orders by expanding Φ
around the classical solution and performing the path-integral. However, this technique is
not used in this thesis.
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2.3.3. Weinberg Operator and Neutrino Masses

The unique dimension-five SMEFT operator is called Weinberg operator and reads:

ℒ(5) = 1
2

𝐶𝛼𝛽
5 ℓ𝛼𝐿𝐻𝐻𝑇ℓ𝑐

𝛽𝐿 + h.c. (2.44)

For convenience, the cut-off scale was included in the coefficient 𝐶5, because 𝒪(5) arises
from multiple models with different cut-off scales. The Feynman diagrams (figs. 2.2, 2.3)
responsible for the neutrino mass generation in the seesaw models 2.2.2 contain the exact
structure of the Weinberg operator as external states correspond to the ones of 𝒪(5). After
SSB, the Weinberg operator induces a Majorana mass term for the neutrinos

1
2

𝐶𝛼𝛽
5 ℓ𝛼L𝐻𝐻Tℓc

𝛽L
SSB
−−→ 1

2
𝑀†

𝛼𝛽𝜈𝛼L𝜈c
𝛽L (2.45)

with the convention introduced in eq. 2.21 for Majorana masses and the identification

𝑀†
𝛼𝛽 = 1

2
𝑣2𝐶𝛼𝛽

5 . (2.46)

The diagrammatic representation of the neutrino mass generation via the Weinberg
operator is shown in fig. 2.4. Naturally, the Wilson coefficient for the Weinberg operator
will be small, because it includes the cut-off scale suppression. Generally, the EFT
approach enables an analysis of neutrino parameters for a broad class of neutrino mass
models – that generate the Weinberg operator when integrating out heavy DOFs – without
ever going into details of a specific model. This extensive applicability is the advantage of
using the effective description.

`

〈H〉

`

〈H〉

1

Figure 2.4.: Tree level diagrams for type-I seesaw mechanism. It describes the Majorana
mass generation for left-handed neutrinos 𝜈 after SSB ⟨𝐻⟩ by the effective
description using the Weinberg operator.
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3. Two-Loop RGEs for Weinberg
Operator

3.1. Renormalization Group

3.1.1. Renormalization of Quantum Fields

When performing loop corrections to physical processes, UV divergences appear. These
stem from the integration to infinite momenta or zero distances. The effect of unknown
physics at very high energies can be fully absorbed into the theory’s parameters. Quantum
field theories are most likely only an effective description of nature. The renormalization
of parameters then corresponds to integrating out all momentum shells above a cut-off
energy scale from the Wilsonian renormalization group’s point of view.

To make predictions, the theory must be regularized, and the quantities appearing in
the Lagrangian renormalized to cancel these divergences. Observables should not depend
on the regularization method, as this would allow testing of arbitrarily small scales at
finite energies. This thesis will use dimensional regularization:

∫ d4𝑥 −→ ∫ d𝑑𝑥, (3.1)

which continues the theory to 𝑑 = 4 − 2𝜀 dimensions. As a result, the mass dimensions of
the fields are altered to [𝜓] = 𝑑−1

2 , [𝜙, 𝐴] = 𝑑−2
2 . To maintain dimensionless 𝜅𝑖, they are

rescaled by the renormalization scale 𝜇

𝜅𝑖 −→ 𝜇𝜌𝑖𝜀𝜅𝑖. (3.2)

𝜌𝑖 denotes the tree level anomalous dimension of 𝜅𝑖 and is determined by the dimension
of the corresponding operator 𝒪𝑖 belonging to 𝜅𝑖: 𝜌𝑖 = 𝑑 − [𝒪𝑖].

Bare quantities 𝑚𝐵, 𝜅𝐵, 𝜓𝐵 (masses, coupling, fields) appearing in the Lagrangian are
renormalized in terms of renormalized quantities 𝑚𝑟, 𝜅𝑟, 𝜓𝑟 and renormalization constants

𝜓𝐵 = 𝑍
1
2
𝜙 𝜓𝑟, 𝜅𝑖,𝐵 = 𝜇𝜌𝑖𝜀𝑍𝑖𝜅𝑖,𝑟, 𝑚𝐵 = 𝑍𝑚𝑚𝑟. (3.3)

The renormalization constants are conventionally expressed as

𝑍 = 1 + 𝛿𝑍 (3.4)

with the Counterterms (CTs) 𝛿𝑍. Hence, the Lagrangian can be split into a renormalized
contribution ℒ𝑟 containing only renormalized quantities and a counterterm Lagrangian

15



TWO-LOOP RGES FOR WEINBERG OPERATOR

ℒCT containing all counterterms 𝛿𝑍. ℒCT is treated as a perturbation and included in all
loop calculations. The CTs are chosen to cancel all arising divergences. In renormalized
Pertubation Theory (PT), divergences are canceled order by order (in powers of couplings)

𝛿𝑍 = 𝛿𝑍(1) + 𝛿𝑍(2) + … . (3.5)

This implies that tree-level CTs diagrams cancel one-loop divergences in first order PT.
At second order, tree-level CT cancel two-loop divergences and one-loop CT diagrams
and so on.

Renormalization schemes vary regarding the finite part in the CTs. Here, the Modified-
Minimal-Substration (MS) scheme [39] will be used, subtracting the mandatory divergent
part and universal constants that always arise in dimensional regularization. A convenient
way to remove these constants is by rescaling

𝜇 −→ ̃𝜇 = 𝜇√𝑒𝛾𝐸

4𝜋
, (3.6)

with 𝛾𝐸 being the Euler-Mascheroni constant.
Furthermore, calculations are performed in the unbroken phase of the SM – before

SSB. Keeping all gauge symmetries intact greatly simplifies the calculations. SSB does
not change the renormalizability of theory, and CTs that renormalize the theory before
SSB will renormalize it after SSB as well [20, 37, 40]. Afterwards, the Renormalization
Group Equations (RGEs) can be translated into observables following SSB, depending on
whether low or higher energy behavior is of interest.

3.1.2. Renormalization of EFTs

The renormalization of EFTs goes along the same line even though these are non-
renormalizable theories by power counting. To render the theory finite to all orders
in PT, infinitely many CTs are necessary. However, only a finite number is needed at a
given order in 1/Λ. Here, only 1/Λ contributions – thus single insertions of the Weinberg
operator – are considered. Higher dimensional operators and multiple insertions are
assumed to be strongly cut-off suppressed.

In contrast to eq. 3.3, a slightly different convention for the Wilson coefficient CT is
used (𝛿𝑍5𝐶5 ≡ 𝛿𝐶5 ):

𝐶𝛼𝛽
5 = ̃𝜇2𝜀 (𝐶𝛼𝛽

5,𝑟 + 𝛿𝐶𝛼𝛽
5 ) . (3.7)

3.1.3. Renormalization Group Equations

Renormalization Group Equations (RGEs) relate renormalized quantities between different
energy scales. In Wilson renormalization, integrating out momentum shells corresponds
to a continuous change in the renormalized quantities. Differential equations describe
this transformation behavior and are called RGEs. Evolving a quantity from one scale
Λ to another Λobs improves PT as it resumes potentially large logarithms log Λ/Λobs.
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RENORMALIZATION GROUP

In practice, the RGEs are obtained by starting from the bare quantities, which are
independent on the renormalization scale:

d𝜅𝑖,𝐵

d𝜇
= 0. (3.8)

Rewriting 𝜅𝑖,𝑟 in terms of 𝜅𝑖,𝐵 to abitrary loop order

𝜅𝑖,𝐵 ̃𝜇−𝜌𝑖𝜀 = 𝜅𝑖,𝑟 +
∞

∑
𝑛=1

𝑎(𝑛)
𝑖 (𝜅𝑙)

𝜀𝑛 , (3.9)

where the CTs for 𝜅𝑖 may also depend on other couplings (𝑎(𝑛)(𝜅𝑙)). Hence, the RGE for
𝜅𝑖,𝑟 can be derived from:

𝜇
𝑑𝜅𝑖,𝑟

𝑑𝜇
= 𝜇 𝑑

𝑑𝜇
(𝜅𝑖,𝐵 ̃𝜇−𝜌𝑖𝜀 −

∞
∑
𝑛=1

𝑎(𝑛)
𝑖 (𝜅𝑙)

𝜀𝑛 )

= − 𝜌𝑖𝜅𝑖,𝑟𝜀 − 𝜌𝑖𝑎
(1)
𝑖

−
∞

∑
𝑛=1

(𝜌𝑖
𝑎(𝑛+1)

𝑖 (𝜅𝑟,𝑙)
𝜀𝑛 +

𝜕𝑎(𝑛)
𝑖 (𝜅𝑟,𝑙)
𝜕𝜅𝑙

𝜇
𝑑𝜅𝑟,𝑙

𝑑𝜇
1
𝜀𝑛 )

(3.10)

Recasting the equation in this form motivates the definition of the beta function 𝛽𝑖 for
the coupling 𝜅𝑖,𝑟

𝜇
𝑑𝜅𝑖,𝑟

𝑑𝜇
= 𝛽𝑖 − 𝜌𝑖𝜅𝑖𝜀. (3.11)

The beta function cannot contain poles in 𝜀 as it describes the evolution of 𝜅𝑖. Thus, all
poles have to cancel. Reusing the definition of the beta function in eq. 3.10 for 𝜇𝑑𝜅𝑙,𝑟

𝑑𝜇
gives:

𝜇
𝑑𝜅𝑖,𝑟

𝑑𝜇
= − 𝜌𝑖𝜅𝑖𝜀 − (𝜌𝑖𝑎

(1)
𝑖 − 𝜕𝑎(1)

𝑖
𝜕𝜅𝑙

𝜅𝑙𝜌𝑙)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝛽𝑖

− (
∞

∑
𝑛=1

𝜌𝑖
𝑎(𝑛+1)

𝑖
𝜀𝑛 + 𝜕𝑎(𝑛)

𝑖
𝜕𝜅𝑙

𝛽𝑙
1
𝜀𝑛 − 𝜌𝑙𝜅𝑙,𝑟

𝜕𝑎(𝑛+1)
𝑖

𝜕𝜅𝑙

1
𝜀𝑛 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
need to cancel

.

(3.12)

A summation over all other couplings 𝜅𝑙 is implied. One can read off the beta function –
now with an explicit sum for clarity – which only depends on the coefficient of the single
pole, as well as recurrence relations between the coefficients of higher order poles:

𝛽𝑖 = 𝜌𝑖𝑎
(1)
𝑖 − ∑

𝑙

𝜕𝑎(1)
𝑖

𝜕𝜅𝑙
𝜅𝑙𝜌𝑙 (3.13)

𝑎(𝑛+1)
𝑖 = − 1

𝜌𝑖
∑

𝑙
(𝜕𝑎(𝑛)

𝑖
𝜕𝜅𝑙

𝛽𝑙 − 𝜌𝑙𝜅𝑟,𝑙
𝜕𝑎(𝑛+1)

𝑖
𝜕𝜅𝑙

) (3.14)
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3.2. Background Field Method

Gauge fixing terms explicitly break the gauge symmetry and result in gauge-dependent
quantities, such as off-shell Green functions and counterterms. Consequently, the latter
obey the more complicated Slavnov-Taylor identities instead of the simpler Ward identities
for gauge-invariant quantities [41]. However, using the Background Field Method (BFM)
[42–44] preserves explicit gauge invariance for Green functions, greatly simplifying the
renormalization of the gauge sector.

In the BFM, one splits the gauge field 𝐴 −→ 𝐴 + ̂𝐴, into a background field 𝐴 and
a quantum field ̂𝐴. ̂𝐴 denotes the integration variable in the path integral and runs
inside loops, while 𝐴 only emerges in external states and tree-level propagators. The
background-field-gauge will break gauge invariance for the quantum fields but not the
background fields.

Therefore, the effective action of the background field (after setting the quantum fields to
zero) is of interest as it retains gauge invariance. The equivalence between the background
effective action and the effective action from the conventional approach (section 2.3.1)
will be demonstrated below, justifying the method.

According to eq. 2.36, the generating functional of a gauge theory expressed with
background and quantum fields is

̃𝑍[𝐽, 𝐴] = ∫ 𝒟 ̂𝐴 det [𝛿𝒢𝑎

𝛿𝜔𝑏 ] exp i ∫ [ℒ(𝐴 + ̂𝐴) − 1
2𝜉

(𝒢𝑎)2 + 𝐽𝑎
𝜇

̂𝐴𝑎
𝜇], (3.15)

where 𝒢𝑎 denotes the gauge-fixing condition and 1
2𝜉(𝒢𝑎)2 the gauge-fixing term. The

effective action follows from eq. 2.37

Γ̃[ ̃𝐴cl, 𝐴] = −�̃� [𝐽, 𝐴] − ∫ d4𝑥𝐽𝑎
𝜇𝑄𝑎𝜇 (3.16)

using �̃� = −i log ̃𝑍 and alongside with ̃𝐴𝑎
cl,𝜇 = 𝛿�̃� [𝐽, 𝐴]/𝛿𝐽𝑎

𝜇 from eq. 2.38. By choosing
the background field gauge for the gauge-fixing condition

𝒢𝑎 = 𝜕𝜇𝐴𝑎𝜇 + 𝑔𝑓𝑎𝑏𝑐 ̂𝐴𝑏
𝜇𝐴𝑏𝜇, (3.17)

�̃� remains invariant under the infinitesimal transformations

𝛿 ̂𝐴𝑎
𝜇 = −𝑓𝑎𝑏𝑎𝜔𝑏 ̂𝐴𝑐

𝜇 + 1
𝑔

𝜕𝜇𝜔𝑎, (3.18)

𝛿𝐽𝑎
𝜇 = −𝑓𝑎𝑏𝑐𝜔𝑏𝐽𝑐

𝜇, (3.19)

which translates to the gauge invariance of Γ̃[ ̃𝐴cl, 𝐴] via 𝛿 ̃𝐴𝑎
cl,𝜇 = −𝑓𝑎𝑏𝑐𝜔𝑏 ̃𝐴𝑐

cl,𝜇. Γ̃[0, 𝐴] is
invariant under the infinitesimal transformation of the background field (eq. 3.18), which
expresses an ordinary gauge transformation of the background field. Setting ̃𝐴cl to zero
means quantum fields cannot appear as external legs, but only run inside loops.
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BACKGROUND FIELD METHOD

The effective action contains quantum corrections to propagators and vertices to all orders
in PT and should thus agree for the BFM and the conventional approach to give consistent
results. Their relation follows from the definition in eq. 3.15

̃𝑍[𝐽, 𝐴] = 𝑍[𝐽]𝑒−𝑖 ∫ d4𝑥𝐽𝑎
𝜇𝐴𝑎𝜇 (3.20)

as well as

�̃� [𝐽, 𝐴] = 𝑊[𝐽] − ∫ d4𝑥𝐽𝑎
𝜇𝐴𝑎𝜇 , ̃𝐴𝑎

cl,𝜇 = 𝐴𝑎
cl,𝜇 − 𝐴𝑎

𝜇. (3.21)

Applying the definition from eq. 3.16 finally yields

Γ̃[ ̃𝐴cl, 𝐴] = Γ[𝐴cl]|𝐴cl= ̃𝐴cl+𝐴

Γ̃[0, 𝐴] = Γ[𝐴cl]|𝐴cl=𝐴

(3.22)

and hence justifies the BFM approach. Fermions and the Higgs bosons do not appear
in the gauge fixing condition and consequently do not affect explicit gauge invariance.
Therefore, they do not need to be split into quantum and background fields.

Since the gauge quantum fields run only inside loops, counterterms stemming from the
vertices will always cancel those stemming from the propagators and thus do not need
renormalization. Furthermore, the remaining gauge invariance of the background field
demands the background field strength

𝐹 𝑎
𝜇𝜈 = 𝑍1/2

𝐴 [𝜕𝜇𝐴𝑎
𝜈 − 𝜕𝜈𝐴𝑎

𝜇 + 𝑔𝑍𝑔𝑍1/2
𝐴 𝑓𝑎𝑏𝑐𝐴𝑏

𝜇𝐴𝑏
𝜈] (3.23)

to be gauge invariant under 𝑔0 = 𝑍𝑔𝑔, 𝐴0 = 𝑍1/2
𝐴 𝐴𝑟 and 𝜉0 = 𝑍𝜉𝜉, requiring

𝑍𝑔 = 𝑍−1/2
𝐴 . (3.24)

The gauge field wave function renormalization determines the gauge coupling renormaliza-
tion, which does not need to be calculated separately. However, the counterterms for the
gauge fixing parameter are still required. The BFM is then applied to all gauge fields of
the SM, namely 𝐴 = 𝐵, 𝑊, 𝐺. For calculation convenience, the Feynman gauge 𝜉 = 1 is
chosen for all gauge fields:

ℒGF = − 1
2𝜉

(𝜕𝜇
̂𝐴𝜇)

2
. (3.25)

Finally, the interaction of ghost and quantum field follows from eq. 2.4 and the gauge
fixing condition of eq. 3.17:

ℒFP = −𝜃𝑎𝐷𝜇�̂�𝜇𝜃𝑎. (3.26)

𝐷𝜇 (�̂�𝜇) stands for the covariant derivative using only background fields (using 𝐴 + ̂𝐴 in
the covariant derivative).
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3.3. Renormalization of the Weinberg Operator

3.3.1. Complete Renormalized Lagrangian for BFM

This section summarizes the full Lagrangian in the unbroken phase using the BFM. The
SM contribution is

ℒSM = − 1
4

𝐺𝐴
𝜇𝜈𝐺𝐴𝜇𝜈 − 1

4
𝑊 𝐼

𝜇𝜈𝑊 𝐼𝜇𝜈 − 1
4

𝐵𝜇𝜈𝐵𝜇𝜈

+ (𝐷𝜇𝐻)† (𝐷𝜇𝐻) − 𝑀2𝐻†𝐻 − 𝜆 (𝐻†𝐻)2 + ∑
𝜓

𝜓i /𝐷𝜓

− [𝑄𝛼L (𝑌u)
𝛼𝛽

𝐻𝑈𝛽R + 𝑄𝛼L(𝑌d)𝛼𝛽𝐻𝐷𝛽R + ℓ𝛼L(𝑌𝑙)𝛼𝛽𝐻𝐸𝛽R + h.c.]

+ ℒGF + ℒFP

(3.27)

which is supplemented by the unique dimension-five Weinberg operator

ℒ = ℒSM + (1
2

𝐶𝛼𝛽
5 ℓ𝛼L𝐻𝐻𝑇ℓ𝑐

𝛽L + h.c.) . (3.28)

𝐴, 𝐼 are the adjoint indices of the SU(3), SU(2)L group and the gauge bosons in 𝐷𝜇, 𝐺𝐴
𝜇𝜈,

𝑊 𝐼
𝜇𝜈, 𝐵𝜇𝜈 are understood to written as 𝐺 + ̂𝐺, 𝑊 + �̂�, 𝐵 + �̂� according to the BFM.

𝜓 = 𝑄L, 𝑈R, 𝐷R, ℓL, 𝐸R denotes all SM fermions. The gauge fixing and ghost terms are

ℒGF = − 1
2𝜉�̂�

(𝜕𝜇�̂�𝜇)
2

− 1
2𝜉�̂�

(𝐷𝜇�̂� 𝐼
𝜇)

2
− 1

2𝜉 ̂𝐺
(𝐷𝜇 ̂𝐺𝐴

𝜇 )
2

(3.29)

ℒFP = −𝜃�̂�𝜕𝜇𝜕𝜇𝜃�̂� − 𝜃𝐼
�̂�𝐷𝜇�̂�𝜇𝜃𝐼

�̂� − 𝜃𝐴
̂𝐺𝐷𝜇�̂�𝜇𝜃𝐴

̂𝐺
(3.30)

where 𝐷𝜇is expressed in quantum and background field, while �̂�𝜇 is the background only
covariant derivative. The conventions for the renormalization constants of the fields are:

𝜉𝑉 = 𝑍𝜉𝑉
𝜉𝑉 ,𝑟,

𝜑 = 𝑍1/2
𝜑 𝜑𝑟 , 𝜓𝛼 = (𝑍1/2

𝜓 )
𝛼𝛽

𝜓𝛽,𝑟, 𝑀𝐻 = 𝑍𝑀𝐻
𝑀𝐻,𝑟

𝜅 = 𝜇𝜌𝜅𝜀𝑍𝜅𝜅𝑟, (𝑌𝑖)𝛼𝛽 = 𝜇𝜀 (𝑌𝑖,𝑟)
𝛼𝛾

(𝑍𝑌𝑖
)

𝛾𝛽
,

𝐶𝛼𝛽
5 = 𝜇2𝜀 (𝐶𝛼𝛽

5,𝑟 + 𝛿𝐶𝛼𝛽
5 ) ,

(3.31)

with 𝑉 ∈ {�̂�, �̂� , ̂𝐺}, 𝜑 ∈ {𝐻, 𝐵, 𝑊, 𝐺}, 𝜓 ∈ {𝑄L, 𝑈R, 𝐷R, ℓL, 𝐸R}, 𝜅 ∈ {𝑔1, 𝑔2, 𝑔3, 𝑚2, 𝜆},
𝑖 ∈ {u, d, 𝑙}. Here, the generational index structure of the fermionic fields is considered.
Yukawa couplings do not preserve flavor symmetries and will lead to mixing among the
generations, hence demanding non-diagonal generation renormalization constants. The
gauge coupling renormalization follows from

𝑍𝑔1
= 𝑍−1/2

𝐵 , 𝑍𝑔2
= 𝑍−1/2

𝑊 , 𝑍𝑔3
= 𝑍−1/2

𝐺 . (3.32)
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3.3.2. Rank increasing diagrams

A UV model that does not generate masses for all LHNs provides a mass matrix rank of
less than 3. One such possibility was introduced in section 2.2.1 by including only one (or
two) RHN, which in turn leaves two (one) LHNs massless at the tree-level [26]. When
matching the UV theory to the effective description at the cut-off scale, the rank of the
mass matrix is transferred to the rank of the Weinberg operator Wilson coefficient due
to eq.2.46 relating 𝐶5 and 𝑀𝜈. However, quantum corrections can cause the massless
neutrino to become massive, because it is not protected by global symmetries. Such
a symmetry would emerge if all neutrinos were massless (ℓ −→ 𝑈ℓ) or if some massless
neutrinos were accompanied by vanishing Yukawa couplings. For at least one massive
neutrino and a lepton Yukawa matrix of full rank, the massless neutrino will become
massive at the two-loop level. This effect has been studied in [16, 45] for the Weinberg
operator and in a similar fashion for RHNs in [17–19].

In this section, the rank-increasing diagrams are revisited before considering the complete
renormalization afterwards. These diagrams must contribute to the beta function in the
form

𝛽 ⊂ 𝛼 (𝑌𝑙𝑌
†

𝑙 )
𝑇

𝐶5𝑌𝑙𝑌
†

𝑙 (3.33)

as was shown for RHNs [18] before and based on rewriting the beta functions for the mass
eigenvalues. The procedure is repeated for the LHNs in section 4.1 when investigating
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Figure 3.1.: Rank increasing two loop diagrams. Shown are the two-loop corrections of the
Weinberg operator along with the number of equivalent diagrams (crossing
of external legs), which increase the rank of the neutrino mass matrix after
SSB. Diagram (d) contains the one-loop vertex CT of the Weinberg operator,
while (a), (b) and (c) display pure two-loop corrections.
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the running of neutrino parameters. The only diagrams that contribute to the term in
eq. 3.33 are displayed in fig. 3.1, while only diagram (a) was showcased in [16]. The results
obtained here are cross-checked with [16] to see if the additional diagrams ((b),(c) and
(d)) provide additional contributions or were considered but not shown. Diagram (d) is a
one-loop diagram but includes the one-loop CT of the Weinberg operator, making it the
same order in PT.

Only UV divergences need to be considered for renormalization purposes. Since the
Higgs mass serves as an Infrared (IR) regulator, preventing spurious IR divergences
(divergences that appear for external momenta approaching zero), all external momenta
can safely be set to zero. This will not change the form of the CTs as they – like all
other operators in the Lagrangian – must obey locality to conserve causality. Terms like
1
𝜀 log 𝑃 2/𝜇2 arise in loop calculations but necessarily cancel to maintain locality, justifying
the approach. In MS:

ℳ𝑎 = i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼

× 𝑢(0)𝑃L ∫ d𝑑𝑘
(2𝜋)𝑑 ∫ d𝑑𝑙

(2𝜋)𝑑
/𝑙/𝑘

𝑘2𝑙2 (𝑙 − 𝑘)2 (𝑘2 − 𝑀2) (𝑙2 − 𝑀2)
𝑢(0)

= i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× 1
(4𝜋)𝑑 [ 1

2 (𝑑 − 3) 𝑀4 (𝐴(𝑑)
{1,𝑀})

2
− 1

𝑀2 𝐾(𝑑)
{1,𝑀},{1,0},{1,0}]

⊃ i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× [− 1
(16𝜋2)2

1
2𝜀

] ,

(3.34)

ℳ𝑏 = −2i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× ∫ d𝑑𝑘
(2𝜋)𝑑 ∫ d𝑑𝑙

(2𝜋)𝑑
1

𝑘2𝑙2 (𝑘2 − 𝑀2) (𝑙2 − 𝑀2)

= −2i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼

× 𝑢(0)𝑃L𝑢(0) 1
(4𝜋)𝑑

1
𝑀4 (𝐴(𝑑)

{1,𝑀})
2

⊃ i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× [ 1
(16𝜋2)2

2
𝜀2 (1 + 2𝜀 − 2𝜀Δ)] ,

(3.35)
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ℳ𝑐 = i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼

× 𝑢(0)𝑃L ∫ d𝑑𝑘
(2𝜋)𝑑 ∫ d𝑑𝑙

(2𝜋)𝑑
/𝑙 (/𝑙 − /𝑘) − (/𝑙 − /𝑘) /𝑘

𝑘2𝑙2 (𝑙 − 𝑘)2 (𝑘2 − 𝑀2) (𝑙2 − 𝑀2)
𝑢(0)

= i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼

× 𝑢(0)𝑃L𝑢(0) 1
(4𝜋)𝑑

1
𝑀4 (𝐴(𝑑)

{1,𝑀})
2

⊃ i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× [− 1
(16𝜋2)2

1
𝜀2 (1 + 2𝜀 − 2𝜀Δ)] ,

(3.36)

ℳ𝑑 = (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) [(𝛿𝑉 (1)†
5 𝑌𝑙𝑌

†
𝑙 )

𝛼𝛽
+ (𝛿𝑉 (1)†

5 𝑌𝑙𝑌
†

𝑙 )
𝛽𝛼

]

× 𝑢(0)𝑃L𝑢(0) ∫ d𝑑𝑘
(2𝜋)𝑑

1
𝑘2 (𝑘2 − 𝑀2)

= (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) [(𝛿𝑉 (1)†
5 𝑌𝑙𝑌

†
𝑙 )

𝛼𝛽
+ (𝛿𝑉 (1)†

5 𝑌𝑙𝑌
†

𝑙 )
𝛽𝛼

]

× 𝑢(0)𝑃L𝑢(0) 1
(4𝜋)𝑑/2

1
𝑀2 𝐴(𝑑)

{1,𝑀}

⊃ i (𝜖𝑎𝑐𝜖𝑏𝑑 + 𝜖𝑎𝑑𝜖𝑏𝑐) (𝑌𝑙𝑌
†

𝑙 )
𝜌𝛽

(𝐶†
5)

𝜌𝜆
(𝑌𝑙𝑌

†
𝑙 )

𝜆𝛼
𝑢(0)𝑃L𝑢(0)

× [− 1
(16𝜋2)2

2
𝜀2 (1 + 𝜀 − 𝜀Δ)] ,

(3.37)

where Δ = log 𝑀2/𝜇2. The calculation of diagram (d) included the one-loop CT of the
Weinberg operator 𝛿𝐶(1)

5 (for more details see eq. 3.72)

𝛿𝑉 (1)
5 ⊂ − 1

16𝜋2
3
4𝜀

[(𝑌𝑙𝑌
†

𝑙 ) 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
𝑇
] . (3.38)

Terms not contributing to the rank-increasing structure (eq. 3.33) were dropped. The
calculation of the full one-loop renormalization constant can be found in section 3.3.4. For
the calculation of the two-loop integrals, the tensor reduction function of FeynCalc [46–48]
was used to simplify to scalar integrals. Afterwards, these were expressed in TARCER [49]
notation and reduced to master integrals with the Integration-by-Parts (IBP) technique.
The evaluation of all emerging massive one- and two-loop master integrals can be found
in appendix A.1. The IBP relation used for ℳ𝑎 is

∫ dΠ𝑘,𝑙
1

(𝑙2 − 𝑀2)(𝑘2 − 𝑀2)(𝑘 − 𝑙)2 = 𝑑 − 2
2(𝑑 − 3)𝑀2 (∫ dΠ𝑘

1
(𝑘2 − 𝑀2)

)
2

, (3.39)

where the invariant phase-space volume element was abbreviated with dΠ. Denoting
𝑃1 = 𝑘2 − 𝑀2, 𝑃2 = 𝑙2 − 𝑀2 and 𝑃3 = (𝑘 − 𝑙)2 the result follows from:
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ℐ = 𝜕
𝜕𝑘𝜇

(𝛼𝑘𝜇 + 𝛽𝑙𝜇) 1
𝑃1𝑃2𝑃3

. (3.40)

𝛼, 𝛽 are parameters and 𝛼 can be set to 1 as this amounts to a global rescaling. Using
𝜕/𝜕𝑘𝜇𝑘𝜇 = 𝑑, 2𝑘𝜇𝑙𝜇 = (𝑘 − 𝑙)2 − 𝑘2 − 𝑙2 and canceling symmetric term in 𝑙, 𝑘 reads

ℐ = 𝑑
𝑃1𝑃2𝑃3

+ 2(1 + 𝛽) 𝑚2

𝑃 2
1 𝑃2𝑃3

+ 𝛽 1
𝑃 2

1 𝑃2
−

�
�
��𝛽 1

𝑃 2
1 𝑃3

. (3.41)

The last term is scaleless and quadratically divergent. Therefore, no quantity of dimension
can accompany the UV poles, which consequently vanishes. Upon choosing 𝛽 = −1 the
second term vanishes and one remains with 1/𝑃 2

1 𝑃2 which follows from

𝜕
𝜕𝑘𝜇

𝑘𝜇

𝑃 𝑛
1

= 𝑑 − 2𝑛
𝑃 𝑛

1
− 2𝑛𝑀2

𝑃 𝑛+1
1

. (3.42)

The phase space integrations are reinserted, and surface terms, which vanish in Euclidian
space after Wick rotating, are dropped. Hence ℐ −→ 0 and 1

𝑃 2
1 𝑃2

−→ 𝑑−2
𝑀2

1
𝑃1𝑃2

(eq. 3.42)
yields

∫ dΠ𝑘,𝑙
𝑑 − 3

𝑃1𝑃2𝑃3
= 𝑑 − 2

2𝑀2 ∫ dΠ𝑘,𝑙
1

𝑃1𝑃2
, (3.43)

which is equivalent to eq. 3.39. The vertex renormalization then follows from the two-loop
CT

1
2

𝛿𝑉 (2)𝛼𝛽
5 ℓ𝛼L𝐻𝐻Tℓc

𝛽L + h.c. (3.44)

expressed in terms of vertex and wavefunction renormalization constants

𝛿𝑉 (2)
5 = 𝛿𝐶(2)

5 + 1
2

𝛿𝑍(1)
ℓ 𝛿𝐶(1)

5 + 1
2

𝛿𝐶(1)
5 𝛿𝑍(1)T

ℓ + 1
2

𝑍(1)
ℓ 𝐶5𝛿𝑍(1)T

ℓ + … (3.45)

with all non-rank increasing contributions dropped. The pure two-loop contribution
obtained from eq. 3.34-3.37 is

𝑉 (2)
5 ⊂ 𝑉 (2)

5,𝑎 + 𝑉 (2)
5,𝑏 + 𝑉 (2)

5,𝑐 + 𝑉 (2)
5,𝑑

= 1
(16𝜋2)2 ( 1

𝜀2 + 1
2𝜀

) (𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

,
(3.46)

with

𝛿𝑉 (2)
5,𝑎 = 1

(16𝜋2)2
1
2𝜀

(𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

,

𝛿𝑉 (2)
5,𝑏 = − 1

(16𝜋2)2
2
𝜀2 (1 + 2𝜀 − 2𝜀Δ) (𝑌𝑙𝑌

†
𝑙 ) 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
,

𝛿𝑉 (2)
5,𝑐 = 1

(16𝜋2)2
1
𝜀2 (1 + 2𝜀 − 2𝜀Δ) (𝑌𝑙𝑌

†
𝑙 ) 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
,

𝛿𝑉 (2)
5,𝑑 = 1

(16𝜋2)2
2
𝜀2 (1 + 𝜀 − 𝜀Δ) (𝑌𝑙𝑌

†
𝑙 ) 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
.

(3.47)
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It is worth noting that all ’non-local’ terms Δ cancel completely when summed (as
expected). Furthermore, all 1/𝜀 poles in 𝛿𝑉 (2)

5,𝑏,𝑐,𝑑 cancel completely, while diagram (a)
determines the single pole of 𝛿𝑉 (2). This might be the reason why diagrams (b) – (d) were
not shown in [16]. Again referring to section 3.3.4 for the one-loop CTs the rank-increasing
part to the Weinberg Operator renormalization constant (eq. 3.45) reads

𝛿𝐶(2)
5 = 1

(16𝜋2+)2 ( 9
16𝜀2

1
2𝜀

) (𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

. (3.48)

Finally, the beta function follows from eq. 3.13

𝜇d𝐶5
d𝜇

⊂ 2
(16𝜋2)2 (𝑌𝑙𝑌

†
𝑙 ) 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
(3.49)

in agreement with [16]. Furthermore, recurrence relations between the second-order pole
1/𝜀2 and the one-loop CTs exist (eq. 3.14). These relations do not prove the beta function
– as they solely depend on the 1/𝜀 pole (eq. 3.13) – but prove a consistency check on the
calculation itself. In the notation of eq. 3.14, the coefficients in the 𝜀 expansion (one-loop
CT eq. 3.38) are

𝑎(1) = − 1
16𝜋2

3
4

[(𝑌𝑙𝑌
†

𝑙 ) 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] + … ,

𝑎(2) = 1
(16𝜋2)2

9
16

(𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ … .
(3.50)

Plugging them into the right-hand side of eq. 3.14 and using the one-loop beta functions
(section 3.3.4 or appendix A.2) confirms

𝑎(2) = −1
2

∑
𝑗

(𝛽𝑗
𝜕𝑎(1)

𝜕𝜅𝑗
− 𝜌𝜅𝑗

𝜅𝑗
𝜕𝑎(2)

𝜕𝜅𝑗
)

= −1
2

1
(16𝜋2)2 (2 ⋅ (3

4
⋅ 6

4
) − 6 ⋅ 9

16
) (𝑌𝑙𝑌

†
𝑙 ) 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
+ … ,

= 1
(16𝜋2)2

9
16

(𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ … .

(3.51)

3.3.3. Renormalization of SM parameters in BFM

The two-loop renormalization of the SM is repeated in the BFM to set up the Weinberg
operator calculations and ensure consistency of all CTs. This section presents an overview
of the approach:

• All Feynman diagrams and the respective amplitudes are generated with FeynArts
[50, 51]. The model file is based on the Lagrangian presented in eqs. 3.27 and 3.28
and was created in FeynRules [52, 53]. Subsequently, the SU(𝑁) and generation
algebra is simplified, and all integrals tensor-reduced to scalar ones with the help
of FeynCalc [46–48]. TARCER [49] then converts all two-loop integrals to standard
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Tarcer notation and reduces them to a set of master integrals using IBP techniques.
A concrete example for the sequence of calculational steps was presented in section
3.3.2.

• On the one hand, one-loop CTs of all SM parameters are needed as they contribute
to second-order quantum corrections in the form of insertions in one-loop diagrams.
On the other hand, only a small selection of two-loop CTs contribute to the renormal-
ization of the Weinberg operator in the second order of PT. Apart from the obvious
two-loop Weinberg operator CT, only the two-loop wave-function renormalization
of the external legs ℓ and 𝐻 contribute, as can be seen from eqs. 3.44 and 3.45.

• Multiple insertions of the Weinberg operator are not considered as they are cut-
off-suppressed. Single insertions cannot appear in the SM renormalization as they
would violate lepton number conservation, which is absent in any interactions. Thus,
SM renormalization stays unaffected by the Weinberg operator.

• Spurious IR divergences in renormalization (not to be confused with those related
to soft and collinear parton emission) should be avoided as they exhibit the same
structure as UV divergences in dimensional regularization in the form of 1/𝜀𝑛

poles. They appear whenever an integral is scaleless and IR, and UV divergences
cancel exactly. This makes reconstructing the UV divergences much harder. A
scheme that introduces the fewest scales (which corresponds to IR regulators in
the form of external momenta or particle masses) is preferable to simplify one-loop
and (especially) two-loop integrals. As discussed earlier, the scheme can differ for
different CTs as all non-local terms must be canceled.

• When dealing with wave-function renormalization, working in a scheme with zero
external momenta is impossible because the two-point CT vertex depends on the
momentum. They can, however, simultaneously regulate all IR divergences and allow
for the Higgs mass to be zero. It is important to note that, apart from the mass
counterterm itself, no coupling can depend on 𝑀 due to power counting. With the
help of TARCER, which specializes in massless two-loop integrals, all scalar integrals
were reduced to master integrals and subsequently evaluated. This approach was
used for both one- and two-loop wave function renormalizations.

• A similar approach can be used for the SM one-loop 3- and 4-point vertices CTs.
Only choosing two external states with momenta leads to spurious IR divergences,
as some subdivergent structures remain scaleless. This situation is discussed in more
detail in section 3.3.4, dealing with the renormalization of the Weinberg operator.
For the SM one-loop CTs, it is enough to work with a general external momentum
configuration and utilize the divergent part of the Passarino-Veltman functions [54,
55].

In the following, the results of the renormalization of all SM parameters in the unbroken
phase using BFM are summarized. All one- and two-loop CTs can be found in closed
form in appendix A.2.

26



RENORMALIZATION OF THE WEINBERG OPERATOR

ψα, H ψβ, H

1

Figure 3.2.: Wave function renormalization. This diagram shows a representative contri-
bution of quantum corrections to any propagator to arbitrary order in PT.
Here 𝜓 = 𝑄L, 𝑈R, 𝐷R, ℓL, 𝐸R and 𝛼, 𝛽 denote generation.

One-loop CTs

First, one-loop CTs are calculated as they contribute to the second-order corrections.
Fermion and Higgs wave function renormalization constants are calculated order by order
according to the 1PI corrections in fig. 3.2. Only schematic representations of the quantum
corrections will be given, as the number of two-loop diagrams ranges in the hundreds.
To account for mixing between generations, the two-point function for 𝜓𝑖 to 𝜓𝑗 and the
renormalization constant 𝛿𝑍𝛼𝛽 according to eq. 3.31 are investigated. The CTs amplitudes
read (𝑎, 𝑏 denote SU(2)L indices):

𝜓 ∶ i𝛿𝑎𝑏/𝑝 (𝛿𝑍(1)
𝜓 )

𝛼𝛽
𝑃𝐿/𝑅 𝐻 ∶ i𝛿𝑎𝑏 (𝛿𝑍(1)

𝐻 𝑝2 + (𝛿𝑍(1)
𝐻 + 𝛿𝑍(1)

𝑀𝐻
) 𝑀2

𝐻) . (3.52)

This means the Higgs wave function has to be determined from the 𝑝2 part before
subtracting it from the 𝑝 independent part to acquire the mass renormalization constant.
Here and in all following loop calculations, only quantum gauge fields can appear inside
loops, although they behave exactly like gauge fields in conventional gauges. Their
propagators have the same form as the common gauge field, and the Feynman gauge was
chosen for convenience. As a result, fermion and Higgs counterterms read:

𝛿𝑍(1)
ℓ = − 1

16𝜋2𝜀 ⋅ 4
(𝑔2

1 + 3𝑔2
2 + 2𝑌𝑙𝑌

†
𝑙 ) ,

𝛿𝑍(1)
𝑒 = − 1

16𝜋2𝜀
(𝑔2

1 + 𝑌 †
𝑙 𝑌𝑙) ,

𝛿𝑍(1)
𝑞 = − 1

16𝜋2𝜀 ⋅ 36
(𝑔2

1 + 27𝑔2
2 + 48𝑔2

3 + 18𝑌d𝑌 †
d + 18𝑌u𝑌 †

u ) ,

𝛿𝑍(1)
𝑢 = − 1

16𝜋2𝜀 ⋅ 9
(4𝑔2

1 + 12𝑔2
3 + 9𝑌 †

u 𝑌u) ,

𝛿𝑍(1)
𝑑 = − 1

16𝜋2𝜀 ⋅ 9
(𝑔2

1 + 12𝑔2
3 + 9𝑌 †

d 𝑌d) ,

𝛿𝑍(1)
𝐻 = 1

16𝜋2𝜀 ⋅ 2
(𝑔2

1 + 3𝑔2
2 − 2𝑇) ,

𝛿𝑍(1)
𝑀𝐻

= 1
16𝜋2𝜀

(6𝜆 + 𝑇) ,

(3.53)

with 𝑇 = Tr [𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u + 3𝑌d𝑌 †

d ]. Continuing with the renormalization of the Yukawa
and quartic Higgs coupling, the corresponding schematic diagram is shown in fig. 3.3,
where only 1PI contributions are considered. Following the convention to define vertex
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H

H

H

H

1

(a) Quartic 𝐻 Interaction

ψαR ψβL

H, H̃

1

(b) Yukawa Interaction

Figure 3.3.: Vertex renormalization. The diagrams show a representative contribution
of quantum corrections to the quartic Higgs coupling (left) and the Yukawa
coupling (right) to any order in PT. Here 𝜓𝐿 = 𝑄, ℓ and 𝜓𝑅 = 𝐷, 𝑅, 𝐸. 𝐻
belongs to the up Yukawa vertex, while 𝐻 belongs to the down and lepton
Yukawa vertex.

CTs in eq. 3.3 external wave-function renormalization must be included. Those can be
found in 3.53 and affect the vertex CTs according to the structure of the vertex (eq. 3.27)
as follows

𝛿𝑉 (1)
𝜆 = (𝛿𝑍(1)

𝜆 + 2𝛿𝑍(1)
𝐻 ) 𝜆

𝛿𝑉 (1)
𝑌 = 𝛿𝑍(1)

𝑌 𝑌 + 1
2

𝛿𝑍(1)
𝜓𝐿

𝑌 + 1
2

𝑌 𝛿𝑍(1)
𝜓𝑅

+ 1
2

𝛿𝑍(1)
𝐻 𝑌 ,

(3.54)

with 𝑌 = 𝑌u,d,𝑙 and 𝜓𝐿 = 𝑄, ℓ and 𝜓𝑅 = 𝐷, 𝑅, 𝐸. The coupling renormalization constant
can be extracted from 𝛿𝑉, which cancels all 1PI vertex corrections. Using the wave function
renormalization constants and solving for 𝛿𝑍𝑌 and 𝛿𝑍𝜆 gives:

𝛿𝑍(1)
𝜆 = 1

16𝜋2𝜀 ⋅ 16𝜆
[32𝜆𝑇 + 3(𝑔12 + 𝑔22)2 + 6𝑔4

2 − 24𝜆(𝑔2
1 + 3𝑔2

2) + 192𝜆2 − 16𝑇 ′] ,

𝛿𝑍(1)
𝑌u

= 1
16𝜋2𝜀 ⋅ 24

𝑌 −1
u [𝑌u (12𝑇 − 17𝑔2

1 − 27𝑔2
2 − 96𝑔2

3) + 18𝑌u𝑌 †
u 𝑌u − 18𝑌d𝑌 †

d 𝑌u] ,

𝛿𝑍(1)
𝑌d

= 1
16𝜋2𝜀 ⋅ 24

𝑌 −1
d [𝑌d (12𝑇 − 5𝑔2

1 − 27𝑔2
2 − 96𝑔2

3) − 18𝑌u𝑌 †
u 𝑌d + 18𝑌d𝑌 †

d 𝑌d] ,

𝛿𝑍(1)
𝑌𝑙

= 1
16𝜋2𝜀 ⋅ 8

𝑌 −1
𝑙 (𝑌𝑙 [4𝑇 − 15𝑔2

1 − 9𝑔2
2) + 6𝑌𝑙𝑌

†
𝑙 𝑌𝑙] , (3.55)

with 𝑇 ′ = Tr [(𝑌𝑙𝑌
†

𝑙 )
2

+ 3 (𝑌u𝑌 †
u )

2
+ 3 (𝑌d𝑌 †

d )
2
]. By using the BFM, the renormal-

ization of the gauge sector is simplified. For the gauge couplings, it is sufficient to
renormalize the background field two-point function shown in fig. 3.4. Inside the 1PI
corrections, the background fields cannot appear but only their quantum field analogon
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Aµ Aν

1

Figure 3.4.: Background field wave function renormalization. This shows a representative
contribution of quantum corrections to any background field propagator
𝐴 = 𝐵, 𝑊, 𝐺 to arbitrary order in PT.

�̂�, �̂� , ̂𝐺. The mixed interaction vertices follow from the Lagrangian in eq. 3.27 by substi-
tuting 𝐴 −→ 𝐴 + ̂𝐴 and expanding the expression. The background field wave-function
renormalization constants are

𝛿𝑍(1)
𝐺 = 7𝑔2

3
16𝜋2𝜀

,

𝛿𝑍(1)
𝑊 = 19𝑔2

2
16𝜋2𝜀 ⋅ 6

,

𝛿𝑍(1)
𝐵 = − 41𝑔2

1
16𝜋2𝜀 ⋅ 6

,

(3.56)

and the coupling renormalization constant follows from 3.32. Now, only the gauge fixing
parameters are missing. These are intrinsically related to the quantum gauge fields;
hence, two-point functions like the one in 3.4 need to be considered but for 𝐴 = �̂�, �̂� , ̂𝐺.
This also corresponds to renormalizing the quantum fields. However, the wave function
renormalization will not appear in any one-loop + CT diagram, as the propagator
renormalization will always cancel with the adjacent vertices. The quantum gauge field
2-point in Feynman gauge CT respects the form:

ℒBFM
ren ⊂ − 1

2(1 + 𝛿𝜉)
(1 + 𝛿𝑍𝐴) (𝜕𝜇𝐴𝜇)2 − 1

2
(1 + 𝛿𝑍𝐴)𝐹𝜇𝜈𝐹 𝜇𝜈

CT
−−→ i [𝑝𝜇𝑝𝜈(𝛿𝑍𝐴 − 𝛿𝑍𝐴 + 𝛿𝜉) − 𝛿𝑍𝐴𝑝2𝑔𝜇𝜈]

−−→ i [𝑝𝜇𝑝𝜈𝛿𝜉 − 𝛿𝑍𝐴𝑝2𝑔𝜇𝜈]

(3.57)

Thus, the gauge fixing parameter can be directly determined from the 𝑝𝜇𝑝𝜈 part of the
2-point quantum field renormalization. The result reads:

𝛿𝑍(1)
𝜉�̂�

= 𝑔2
3

16𝜋2𝜀
,

𝛿𝑍(1)
𝜉�̂�

= − 5𝑔2
2

16𝜋2𝜀 ⋅ 6
,

𝛿𝑍(1)
𝜉�̂�

= − 41𝑔2
1

16𝜋2𝜀 ⋅ 6
,

(3.58)

and concludes the one-loop renormalization of all SM parameters.
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Two Loop CTs

Only the two-loop renormalization constants of the lepton and Higgs wavefunction con-
tribute to the renormalization of the Weinberg operator. Beginning with the charged
leptons, the pure two-loop corrections 𝛿𝑍(2)

𝑙 to the propagator (according to fig.3.2) read:

𝛿𝑍(2,2)
ℓ = 1

(16𝜋2)2 𝜀2 ⋅ 32
[−𝑔4

1 − 6𝑔2
1𝑔2

2 − 57𝑔4
2 − 2 (17𝑔2

1 + 15𝑔2
2) 𝑌𝑙𝑌

†
𝑙

+ 8𝑇 𝑌𝑙𝑌
†

𝑙 + 8𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ]

+ 1
(16𝜋2)2 𝜀 ⋅ 32

{1
2

[(4Δ′ + 81) 𝑔4
1 + 6 (4Δ′ − 1) 𝑔2

1𝑔2
2 + 3 (76Δ′ − 153) 𝑔4

2]

+ [(68Δ′ − 139) 𝑔2
1 + 3 (20Δ′ − 47) 𝑔2

2] 𝑌𝑙𝑌
†

𝑙 − 4 (4Δ′ − 11) 𝑇 𝑌𝑙𝑌
†

𝑙

+ 4 (9 − 4Δ′) 𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 } .

(3.59)

The non-local terms Δ′ = log 𝑝2/𝜇2 in MS cancel once one-loop topologies with one CT
insertion are included in the propagator correction. Their contribution is

𝛿𝑍(2,1)
ℓ = 1

16𝜋2𝜀 ⋅ 4
{𝑔2

1 (𝛿𝑍𝐵 − 𝛿𝑍𝛼𝐵
) + 3𝑔2

2 (𝛿𝑍𝑊 − 𝛿𝑍𝛼𝑊
) − (𝑔2

1 + 3𝑔2
2) 𝛿𝑍ℓ

− (𝛿𝑍ℓ𝑌𝑙𝑌
†

𝑙 + 𝑌𝑙𝑌
†

𝑙 𝛿𝑍ℓ + 2𝑌𝑙𝛿𝑍𝑌𝑙
𝑌 †

𝑙 + 2𝑌𝑙𝛿𝑍†
𝑌𝑙

𝑌 †
𝑙 )}

+ 1
16𝜋2 ⋅ 4

{(1 − Δ) [𝑔2
1 (𝛿𝑍𝐵 − 𝛿𝑍𝛼𝐵

) + 3𝑔2
2 (𝛿𝑍𝑊 − 𝛿𝑍𝛼𝑊

)

− (𝑔2
1 + 3𝑔2

2) 𝛿𝑍ℓ] − (2 − Δ) (𝛿𝑍ℓ𝑌𝑙𝑌
†

𝑙 + 𝑌𝑙𝑌
†

𝑙 𝛿𝑍ℓ

+ 2𝑌𝑙𝛿𝑍𝑌𝑙
𝑌 †

𝑙 + 2𝑌𝑙𝛿𝑍†
𝑌𝑙

𝑌 †
𝑙 )} .

(3.60)

Adding the two together gives the two-loop lepton wave function renormalization constant:

𝛿𝑍(2)
ℓ = 1

(16𝜋2)2 𝜀2 ⋅ 32
[𝑔4

1 + 6𝑔2
1𝑔2

2 + 57𝑔4
2 + 2 (17𝑔2

1 + 15𝑔2
2) 𝑌𝑙𝑌

†
𝑙

− 8𝑇 𝑌𝑙𝑌
†

𝑙 − 8𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ]

+ 1
(16𝜋2)2 𝜀 ⋅ 64

[85𝑔4
1 + 18𝑔2

1𝑔2
2 − 231𝑔4

2 − 2 (7𝑔2
1 + 33𝑔2

2) 𝑌𝑙𝑌
†

𝑙

+ 24𝑇 𝑌𝑙𝑌
†

𝑙 + 8𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ] ,

(3.61)

where all non-local terms containing Δ′ vanishe as expected. The same procedure applies
to the Higgs wave function renormalization, where the pure two-loop, one-loop + CT and
total corrections read:
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𝛿𝑍(2,2)
𝐻 = 1

(16𝜋2)2 𝜀2
{−43

16
𝑔4

1 − 3
4

𝑔2
1𝑔2

2 + 15
16

𝑔4
2 + 1

8
𝑔2

1Tr (7𝑌d𝑌 †
d − 5𝑌u𝑌 †

u − 11𝑌𝑙𝑌
†

𝑙 )

+ 3
8

𝑔2
2𝑇 − 12𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u ) + 3
4

Tr (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u 𝑌u𝑌 †

u

+ 3𝑌d𝑌 †
d 𝑌d𝑌 †

d − 6𝑌u𝑌 †
u 𝑌d𝑌 †

d )}

+ 1
(16𝜋2)2 𝜀

{(43
8

Δ − 613
64

) 𝑔4
1 + (3

2
Δ − 105

32
) 𝑔2

1𝑔2
2 − (15

8
Δ − 483

64
) 𝑔4

2 − 3𝜆2

+ 1
48

𝑔2
1Tr [(143 − 84Δ) 𝑌d𝑌 †

d + 5 (12Δ − 41) 𝑌u𝑌 †
u + 3 (44Δ − 113) 𝑌𝑙𝑌

†
𝑙 ]

− 3
16

(4Δ − 3) 𝑔2
2𝑇 + 2 (12Δ − 29) 𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u ) + 3
8

Tr [(11 − 4Δ)

× (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u 𝑌u𝑌 †

u + 3𝑌d𝑌 †
d 𝑌d𝑌 †

d ) − 2 (25 − 12Δ) 𝑌u𝑌 †
u 𝑌d𝑌 †

d ]} , (3.62)

𝛿𝑍(2,1)
𝐻 = 1

16𝜋2𝜀
{−1

4
𝑔2

1 (2𝛿𝑍𝐵 + 𝛿𝑍𝛼𝐵
− 2𝛿𝑍𝐻) − 3

4
𝑔2

2 (2𝛿𝑍𝑊 + 𝛿𝑍𝛼𝑊
− 2𝛿𝑍𝐻) − 𝑇 𝛿𝑍𝐻

− Tr [𝑌𝑙 (𝛿𝑍𝑌𝑙
+ 𝛿𝑍†

𝑌𝑙
) 𝑌 †

𝑙 + 3𝑌u (𝛿𝑍
𝑌u

+ 𝛿𝑍†
𝑌u

) 𝑌 †
u + 3𝑌d (𝛿𝑍

𝑌d
+ 𝛿𝑍†

𝑌d
) 𝑌 †

d ]}

+ 1
16𝜋2 {1

4
𝑔2

1 [2 (Δ − 2) 𝛿𝑍𝐵 + Δ𝛿𝑍𝛼𝐵
− 2 (Δ − 2) 𝛿𝑍𝐻] + 3

4
𝑔2

2 [2 (Δ − 2) 𝛿𝑍𝑊

+ Δ𝛿𝑍𝛼𝑊
− 2 (Δ − 2) 𝛿𝑍𝐻] + (Δ − 2) 𝑇 𝛿𝑍𝐻 + (Δ − 2) Tr [𝑌𝑙 (𝛿𝑍𝑌𝑙

+ 𝛿𝑍†
𝑌𝑙

) 𝑌 †
𝑙

+ 3𝑌u (𝛿𝑍
𝑌u

+ 𝛿𝑍†
𝑌u

) 𝑌 †
u + 3𝑌d (𝛿𝑍

𝑌d
+ 𝛿𝑍†

𝑌d
) 𝑌 †

d ]} , (3.63)

𝛿𝑍(2)
𝐻 = 1

(16𝜋2)2 𝜀2
{43

16
𝑔4

1 + 3
4

𝑔2
1𝑔2

2 − 15
16

𝑔4
2 + 1

8
𝑔2

1Tr (11𝑌𝑙𝑌
†

𝑙 + 5𝑌 u𝑌 †
u − 7𝑌d𝑌 †

d )

− 3
8

𝑔2
2𝑇 + 12𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u ) − 3
4

Tr (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u 𝑌u𝑌 †

u

+ 3𝑌d𝑌 †
d 𝑌d𝑌 †

d − 6𝑌u𝑌 †
u 𝑌d𝑌 †

d )}

+ 1
(16𝜋2)2 𝜀

{−431
192

𝑔4
1 − 9

32
𝑔2

1𝑔2
2 + 163

64
𝑔4

2 − 3𝜆2

− 15
16

𝑔2
2𝑇 + 3

8
Tr (3𝑌𝑙𝑌

†
𝑙 𝑌𝑙𝑌

†
𝑙 + 9𝑌u𝑌 †

u 𝑌u𝑌 †
u + 9𝑌d𝑌 †

d 𝑌d𝑌 †
d − 2𝑌u𝑌 †

u 𝑌d𝑌 †
d )

− 5
48

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 10𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u )} . (3.64)

All non-local terms canceled as expected.
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Figure 3.5.: Scaleless substructure. The diagrams show representative two-loop corrections
to the Weinberg of the form 𝑔2

1 × Coupling2. There is no configuration with
just two external momenta that eliminates all spurious IR divergences, as
there is always a scaleless correction involving only the two external legs with
zero momenta.

3.3.4. Renormalization of Weinberg Operator

In the previous section, the renormalization of the standard model parameters in the
BFM was performed. The general approach needs some modifications to avoid spurious
IR divergences to calculate the two-loop Weinberg operator corrections. At the one-loop
level, having non-zero external momenta will prevent these, and the integral can be
evaluated using the Passarino-Veltman function, as in the SM renormalization. Therefore,
the approach introduced earlier remains valid for the one-loop CT 𝛿𝐶(1)

5 . However, the
two-loop corrections present a challenge when considering all external momenta. The
loop-integral becomes significantly more complex, and many topologies exist. Hence, an
alternative scheme is required. The CTs are independent of the scheme results as all
non-local terms cancel if performed properly.

Using two external momenta to reduce the topologies to wave function renormalization
type diagrams, which can be evaluated by TARCER, is not a viable option due to emerging
IR divergences. For one collection of couplings, the same configuration of external momenta
must be chosen to cancel all log ( 𝑝2

𝜇2 ) type terms. Still, a configuration that prevents all
IR divergences does not always exist. A simple two-loop example is shown in fig. 3.5 to
illustrate the problem.

Therefore, an alternative scheme (similarly in [56, 57]) is chosen, which sets all external
momenta to zero, but introduces IR regulators in the form of artificial mass terms. This
scheme reintroduces the Higgs mass in calculations, which was set to zero for calculational
convenience. Additionally, mass terms are added for the quantum and ghost fields. These
do not break gauge symmetry as the background effective action (eq. 3.22) only depends
on the background fields, which maintain gauge invariance. The mass terms that render
the diagrams IR finite are:

ℒIR = −𝑀2𝐻†𝐻 − 1
2

𝑀2�̂�𝜇�̂�𝜇 − 1
2

𝑀2�̂� 𝐼
𝜇�̂� 𝐼𝜇 − 𝑀2𝜃�̂�𝜃�̂� − 𝑀2𝜃�̂�

𝐼 𝜃�̂�
𝐼. (3.65)

To simplify the master integrals, all IR regulators have been chosen the same (𝑀). SU(3)
quantum field and ghost masses have been omitted as they will not participate in the
second-order corrections. 𝑀 constitutes a new parameter in the Lagrangian that needs
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to be renormalized. Yet, individual CTs for the different particles are necessary as every
mass term gets different corrections. Another perspective is to assign distinct masses for
the different particles, renormalize each of them, and then equate the renormalized masses.
That explains the varying CTs

−1
2

𝛿𝑍𝑀�̂�
𝑀2�̂�𝜇�̂�𝜇 − 1

2
𝛿𝑍𝑀�̂�

𝑀2�̂� 𝐼
𝜇�̂� 𝐼𝜇. (3.66)

Ghost fields do not appear in one-loop Weinberg operator corrections. Therefore, ghost
mass terms CTs were ignored, as they would only enter at the three-loop level, while
the Higgs mass renormalization constant was already calculated eq. 3.53. The IR mass
regulators render all two-loop diagrams finite by introducing a scale to all integrals.
Consequently, all external momenta can be set to zero, giving only vacuum diagrams.
After IBP reduction, only two master integrals (in TARCER notation)

𝐾(𝑑)
{1,𝑀},{1,0},{1,0} and 𝐾(𝑑)

{1,𝑀},{1,𝑀},{1,𝑀} (3.67)

emerge, with one or three massive propagators, respectively. Their UV divergent parts
were calculated in the appendix A.1 for cross-checking purposes, as the first one is available
in the TARCER package, while the second was calculated in [56]. Furthermore, it is worth
noting that introducing these mass terms does not affect the CTs. Higher-dimension
operators or multiple Weinberg operator insertions together with this mass scale could
give contributions of the form 𝑀

Λ2 𝐶6, 𝑀
Λ2 𝐶2

5 to the dimension-five operator. However, their
contribution is cut-off suppressed by at least two orders of Λ. Here, only the first order in
1/Λ is considered.

IR-Regulator Renormalization

The mass term renormalization for the gauge quantum fields follows from the propagator
corrections (fig. 3.4 with 𝐴 = �̂�, �̂�) similar to the gauge fixing parameter in eq. 3.57.
Modifying this equation by including a mass term gives

ℒBFM,ren ⊂ − 1
2(1 + 𝛿𝜉)

(1 + 𝛿𝑍 ̂𝐴) (𝜕𝜇
̂𝐴𝜇)

2
− 1

2
(1 + 𝛿𝑍 ̂𝐴) ̂𝐹 𝜇𝜈

− 1
2

(1 + 𝛿𝑍𝑀) (1 + 𝛿𝑍 ̂𝐴)𝑀2 ̂𝐴𝜇
̂𝐴𝜇

−−→ i [𝑝𝜇𝑝𝜈𝛿𝜉 − 𝛿𝑍 ̂𝐴𝑝2𝑔𝜇𝜈 − (𝛿𝑍𝑀 + 𝛿𝑍 ̂𝐴) 𝑀2]

(3.68)

The gauge quantum field was explicitly renormalized here to uniquely separate the mass
and wave function renormalization contribution terms. First, 𝛿𝑍𝐴 is chosen such that
it cancels the UV divergent part ∝ 𝑝2. Second, this contribution is subtracted from the
∝ 𝑀2 term to yield 𝛿𝑍𝑀. This procedure also gives the wave function renormalization
of the background fields, which, however, always cancels with the factors from the two
adjacent vertices. The one-loop mass CTs for �̂� and �̂� read:

𝛿𝑍(1)
𝑀�̂�

= 1
16𝜋2𝜀

41
6

𝑔2
1,

𝛿𝑍(1)
𝑀�̂�

= − 1
16𝜋2𝜀

7
6

𝑔2
2.

(3.69)
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Figure 3.6.: Weinberg Operator Renormalization. The diagram shows a representative
contribution of quantum corrections to the Weinberg operator coupling to
any order in PT.

One-loop Contribution

The one-loop 1PI corrections to the Weinberg operator vertex depicted in fig. 3.6 are
calculated using the Passarino-Veltman integrals and are independent of the scheme, as
the momentum configuration and mass terms only affect finite parts. Those, however, are
not included in MS.

The method to include charge conjugated spinors and lepton number violating interaction
is presented in [58]. It amounts to choosing a fermion flow in a given diagram. Whenever
the introduced fermion flow goes against the fermion number flow direction, the momentum
sign of the propagator is exchanged, and the vertex 𝜅 is replaced by the charge conjugated
vertex (𝜅 −→ 𝐶𝜅𝐶−1 with C from eq. 2.1). FeynCalc can handle fermion number violating
processes based on the approach in [58]. The vertex correction

𝛿𝑉 (1)
5 = 1

16𝜋2𝜀
[−𝑌𝑙𝑌

†
𝑙 𝐶5 − 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
+ 𝐶5 (𝑔1

1 − 3𝑔2
2 + 8𝜆)] (3.70)

together with the contribution from the lepton and Higgs wavefunction renormalizations

𝛿𝑉 (1)
5 = 𝛿𝐶(1)

5 + 1
2

𝛿𝑍(1)
ℓ 𝐶5 + 1

2
𝐶5𝛿𝑍(1)T

ℓ + 𝛿𝑍(1)
𝐻 , (3.71)

which follows from the vertex CT given in eq. 3.44, ultimately yields the one-loop Weinberg
operator correction by using the one-loop CTs from eq. 3.53:

𝛿𝐶(1)
5 = 1

16𝜋2𝜀 ⋅ 4
[2 (4𝜆 − 3𝑔2

2 + 2𝑇) 𝐶5 − 3𝑌𝑙𝑌
†

𝑙 𝐶5 − 3𝐶5 (𝑌 †
𝑙 𝑌𝑙)

T
] . (3.72)

Two-Loop Contribution

The two-loop 1PI corrections in fig. 3.6 are not explicitly displayed due to the large number
of diagrams involved. There are 931 pure two-loop diagrams and 116 additional one-loop
diagrams with one CT insertion. The most significant diagrams, which contribute to
increasing the rank, are shown in fig. 3.1. The method for addressing lepton number
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violating processes introduced previously remains. The outcome for the pure two-loop
diagrams, based on the approach with IR regulator masses and on external momenta
described at the beginning of this section, is as follows:

𝛿𝑉 (2,2)
5 = 1

(16𝜋2)2
1
𝜀2 {−89

32
𝑔4

1𝐶5 − 85
32

𝑔4
2𝐶5 − 3

16
𝑔2

1𝑔2
1𝐶5 + 𝜆 (−14𝜆 + 𝑔2

1 + 6𝑔2
2) 𝐶5

+ (2𝜆 + 1
2

𝑇 − 13
8

𝑔2
1 − 15

8
𝑔2

2) [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] + (𝑇 ′ − 2𝜆𝑇) 𝐶5

+ 1
4

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

] − (𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

}

+ 1
(16𝜋2)2

1
𝜀

{89Δ − 26
16

𝑔4
1𝐶5 + 255Δ − 38

48
𝑔4

2𝐶5 + 3Δ − 40
8

𝑔2
1𝑔2

1𝐶5

+ 1
4

𝜆 [8 (14Δ + 1) 𝜆 − (8Δ + 15) 𝑔2
1 − (48Δ + 23) 𝑔2

2] 𝐶5

+ (4𝜆Δ − 1
3

𝑔2
1 − 5

6
𝑔2

2) 𝑇 𝐶5 + [−4 (Δ + 1) 𝜆 + 1
2

(1 − 2Δ) 𝑇

+ 26Δ − 33
8

𝑔2
1 + 30Δ − 21

8
𝑔2

2] × [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

]

+ (1 − 2Δ) 𝑇 ′𝐶5 + 1
4

(7 − 2Δ) [𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

− 1
2

(3 − 4Δ) (𝑌𝑙𝑌
†

𝑙 ) 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

} ,

(3.73)

with the ’non-local’ terms defined by Δ = log 𝑀2/𝜇2, the same as in section 3.3.2 for
the rank increasing contributions. 𝑀 is the only dimensionful scale and hence the only
quantity that can appear in the log alongside 𝜇.

The one-loop CTs are split into two parts: One containing only Weinberg operator
vertex CTs based on the decomposition in eq. 3.71 𝛿𝑉 (2,1.1)

5 and the other one containg
all SM and mass type CTs 𝛿𝑉 (2,1.2)

5 . They read:

𝛿𝑉 (2,1.2)
5 = 1

16𝜋2𝜀
{(𝜆 + 1

8
𝑔2

1 − 3
8

𝑔2
2) (2𝛿𝑍(1)

𝐻 𝐶5 + 𝛿𝑍(1)
ℓ 𝐶5 + 𝐶5𝛿𝑍(1)T

ℓ + 2𝛿𝑍(1)
5 )

− 1
2

[2𝛿𝑍(1)
𝐻 𝑌𝑙𝑌

†
𝑙 𝐶5 + 2𝛿𝑍(1)

𝐻 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ 𝑌𝑙𝑌
†

𝑙 𝐶5𝛿𝑍(1)T
ℓ + 𝛿𝑍(1)

ℓ 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ 𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
ℓ 𝐶5 + 𝐶5 (𝑌𝑙𝑌

†
𝑙 𝛿𝑍(1)

ℓ )
T

+ 2𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
5 + 2𝛿𝑍(1)

5 (𝑌𝑙𝑌
†

𝑙 )
T

]}

+ 1
16𝜋2 {− [𝜆Δ + 1

16
(2Δ − 3) 𝑔2

1 − 3
16

(2Δ + 1) 𝑔2
2] (2𝛿𝑍(1)

𝐻 𝐶5 + 𝛿𝑍(1)
ℓ 𝐶5

+ 𝐶5𝛿𝑍(1)T
ℓ + 2𝛿𝑍(1)

5 ) − 1
2

(1 − Δ) [2𝛿𝑍(1)
𝐻 𝑌𝑙𝑌

†
𝑙 𝐶5 + 2𝛿𝑍(1)

𝐻 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ 𝑌𝑙𝑌
†

𝑙 𝐶5𝛿𝑍(1)T
ℓ + 𝛿𝑍(1)

ℓ 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

+ 𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
ℓ 𝐶5 + 𝐶5 (𝑌𝑙𝑌

†
𝑙 𝛿𝑍(1)

ℓ )
T

+ 2𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
5 + 2𝛿𝑍(1)

5 (𝑌𝑙𝑌
†

𝑙 )
T

]} (3.74)
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𝛿𝑉 (2,1.1)
5 = 1

16𝜋2𝜀
{−1

4
[𝑔2

1 (𝛿𝑍(1)
𝐵 + 2𝛿𝑍(1)

𝜉�̂�
) − 3𝑔2

2 (𝛿𝑍(1)
𝑊 − 2𝛿𝑍(1)

𝜉�̂�
) − 8𝜆𝛿𝑍(1)

𝜆 ] 𝐶5

− 1
2

[𝛿𝑍(1)
ℓ 𝑌𝑙𝑌

†
𝑙 𝐶5 + 𝐶5 (𝛿𝑍(1)

ℓ 𝑌𝑙𝑌
†

𝑙 )
T

− 𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
ℓ 𝐶5 − 𝐶5 (𝑌𝑙𝑌

†
𝑙 𝛿𝑍(1)

ℓ )
T

+ 2𝑌𝑙𝛿𝑍(1)†
𝑌𝑙

𝑌 †
𝑙 𝐶5 + 2𝐶5 (𝑌𝑙𝛿𝑍(1)†

𝑌𝑙
𝑌 †

𝑙 )
T

+ 2𝑌𝑙𝛿𝑍(1)
𝑌𝑙

𝑌 †
𝑙 𝐶5

+ 2𝐶5 (𝑌𝑙𝛿𝑍(1)
𝑌𝑙

𝑌 †
𝑙 )

T
]}

+ 1
16𝜋2 { 1

24
𝑔2

1 [8𝛿𝑍(1)
𝑀𝐻

− 14𝛿𝑍(1)
𝑀�̂�

+ (6Δ − 9) 𝛿𝑍(1)
𝐵 + (12Δ + 7) 𝛿𝑍(1)

𝜉�̂�
] 𝐶5

− 1
24

𝑔2
2 [−20𝛿𝑍(1)

𝑀𝐻
+ 2𝛿𝑍(1)

𝑀�̂�
+ 9 (2Δ + 1) 𝛿𝑍(1)

𝑊 − (36Δ + 19) 𝛿𝑍(1)
𝜉�̂�

] 𝐶5

− 2𝜆 (𝛿𝑍(1)
𝑀𝐻

+ Δ𝛿𝑍(1)
𝜆 ) 𝐶5 + 𝛿𝑍(1)

𝑀𝐻
[𝑌𝑙𝑌

†
𝑙 𝐶5 + (𝑌𝑙𝑌

†
𝑙 𝐶5)

T
] − 1

2
(1 − Δ)

× [𝛿𝑍(1)
ℓ 𝑌𝑙𝑌

†
𝑙 𝐶5 + 𝐶5 (𝛿𝑍(1)

ℓ 𝑌𝑙𝑌
†

𝑙 )
T

− 𝑌𝑙𝑌
†

𝑙 𝛿𝑍(1)
ℓ 𝐶5 − 𝐶5 (𝑌𝑙𝑌

†
𝑙 𝛿𝑍(1)

ℓ )
T

+ 2𝑌𝑙𝛿𝑍(1)†
𝑌𝑙

𝑌 †
𝑙 𝐶5 + 2𝐶5 (𝑌𝑙𝛿𝑍(1)†

𝑌𝑙
𝑌 †

𝑙 )
T

+ 2𝑌𝑙𝛿𝑍(1)
𝑌𝑙

𝑌 †
𝑙 𝐶5

+2𝐶5 (𝑌𝑙𝛿𝑍(1)
𝑌𝑙

𝑌 †
𝑙 )

T
]} . (3.75)

Adding these three contributions and inserting all one-loop CTs determined in this section
and section 3.3.3 gives the overall two-loop Weinberg operator vertex CT:

𝛿𝑉 (2)
5 = 1

(16𝜋2)2 𝜀2
{[89

32
𝑔4

1 + 3
16

𝑔2
1𝑔2

2 + 85
32

𝑔4
2 − 𝜆 (𝑔2

1 + 6𝑔2
2 − 14𝜆 − 2𝑇) − 𝑇 ′] 𝐶5

+ (13
8

𝑔2
1 + 15

8
𝑔2

2 − 2𝜆 − 1
2

𝑇) [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] − 1
4

𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5

− 1
4

𝐶5 [𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ]
T

+ 𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

}

− 1
(16𝜋2)2 𝜀

{[475
96

𝑔4
1 + 83

16
𝑔2

1𝑔2
2 + 271

96
𝑔4

2 + 𝜆 (𝑔2
1 + 10𝜆 + 2𝑇) − 𝑇 ′] 𝐶5

+ (𝑔2
1 − 1

2
𝑇) [𝑌𝑙𝑌

†
𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌

†
𝑙 )

T
] − 5

4
𝑌𝑙𝑌

†
𝑙 𝑌𝑙𝑌

†
𝑙 𝐶5 − 5

4
𝐶5 [𝑌𝑙𝑌

†
𝑙 𝑌𝑙𝑌

†
𝑙 ]

T

− 1
2

𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

} , (3.76)

which is free of log 𝑀2/𝜇2. The disappearance of all non-local terms is a crucial check on
the accuracy of the calculation. Based on the structure of the Weinberg operator CT in
eq. 3.71 the contribution of the external legs – expanded to second order – can be removed
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and the vertex renormalization constant extracted:

𝛿𝐶(2)
5 = 𝛿𝑉 (2)

5 − 1
2

𝛿𝑍(1)
ℓ 𝛿𝐶(1)

5 − 1
2

𝛿𝐶(1)
5 (𝛿𝑍(1)

ℓ )
T

+ 1
8

𝛿𝑍(1)
ℓ 𝛿𝑍(1)

ℓ 𝐶5

+ 1
8

𝐶5 (𝛿𝑍(1)
ℓ 𝛿𝑍(1)

ℓ )
T

− 1
2

𝛿𝑍(1)
𝐻 [2𝛿𝐶(1)

5 + 𝛿𝑍(1)
ℓ 𝐶5 + 𝐶5 (𝛿𝑍(1)

ℓ )
T

]

− 1
4

𝛿𝑍(1)
ℓ 𝐶5 (𝛿𝑍(1)

ℓ )
T

− 1
2

𝛿𝑍(2)
ℓ 𝐶5 − 1

2
𝐶5 (𝛿𝑍(2)

ℓ )
T

− 𝛿𝑍(2)
𝐻 𝐶5.

(3.77)

This is the complete result that was already used in parts eq. 3.45 to obtain the rank-
increasing contribution. With it, the complete two-loop Weinberg operator vertex CT
follows:

𝛿𝐶(2)
5 = 1

(16𝜋2)2 𝜀2
{[ 3

16
𝑔4

1 + 3
8

𝑔2
1𝑔2

2 + 65
16

𝑔4
2 − 𝜆 (3

2
𝑔2

1 + 15
2

𝑔2
2 − 14𝜆 − 4𝑇)

− 1
8

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 21

8
𝑔2

2𝑇 − 12𝑔2
3Tr (𝑌u𝑌 †

u + 𝑌d𝑌 †
d )

+ 𝑇 2 − 1
4

𝑇 ′ − 9
2

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] 𝐶5 + (45
32

𝑔2
1 + 63

32
𝑔2

2 − 3
2

𝜆 − 9
8

𝑇)

× [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] − 9
32

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

+ 9
16

𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

}

+ 1
(16𝜋2)2 𝜀

{− [129
32

𝑔4
1 + 83

16
𝑔2

1𝑔2
2 + 169

96
𝑔4

2 + 𝜆 (𝑔2
1 + 7𝜆 + 2𝑇) − 15

16
𝑔2

2𝑇

− 5
48

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 10𝑔2

3Tr (𝑌u𝑌 †
u + 𝑌d𝑌 †

d )

+ 1
8

𝑇 ′ − 3
4

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] 𝐶5 − (57
64

𝑔2
1 − 33

64
𝑔2

2 − 5
16

𝑇)

× [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] + 19
16

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

+ 1
2

𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

} .

(3.78)

The recursion relations in eq. 3.14 provide another cross-check for the result. They relate
the two-loop expansion coefficient 𝑎(2) of the second-order pole 𝜀 in eq. 3.78 to the one-loop
expansion factor of the 1/𝜀 from eq. 3.72 and all the one-loop beta functions. The latter
can be obtained straightforwardly from the one-loop CTs determined in section 3.3.3
and the one-loop Weinberg operator vertex counterterm (again eq. 3.72). It has been
verified that the recursion relation is fulfilled. Although stated above, it is important to
remember that the relation does NOT prove the following result for the beta function, as
it only concerns 𝑎(2) and not 𝑎(1), which solely fixes the beta function. However, canceling
all non-local terms together with the fulfilled relations between 𝑎(1) and 𝑎(2) strongly
indicates the correctness of all presented results as the first 1/𝜀 and the second order poles
1/𝜀2 were calculated simultaneously. Finally, according to eq. 3.13, the desired two-loop

37



TWO-LOOP RGES FOR WEINBERG OPERATOR

Weinberg operator beta function follows from the first-order pole:

𝜇
d𝐶(1)

5
d𝜇

= 1
16𝜋2 [(4𝜆 − 3𝑔2

2 + 2𝑇) 𝐶5 − 3
2

𝑌𝑙𝑌
†

𝑙 𝐶5 − 3
2

𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] , (3.79)

𝜇
d𝐶(2)

5
d𝜇

= 1
(16𝜋2)2 {− [129

8
𝑔4

1 + 83
4

𝑔2
1𝑔2

2 + 169
24

𝑔4
2 + 4𝜆 (𝑔2

1 + 7𝜆 + 2𝑇) − 15
4

𝑔2
2𝑇

− 5
12

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 40𝑔2

3Tr (𝑌u𝑌 †
u + 𝑌d𝑌 †

d )

+ 1
2

𝑇 ′ − 3Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] 𝐶5 − (57
16

𝑔2
1 − 33

16
𝑔2

2 − 5
4

𝑇)

× [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] + 19
4

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

+ 2𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

} .

(3.80)

This final form once again reproduces the rank-increasing contribution 2𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

that was explicitly calculated in section 3.3.2 and found by [16, 45]. Here, however, the
two-loop renormalization of the Weinberg operator was completed. It will improve the
accuracy of numerics regarding neutrino oscillation parameters, which will be performed
in the next chapter.
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4.1. Two-Loop RGEs for neutrino parameters

In the previous chapter, the two-loop RGE for the Weinberg operator was calculated
(eq. 3.79 and 3.80). After SSB, these describe the running of the neutrino mass matrix
according to eq. 2.46 by replacing 𝐶5 −→ 𝑀𝜈, while the additional factors 1

2𝑣2 cancel.
Following [18] on the notation for the two-loop mass matrix RGE, one gets:

d𝑀†
𝜈

d𝑡
= 𝛼𝑀†

𝜈 + 𝑄𝑀†
𝜈 + 𝑀†

𝜈 𝑄T + 2𝑃𝑀†
𝜈 𝑃 T,

d𝑀𝜈
d𝑡

= 𝛼𝑀𝜈 + 𝑀𝜈𝑄† + 𝑄∗𝑀𝜈 + 2𝑃 ∗𝑀𝜈𝑃 †,
(4.1)

with 𝑡 = log 𝜇. Comparing with the two-loop RGE provides the factors 𝛼, 𝑄 and 𝑃:

𝛼 = 1
16𝜋2 (4𝜆 − 3𝑔2

2 + 2𝑇)

− 1
(16𝜋2)2 [129

8
𝑔4

1 + 83
4

𝑔2
1𝑔2

2 + 169
24

𝑔4
2 + 4𝜆 (𝑔2

1 + 7𝜆 + 2𝑇) − 15
4

𝑔2
2𝑇 + 1

2
𝑇 ′

− 5
12

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 40𝑔2

3Tr (𝑌u𝑌 †
u + 𝑌d𝑌 †

d ) ,

−3Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] ,

𝑃 = 1
16𝜋2 𝑌𝑙𝑌

†
𝑙 ,

𝑄 = − [3
2

+ 1
16𝜋2 (57

16
𝑔2

1 − 33
16

𝑔2
2 − 5

4
𝑇)] 𝑃 + 19

4
𝑃 2.

(4.2)

The equation is recast in this form to emphasize the rank-increasing contribution of
2𝑃𝑀𝜈𝑃 T, which was explicitly calculated in section 3.3.2. The other terms related to
𝛼 and 𝑄 only provide corrections to the already non-zero masses. This can be seen by
rewriting eq. 4.1 in terms of diagonal mass matrices and eigenvalues, respectively. With
the freedom to redefine lepton fields (compare section 2.1.4), one can choose to work
in either the flavor eigenbasis and keep the lepton Yukawa matrices diagonal, or in the
mass eigenbasis and non-diagonal Yukawa matrices. If the flavor basis is used, the lepton
Yukawa matrix will remain diagonal during the RGE evolution, while the mass eigenvalues
must be extracted at different energies. Further details on the extraction of the neutrino
mass eigenvalues and mixing parameters, as well as the equivalent for the quark sector,

39



ANALYSIS OF NEUTRINO PARAMETERS

are presented in the following section, which focuses on the numerical evaluation of the
RGE evolution.

As a side remark, depending on the convention, 𝐶5 can be identified with 𝑀† or 𝑀
(if the Weinberg operator or its hermitian conjugated is used for the definition of 𝐶5).
However, with 𝑃 = 𝑃 † being diagonal in the flavor basis, the RGE remains the same. The
presented results were obtained independent of the choice of convention. With this, the
definition of the Weinberg operator (eq. 2.45) and the SVD decomposition (eq. 2.13), the
relation between the non-diagonal mass matrix, its eigenvalues and the PMNS matrix is:

𝑈T
PMNS𝑀𝜈𝑈PMNS = 𝐷𝜈, (4.3)

with 𝐷𝜈 = diag(𝑚1, 𝑚2, 𝑚3) and all non-physical phases eliminated. Using for simplicity
𝑈 ≡ 𝑈PMNS gives

𝑈T d𝑀𝜈
d𝑡

𝑈 = 𝑈T d𝑈∗

d𝑡
𝐷𝜈 + 𝐷𝜈

d𝑈†

d𝑡
𝑈 + d𝐷𝜈

d𝑡
. (4.4)

Defining 𝑇 ≡ 𝑈† d𝑈
d𝑡 allows for replacing d𝑈†

d𝑡 𝑈 = −𝑇 and 𝑈T d𝑈∗

d𝑡 = 𝑇 †. The anti-hermitian
property is a result of d

d𝑡(𝑈†𝑈) = 0. Inserting the mass matrix RGE into the left-hand
side gives the analogue equation in terms of mass eigenvalues and matrices:

d𝐷𝜈
d𝑡

= 𝐷𝜈𝑇 − 𝑇 ∗𝐷𝜈 + 𝛼𝐷𝜈 + �̂�∗𝐷𝜈 + 𝐷𝜈�̂�† + 2 ̂𝑃 ∗𝐷𝜈
̂𝑃 †, (4.5)

with �̂� = 𝑈†𝑄𝑈 and ̂𝑃 = 𝑈†𝑃𝑈. This differential equation encapsulates the running
behavior of the mass eigenvalues in the form of d𝐷𝜈

d𝑡 and the running behavior of the
mixing parameters in the form of 𝑇. On the one hand, the mass eigenvalues 𝑚𝑖 and
diagonal entries of the hermitian matrices �̂�𝑖𝑖 and ̂𝑃𝑖𝑖 are real-valued; on the other hand,
the diagonal entries of the anti-hermitian matrix 𝑇𝑖𝑖 are purely imaginary. Hence, taking
real and imaginary parts of the diagonal entries gives

d𝑚𝑖
d𝑡

= (𝛼 + 2�̂�𝑖𝑖) 𝑚𝑖 + 2 ∑
𝑘

𝑚𝑘Re ( ̂𝑃 2
𝑖𝑘) , (4.6)

𝑚𝑖𝑇𝑖𝑖 = ∑
𝑘

𝑚𝑘Im ( ̂𝑃 2
𝑖𝑘) . (4.7)

Repeating analogously for the off-diagonal elements provides

(𝑚𝑗 − 𝑚𝑖) Re (𝑇𝑖𝑗) = (𝑚𝑗 + 𝑚𝑖) Re (�̂�𝑖𝑗) + ∑
𝑘

𝑚𝑘Re ( ̂𝑃𝑖𝑘
̂𝑃𝑗𝑘) , (4.8)

(𝑚𝑗 + 𝑚𝑖) Im (𝑇𝑖𝑗) = (𝑚𝑗 − 𝑚𝑖) Im (�̂�𝑖𝑗) + ∑
𝑘

𝑚𝑘Im ( ̂𝑃𝑖𝑘
̂𝑃𝑗𝑘) . (4.9)

The acquired RGEs follow the structure obtained in [18] for RHN. The only differences
compared to [18] are changing minus signs in front of all imaginary parts according to

̂𝑃𝑖𝑘 ↔ ̂𝑃𝑘𝑖 = ̂𝑃 ∗
𝑖𝑗, a relative factor of 2 related to the rank-increasing term (in right-handed

case trace over internal SU(2)L indices) and of course a different definition of 𝑃 , 𝑄 itself.
Therefore, the discussion on the physical implications of these RGEs follows the one
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from [18] closely, with the difference that the lepton Yukawa matrices are much smaller
compared to the hypothetical RHN Yukawa couplings 𝑌 introduced in eq. 2.21. These
are unconstrained apart from perturbative bounds and can be of 𝒪(1). In contrast, the
biggest eigenvalue of 𝑌𝑙 = diag (𝑦𝑒, 𝑦𝜇, 𝑦𝜏) is 𝑦𝜏 ≃ 10−2 at 200 GeV [59, 60] and yields
�̂�, ̂𝑃 ≃ 6 × 10−7. Two neutrino mass differences are measured: Δ𝑚2

21 ≃ 7.42 × 10−5 eV2

and Δ𝑚2
32 ≃ 2.517 × 10−3 eV2 (table 2.1), which opens the opportunity for one massless

or very light neutrino respectively. The implications of the RGEs for all massive neutrinos
and as well as for two massive and massless neutrinos are discussed.

4.1.1. All massive neutrinos

If all neutrinos are massive and their masses roughly the same order of magnitude, which
means around 10−2 eV, ̂𝑃 2 can be safely neglected, and the running of the mass eigenvalues
is described by

𝑚𝑖 (ΛEW)
𝑚𝑖 (Λ)

≃ exp [− ∫
Λ

ΛEW

d𝑡 (𝛼 + 2�̂�𝑖𝑖)] ∼ exp [− (𝛼 + 2�̂�𝑖𝑖) log ( Λ
ΛEW

)] . (4.10)

The cut-off scale Λ typically lies around 10−14 GeV as it corresponds to the seesaw scale.
RHN masses roughly need to be at this energy range to describe the LHN masses via the
seesaw mechanism. But other UV completions with varying cut-off scales are possible
as well. The biggest two-loop contribution stems from 𝛼 ⊂ 169

24⋅(16𝜋2)2 𝑔4
2 ≃ 5 ⋅ 10−5 with

𝑔2 ≃ 0.65 at 200 GeV [59, 60]. All other initial conditions at the electroweak scale can be
found in table 4.1, which was used for the numerical evaluation of the RGEs. Compared to
the biggest one-loop correction 𝛼 ⊂ 3

(16𝜋2)𝑔
2
2 ∼ 8 ⋅ 10−3, this amounts to relative correction

of around 6%. 𝛼 affects all masses identically as it is a global factor not depending on the
generation, while �̂�𝑖𝑖 could lift degeneracies in mass. However, with �̂� being of the order
10−7, it cannot account for the measured mass differences. Furthermore, the measured
mass gaps prevent any infrared quasi-fixed points discussed in [18]. Combining eqs. 4.8
and 4.9 gives (for 𝑖 ≠ 𝑗)

𝑇𝑖𝑗 =
𝑚𝑗 + 𝑚𝑖

𝑚𝑗 − 𝑚𝑖
Re (�̂�𝑖𝑗) + i

𝑚𝑗 − 𝑚𝑖

𝑚𝑗 + 𝑚𝑖
Im (�̂�𝑖𝑗) . (4.11)

If �̂� ≫ Δ𝑚, 𝑇𝑖𝑗 would change rapidly until it hits a quasi-fixed point because the
evolution has to stabilize at some point. As a result, 𝑇𝑖𝑖 becomes very small, demanding
Re (�̂�𝑖𝑗) ≃ 0. However, the one-loop (and two-loop, respectively) corrections are too
small compared to the measured mass differences.

4.1.2. One massless neutrino

In the all-massive case, the two-loop contributions only contributed subdominantly without
altering qualitatively the one-loop corrections. To account for the two non-zero squared
mass differences from oscillation experiments, two neutrinos must be massive. However,
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the third could be massless at tree level. For the different orderings, the following situation
arises at 200 GeV:

𝑚1 = 0 𝑚2 = 0.00861 eV 𝑚3 = 0.05007 eV (NO),
𝑚3 = 0 𝑚1 = 0.04911 eV 𝑚1 = 0.04986 eV (IO),

(4.12)

by reconstructing the masses bottom-up from the massless one and using Δ𝑚2
𝑖𝑗. Situations

like this could arise, for instance, in a seesaw type-I scenario with two RHNs [26] (section
2.2.1). For one massless neutrino, the two-loop corrections significantly alter the mass
matrix by increasing the rank. Section 3.3.2 discussed that no symmetry protects the
particle from becoming massive.

Especially eq. 4.6 gives insights into the mass generation of massless neutrino 𝑚𝑖 = 0
at the cut-off scale. While corrections proportional to 𝛼 and �̂�𝑖𝑖 vanish as they do not
couple to the heavier eigenstates (only to 𝑚𝑖 itself), ̂𝑃 induces corrections proportional to
all masses and especially the heavier massive neutrinos. Consequently, it does not vanish
for a massless neutrino. By approximately considering the 𝜏 Yukawa eigenvalue only, the
mass induced by quantum corrections determined by eq. 4.6 for NO and IO respectively
read:

𝑚1 (ΛEW) ∼ 2𝑦4
𝜏

(16𝜋2)2 ln ( Λ
ΛEW

) ⋅ ∑
𝑖=2,3

𝑚𝑖Re (𝑈∗
𝜏1𝑈𝜏𝑖)

2 ,

𝑚3 (ΛEW) ∼ 2𝑦4
𝜏

(16𝜋2)2 ln ( Λ
ΛEW

) ⋅ ∑
𝑖=1,2

𝑚𝑖 Re (𝑈 ∗
𝜏3𝑈𝜏𝑖)

2 .
(4.13)

Numerically, this generated mass is around 10−13 eV for Λ = 1014 GeV due to the tiny
lepton Yukawa coupling and the two-loop suppression factor 1/ (16𝜋2)2. Furthermore, the
size of 𝑚3 for IO is typically larger than 𝑚1 for NO as it receives correction proportional
to 𝑚1 and 𝑚2, which are almost equally large for IO.

A tiny or vanishing mass implies the left-hand side of eq. 4.7 is close or equal to zero.
Consequently, a non-zero combination of right-handed sides necessitates a significantly
high 𝑇𝑖𝑖 and a rapid variation of 𝑈 with respect to 𝜇. However, this rapid change in 𝑈
cannot persist across all scales (similar to the all-massive case discussion) but come to a
stop at some energy. Since the left-hand side is approximately zero, the right-hand side
must also be approximately zero. This leads to a non-trivial relationship between mixing
parameters expressed as:

0 = ∑
𝑘

𝑚𝑘Im ( ̂𝑃 2
𝑖𝑘) . (4.14)

From this point on, 𝑇𝑖𝑖 will stay small, and the beta function for the mixing parameters
runs into the infrared quasi-fix point, and from there on, the relation between parameters
described in eq. 4.14 stays unchanged. Again neglecting all contributions from 𝑦𝑒, 𝑦𝜇 and
only considering 𝑦𝜏 gives the fixed-point relation in case of NO and IO respectively:

0 = 𝑚2Im (𝑈 ∗
𝜏1𝑈𝜏2)2 + 𝑚3Im (𝑈 ∗

𝜏1𝑈𝜏3)2 ,

0 = 𝑚1Im (𝑈 ∗
𝜏3𝑈𝜏1)2 + 𝑚2Im (𝑈 ∗

𝜏3𝑈𝜏2)2 .
(4.15)
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Inserting the parameterization from eqs. 2.17 and 2.18 for 𝑈 gives a relation between the
CP-violating phases for NO. However, the parameterization for IO needs to be adjusted.
Instead of removing the Majorana phase for the third generation, the one connected to
the first generation is eliminated. This can be seen as globally redefining all phases by
𝑒−i𝜌 and yielding the Majorana phase matrix

⎛⎜⎜
⎝

1 0 0
0 𝑒i(𝜎−𝜌) 0
0 0 𝑒−i𝜌

⎞⎟⎟
⎠

, (4.16)

in contrast to eq. 2.18. The reason to change the parameterization is to connect one
phase with the third massless neutrino. As long as there is no mass term, 𝜈3 can be
redefined with a phase that removes 𝑒−i𝜌 and leaves only one physical Majorana phase.
This additional unphysical DOF is harder to identify with the original parameterization.
However, when the quantum corrections generate 𝑚3, the phase can no longer be removed
and 𝜌, 𝜎 − 𝜌 become physical. So 𝜌 jumps to the physical phase in the truly massless limit.
Numerical results for this behavior are presented in the next section.

Using this parametrization of the Majorana masses for IO and the one from eq. 2.18
for NO together with the parameterization for the CKM-like part 𝑉 of the PMNS matrix
(eq. 2.17) in the fix point relations (eq. 4.15) gives for NO and IO respectively:

tan 2𝜌 = −𝑚2 cos 2𝜎Im (𝑉 ∗
𝜏1𝑉𝜏2)2 + 𝑚2 sin 2𝜎Re (𝑉 ∗

𝜏1𝑉𝜏2)2 + 𝑚3Im (𝑉 ∗
𝜏1𝑉𝜏3)2

𝑚2 sin 2𝜎Im (𝑉 ∗
𝜏1𝑉𝜏2)2 − 𝑚2 cos 2𝜎Re (𝑉 ∗

𝜏1𝑉𝜏2)2 − 𝑚3Re (𝑉 ∗
𝜏1𝑉𝜏3)2 , (4.17)

tan 2𝜌 = −𝑚1Im (𝑉 ∗
𝜏3𝑉𝜏1)2 + 𝑚2 cos 2 (𝜎 − 𝜌) Im (𝑉 ∗

𝜏3𝑉𝜏2)2 + 𝑚2 sin 2 (𝜎 − 𝜌) Re (𝑉 ∗
𝜏3𝑉𝜏2)2

𝑚1Re (𝑉 ∗
𝜏3𝑉𝜏1)2 − 𝑚2 sin 2 (𝜎 − 𝜌) Im (𝑉 ∗

𝜏3𝑉𝜏2)2 + 𝑚2 cos 2 (𝜎 − 𝜌) Re (𝑉 ∗
𝜏3𝑉𝜏2)2 .

To that matter, it is important to note, that 𝜎 − 𝜌 and 𝜌 should be treated as independent
variables. Furthermore, 𝑉 includes with 𝛿 another CP-violating phase, similar to the quark
sector. In the leptonic case, however, its impact is more noticeable as the mixing between
generations is enhanced compared to the CKM matrix.

4.2. Numerical Calculations

In the previous section, analytic results on the running of neutrino oscillation parameters,
based on the two-loop RGEs, were derived. Of particular interest is the scenario where a
single particle, initially massless at the cut-off scale, acquires mass through the phenomenon
of running effects. Furthermore, the Majorana-phase RGE connected to the light neutrino
runs into a fixpoint, resulting in unique relations between the mixing parameters. In this
section, these findings are confirmed by numerically evaluating the RGEs and running
them from the cut-off scale to the electroweak scale. For that the Weinberg-operator
RGEs are supplemented by the two-loop SM RGEs(for explicit form see appendix A.3),
which were extracted from SARAH [61, 62] and RGBeta [63]. Those are based on the
two-loop beta function results for general renormalizable quantum field theories [64–66].
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𝑚u [MeV] 1.2504 𝑚𝑒 [MeV] 0.5239 𝛿q [°] 65.55

𝑚d [MeV] 2.7176 𝑚𝜇 [GeV] 0.1104 𝑔1 0.3589

𝑚s [MeV] 54.120 𝑚𝜏 [GeV] 1.8748 𝑔2 0.6468

𝑚c [GeV] 0.6299 sin 𝜃𝑞
12 0.2250 𝑔3 1.1525

𝑚b [GeV] 2.8731 sin 𝜃𝑞
23 0.04182 𝜆 0.1235

𝑚t [GeV] 173.08 sin 𝜃𝑞
13 0.00369 ⟨𝐻⟩ [GeV] 246

Table 4.1.: Initial conditions at 200 GeV. Shown are experimental measurements regarding
quark and lepton masses as well as gauge couplings and Higgs self-coupling
and CKM mixing parameters (mixing angles 𝜃q

𝑖𝑗 and CP phase 𝛿q) at this
energy scale [67]. These input values are completed with the PMNS mixing
parameters from table 2.1 and the neutrino masses from eq. 4.10 for NO and
IO. For completeness, the table also includes the Higgs VEV.

4.2.1. Initial Conditions

Initial conditions should be set at the cut-off scale Λ = 1014 GeV, while masses and all
other parameters are evolved down to the electroweak scale. However, experiments cannot
probe such high energies. Therefore, the experimental data at 200 GeV – summarized
in table 4.1 [67] – are used to evolve the parameters up to the cut-off scale. These will
then be modified to account for one massless neutrino, but still agree with the low energy
measurements when run down again.

The input values at 200 GeV are listed in table 4.1, which includes quark and lepton
masses as well as gauge couplings, Higgs self-coupling and CKM mixing parameters (mixing
angles 𝜃q

𝑖𝑗 and CP phase 𝛿q) at this energy scale [67]. The corresponding Yukawa coupling
eigenvalues follow from eq. 2.11 via 𝑦 =

√
2𝑚/𝑣. The PMNS mixing parameters from

table 2.1 and the neutrino masses from eq. 4.10 for NO and IO complete the input values.
Since the Yukawa matrices are kept diagonal, the off-diagonal neutrino and down-quark
mass matrices are

𝑀𝜈 = 𝑈 ∗
PMNSdiag (𝑦𝑒, 𝑦𝜇, 𝑦𝜏) 𝑈†

PMNS,

𝑀D = 𝑈CKMdiag (𝑦d, 𝑦s, 𝑦b) 𝑈†
CKM,

(4.18)

with 𝑈PMNS and 𝑈CKM evaluated at 200 GeV. When running the parameters up to Λ,
neutrino masses, and mixing parameters are extracted by decomposing 𝑀𝜈[Λ] according
to eq. 4.3:

𝑀𝜆[Λ] = 𝑈 ∗[Λ]𝐷𝜈[Λ]𝑈†[Λ]. (4.19)
To avoid the inclusion of unphysical phases in the PMNS matrix (eq. 2.16) and hence
keep the standard parameterization, the Dirac phase is extracted via (similar to [40]):

𝛿 = −Arg (𝑈∗
11𝑈∗

33𝑈13𝑈31 + cos2 𝜃12 cos2 𝜃13 sin2 𝜃12 cos2 𝜃23) , (4.20)
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which is invariant under phase redefinitions of the charged leptons. With 𝛿, the unphysical
phases can be reconstructed and the Majorana phases determined.

As expected from the rank-increasing contributions, a tiny third neutrino mass is
generated (this happens no matter if increasing or decreasing the energy scale). However,
the evolution of the gauge couplings, 𝜆, quark masses, charged lepton mass, and two
heavy neutrino masses and mixing angles and Dirac phases barely depend on the exact
value of the tiny third neutrino mass and Majorana phases. Hence, the generated neutrino
mass can be reset to zero to make it massless at the cut-off scale, while keeping all other
parameters unchanged. This defines the high-energy initial conditions, that provide the
correct experimental data at ΛEW and include a massless neutrino. All Majorana phases
are kept arbitrary.

4.2.2. Fix Point of Majorana phases

As previously discussed, the Majorana phase associated with the initially massless neutrino
runs into a fixed point, as described by eq. 4.17. This behavior has been numerically
verified by evaluating the Majorana phase across all energy scales between Λ and ΛEW.
Fig. 4.1 illustrates the result for both NO and IO. As initial conditions (𝜌, 𝜎) = (5/6𝜋, 𝜋/6)
for NO and (𝜌, 𝜎 − 𝜌) = (5/12𝜋, −1/3𝜋) for IO were chosen. 𝜎 (𝜎 − 𝜌) determines the
position of the fixpoint, while 𝜌 sets the starting point. Limitations in numerical precision,
and the theoretical divergence of neutrino mass at the cut-off scale, preclude setting the
lightest neutrino mass to precisely zero. Consequently, various non-zero initial masses are
explored, focusing on values smaller than or comparable to those generated by quantum
corrections. This approach allows for quantitative evaluation of the effects predicted for
the massless case. Notably, decreasing the initial mass accelerates the Majorana phase
evolution, consistent with the theoretical analysis detailed in section 4.1.2. Furthermore, a
non-zero initial mass modifies eq. 4.7 by requiring a smaller 𝑇𝑖𝑖 value (resulting in slower
evolution of the mixing parameter) to accommodate the non-zero right-hand side at the
cut-off scale.

4.2.3. Parameter Scan

Figure 4.1 only showed the fixpoint of 𝜌 for one specific set of initial conditions to illustrate
the running behavior. However, there are no experimental constraints on the Majorana
phases, and barely any on the Dirac phase (see table 2.1). Hence, the RGEs for the
lightest neutrino mass as well as 𝜌 are evaluated numerically for the full spectrum of
initial conditions regarding 𝛿[Λ] and 𝜎[Λ] ((𝜎 − 𝜌)[Λ]) for NO (IO). 𝛿[Λ] ∈ [0, 2𝜋], while
𝜎[Λ] ∈ [0, 𝜋]. The reason is, that the interval [𝜋, 2𝜋] amounts to a relative factor of −1,
under which the Majorana mass term is invariant, see eq. 2.20. The physical parameter
range of 𝜎 is therefore restricted. Fig. 4.2 displays the lightest neutrino mass evaluated at
the electroweak scale in dependence on the initial conditions. It can be observed, that
the generated mass falls within the anticipated range of 10−13 eV − 10−14 eV: notably, as
discussed in section 4.1.2, the average generated mass exhibits a higher value for IO than
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Figure 4.1.: Evolution of the Majorana phases connected to the light neutrino. Shown
are the evolution with energy scale for the Majorana phase 𝜌 for NO (top)
and IO (bottom) with the initial conditions (𝜌, 𝜎) = (5/6𝜋, 𝜋/6) for NO
and (𝜌, 𝜎 − 𝜌) = (5/12𝜋, −1/3𝜋) for IO. The RGE evolution is evaluated for
different light neutrino masses. The smaller it is, the more rapid the initial
change of the phase is.

NO. Similarly, the value of the Majorana phase fixpoint is governed by the initial values
of 𝜎 and 𝜌, as demonstrated by fig. 4.3, which span the full parameter space. In the case
of IO, an apparent discontinuity arises. It stems from the inherent constraint of 𝜌 to the
interval [0, 𝜋]. At the point of discontinuity, values exceeding 𝜋 are identified with values
within this interval, resulting in the non-continuous jump observed in the figure’s central
region.
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Figure 4.2.: Lightest neutrino for different initial conditions. Shown are the generated
mass evaluated at the Electroweak (EW) scale for initially massless neutrino in
the case of NO (top) and IO (bottom). Their dependence on initial conditions
of the Dirac phase and one Majorana phase (while the other runs into a
fixpoint) are displayed.
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Figure 4.3.: Majorana phase for different initial conditions. Shown is the Majorana phase 𝜌
evaluated at the electroweak scale connected to the initially massless neutrino
in the case of NO (top) and IO (bottom). Its dependence on the initial
conditions of the Dirac phase and the other Majorana phase (𝜎, 𝜎 − 𝜌 for NO
and IO respectively) are displayed.
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4.2.4. Neutrinoless Double Beta Decay

The parameter related to the neutrinoless double beta decay is

∣𝑚𝛽𝛽∣ = ∣∑
𝑘

𝑚𝑘𝑈2
𝑒𝑘∣ =

⎧{
⎨{⎩

∣𝑚1𝑉 2
𝑒1 ⋅ 𝑒2i𝜌 + 𝑚2𝑉 2

𝑒2 ⋅ 𝑒2i𝜎 + 𝑚3𝑉 2
𝑒3∣ , (NO),

∣𝑚1𝑉 2
𝑒1 + 𝑚2𝑉 2

𝑒2 ⋅ 𝑒2i(𝜎−𝜌) + 𝑚3𝑉 2
𝑒3 ⋅ 𝑒−2i𝜌∣ , (IO).

(4.21)

Despite the potentially significant values of the Majorana phases, as illustrated in fig. 4.3,
effects are greatly suppressed by the tiny neutrino mass. This can deduced from eq.4.13
by expressing 𝑈 in terms of Majorana phases and CKM-type matrix elements:

𝑚1 ∼ 𝜖𝜏 [𝑚2𝑒2i𝜎 (𝑉 ∗
𝜏1𝑉𝜏2)2 + 𝑚3 (𝑉 ∗

𝜏1𝑉𝜏3)2] ⋅ 𝑒−2i𝜌 (NO),

𝑚3 ∼ 𝜖𝜏 [𝑚1 (𝑉 ∗
𝜏3𝑉𝜏1)2 + 𝑚2𝑒2i(𝜎−𝜌) (𝑉 ∗

𝜏3𝑉𝜏2)2] ⋅ 𝑒2i𝜌 (IO),
(4.22)

with 𝜖𝜏 = 2𝑦2
𝜏 ln Λ

ΛEW
/(16𝜋2)2. Putting these back into eq. 4.21 gives

∣𝑚𝛽𝛽∣ ≃
⎧{
⎨{⎩

∣𝑚2𝑒2i𝜎 [𝑉 2
𝑒2 + 𝜖𝜏𝑉 2

𝑒1 (𝑉 ∗
𝜏1𝑉𝜏2)2] + 𝑚3 [𝑉 2

𝑒3 + 𝜖𝜏𝑉 2
𝑒1 (𝑉 ∗

𝜏1𝑉𝜏3)2]∣ ,

∣𝑚1 [𝑉 2
𝑒1 + 𝜖𝜏𝑉 2

𝑒3 (𝑉 ∗
𝜏3𝑉𝜏1)2] + 𝑚2𝑒2i(𝜎−𝜌) [𝑉 2

𝑒2 + 𝜖𝜏𝑉 2
𝑒3 (𝑉 ∗

𝜏3𝑉𝜏2)2]∣ .
(4.23)

Consequently, it becomes evident that the corrections concerning the generated neutrino
mass and its associated Majorana phase are negligible in magnitude (scaling proportionally
to 𝜖𝜏). Hence, they do not contribute meaningfully to 𝑚𝛽𝛽.
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5. Right-Handed Neutrino Extensions

This chapter transitions from the effective Weinberg operator description of neutrino
masses to explicit UV models. A natural addition to the SM, as detailed in section 2.2.1,
involves introducing Right-Handed Neutrinos (RHNs). If these possess masses at the
seesaw scale (∼ 1014−15 GeV), they inherently generate the observed minute neutrino
masses through the seesaw mechanism. Integrating them out effectively produces the
Weinberg operator, suppressed by a high cut-off scale. Similar to the two-loop structures
explored for light neutrinos (LHN) in the preceding chapters, analogous structures exist
for RHNs as well (fig. 3.1 (a), fig. 5.1). These were first comprehensively investigated
in [17–19]. However, it is crucial to recognize that corrections to the RHN masses occur
above the cut-off scale and are consequently not encapsulated by the two-loop Weinberg
operator RGEs. Despite this distinction, much of the analysis remains applicable, as the
terms responsible for increasing the rank of the neutrino mass matrix share the same form.
A critical difference lies in the potential magnitude of these contributions. Unlike LHN
Yukawa couplings constrained by experimental data, RHN Yukawa couplings can be 𝒪(1),
allowing for more significant quantum effects. The RGE for the RHN mass matrix 𝑀 is
provided by [18]:

d𝑀
d𝑡

= 𝑀𝑄 + 𝑄T𝑀 + 4𝑃 𝑇𝑀𝑃, (5.1)

where 𝑃 = 1
16𝜋2 𝑌 †𝑌 depends on the RHN Yukawa coupling 𝑌. 𝑄 is a function of

𝑃 , 𝑔1, 𝑔2, 𝑌u. Solving the differential equation to second order gives [18]

𝑀[𝑡] ≃ 𝑀0 + 𝑡 (𝑀0𝑃 + 𝑃 T𝑀0) − 𝑡
4

(1 − 2𝑡) (𝑀0𝑃 2 + (𝑃 T)2 𝑀0) + 𝑡(4 + 𝑡)𝑃 T𝑀0𝑃 , (5.2)

where 𝑀0 denotes the initial value at a specific scale up to which the theory remains
valid. As argued in [17], if this cut-off scale coincided with the Planck scale (ΛPl), and one
neutrino remains massless at that scale while others have masses around ΛPl, the lightest

`

H

`

H

NN
N N

1

Figure 5.1.: Rank-increasing two-loop diagram for RHN. Massless RHN acquire masses
proportional to the heavy RHN masses through this two-loop effect.
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RHN would acquire a mass in the seesaw scale range. However, this scenario essentially
replicates the inclusion of a single massive RHN at the seesaw scale, while the contribution
of heavier two to the active neutrino masses is suppressed by 𝒪(𝑃 2). Consequently, it
cannot explain the observed neutrino mass hierarchy. An alternative approach involves
introducing only one massive RHN at ΛPl. In this case, one massless neutrino gains a mass
of the order 𝑃 2 ⋅ ΛPl(seesaw scale), while the other only becomes massive at the fourth
order (𝑃 4), rendering it too light for the seesaw mechanism. Ultimately, this necessitates
the introduction of an additional scalar with the same quantum numbers as the Higgs
fields (corresponding to the Two-Higgs Doublet Model (2HDM)). This additional source
of flavor violation generates masses for both initially massless RHNs at 𝑃 2, making it
a viable UV completion. Its advantage compared to the standard type-I seesaw lies in
eliminating the need for another scale beyond the existing electroweak and Planck scales.

An open question, however, is the justification for having two massless neutrinos at the
Planck scale. Usually, global symmetries are introduced to prohibit these mass terms.
There is a commonly held belief, though, that gravity does not preserve global symmetries
such that they will not survive at the Planck scale [68]. On the one hand, this further
motivates the Planck scale cut-off as lepton number violation appears naturally. On the
other hand, only gauge extension can explain the distinction between massless and massive
RHNs. Furthermore, all emerging gauge anomalies must cancel.

5.1. Gauge Anomalies

Quantum effects can break symmetries which are present in the classic theory. This occurs
because the path integral measure is not invariant under the symmetry. Chiral anomalies
concern theories with massless chiral fermions, where vector and axial symmetry cannot
be observed simultaneously. The breakdown of the axial current at one-loop is shown in
fig. 5.2 [69] and evaluated to

𝐷𝜇𝐽𝐴𝜇 ∝ Tr [𝛾5𝑇 𝐴 {𝑇 𝐵, 𝑇 𝐶}] , (5.3)

where 𝐷𝜇 denotes the covariant derivative and 𝑇 𝐴,𝐵,𝐶 the generators of the gauge
group in their respective representations. The anomaly represents the incompatibility in

f

f

f
V C

V B

V A

1

Figure 5.2.: Anomaly diagram. Shown is the one-loop triangle diagram, which leads to
gauge anomalies. 𝑓 denotes all chiral massless fermions that can run inside the
loop, while 𝑉 𝐴,𝐵,𝐶 denote gauge bosons (not necessarily of the same gauge
group) with adjoint index 𝐴, 𝐵, 𝐶.

52



GENERAL CONSIDERATIONS

perturbative calculations between gauge invariance and chiral symmetry. In dimensional
regularisation (which preserves gauge invariance), it is reflected in the form of 𝛾5, which
cannot be trivially continued to 𝑑 dimensions [70].

Breakdown of gauge symmetries would create inconsistencies with gauge boson masses
and 3- and 4-point amplitudes, resulting in unphysical states [37]. Therefore, for the
theory to be self-consistent and anomaly-free, triangle diagrams involving all gauge field
combinations must cancel naturally. The Adler-Bardeen theorem affirms that if this
condition is met at the one-loop level, the theory remains anomaly-free to all orders [71].
Conventionally, all fermions are defined to be left-handed, employing the charge conjugate
as described in eq. 2.1.

5.2. General Considerations

5.2.1. Two Massive RHN in 2HDM

The scenario with two massive RHNs and only one scalar doublet proves insufficient to
explain the observed active neutrino mass hierarchy, which, however, no longer remains
true in the 2HDM. In the following, this scenario is investigated since it was not considered
in [19]. As there are two scalar doublets 𝐻1, 𝐻2 and all Yukawa couplings in the type-I
seesaw extension (eq. 2.21) should be replaced by 𝑌 −→ 𝑌 (𝑎)

ℒ ⊂ 𝑁𝛼Ri/𝜕𝑁𝛼R − (𝑌 (𝑎)
𝛼𝛽 ℓ𝛼L𝐻𝑎𝑁𝛽R + 1

2
𝑀𝛼𝛽𝑁 c

𝛼R𝑁𝛽R + h.c.) (5.4)

and summed over 𝑎 = 1, 2. The same applies to other Yukawa couplings but does not
affect the discussion of RHN mass matrix. Furthermore, 𝑃 from eq. 5.2 is replaced by
𝑃 𝑎𝑏 = 1

16𝜋2 𝑌 (𝑎)†𝑌 (𝑏) and the evolution of 𝑀[𝑡] after reorganizing some terms [18] reads:

𝑀[𝑡] ≃ [1 + ∑
𝑎

(𝑃 (𝑎𝑎)𝑡 + 1
2

𝑃 (𝑎𝑎)2𝑡2)]
T

𝑀0 [1 + ∑
𝑎

(𝑃 (𝑎𝑎)𝑡 + 1
2

𝑃 (𝑎𝑎)2𝑡2)]

+ 4 ∑
𝑎,𝑏

𝑃 (𝑏𝑎)T𝑀0𝑃 (𝑎𝑏)𝑡 + 𝒪(𝑃 (𝑎𝑏)3).
(5.5)

To isolate the rank-increase mechanism, all flavor diagonal contributions were disregarded.
The critical term driving the rank-increase in the second line directly mirrors the cor-
responding term in beta function 𝛽 ⊂ 4 ∑𝑎,𝑏 𝑃 (𝑎𝑏)T𝑀0𝑃 (𝑎𝑏) as demonstrated in eq. 5.1.
Furthermore, it aligns with the discussion in 3.3.2 for the active neutrinos.

If two RHNs are massive, they should be integrated out successfully at their correspond-
ing mass scale. Assuming 𝑀3 > 𝑀2 > 𝑀1 = 0 and evolving the mass matric according to
eq. 5.5 from the cut-off scale to 𝑀3 yields at leading order:

𝑀1[𝑀3] = 4 log (ΛPl
𝑀3

) ∑
𝑎,𝑏

𝑃 (𝑎𝑏)
𝑖1 𝑃 (𝑏𝑎)

𝑖1 𝑀𝑖, 𝑀2[𝑀3] = 𝑀2, 𝑀3[𝑀3] = 𝑀3, (5.6)

which follows from evaluating the determinant of the leading order approximation of
𝑀[𝑀3] (eq. 5.5). A summation over 𝑖 = 2, 3 is implied. Without the rank-increasing
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contribution, 𝑁1 stays massless (after diagonalization). At the same time, the inclusion of
this term gives det 𝑀[𝑀3] = 𝑀2𝑀3 × 𝑀11[𝑀3] (from the correction to the (1, 1) matrix
element) at the leading order. A field-redefinition 𝑁 −→ 𝑈𝑁 to diagonalize the mass matrix
only affects the Lagrangian at subleading order and can be ignored. Consequently, 𝑁3
approximates the heaviest mass eigenstate and can be integrated out using the EOM
(section 2.3.2) for 𝑁3 Ao leading order (/𝜕 = 0)

𝑁3 = − 1
𝑀3

(𝑀3𝑖𝑁𝑖R − 𝑌 (𝑎)
𝛼3 𝐻Tℓc

𝛼) (5.7)

for 𝑖 = 1, 2. Reinserted into ℒ yields

ℒeff ⊂ 1
2

𝑌 (𝑎)
𝛼3 𝑌 (𝑏)

𝛽3

𝑀33
(ℓ𝛼L𝐻𝑎) (𝐻𝑇

𝑏 ℓ𝑐
𝛽L) − Y

(𝑎)
𝛼𝑖 ℓ𝛼L𝐻𝑎𝑁𝑖R − 1

2
M𝑖𝑗𝑁 c

𝑖R𝑁𝑗R. (5.8)

Again 𝑖, 𝑗 = 1, 2 and

Y
(𝑎)
𝛼𝑖 ≃ (𝑌 (𝑎)

𝛼𝑖 −
𝑀𝑖3𝑌 (𝑎)

𝛼3
𝑀3

)∣
𝜇=𝑀3

,

M𝑖𝑗 ≃ (𝑀𝑖𝑗 −
𝑀𝑖3𝑀𝑗3

𝑀3
)∣

𝜇=𝑀3

.
(5.9)

This result alignes with one obtained for 𝑀3 ≃ ΛPl, 𝑀1,2 = 0 in [19]. In contrast to that
scenario, the mass matrix is evolved down to 𝜇 = 𝑀2. Neglecting all 1/𝑀3 corrections
yields M[𝑀3] ≃ diag(𝑀1[𝑀3], 𝑀2) and Y(𝑎) = 𝑌 (𝑎), effectively reducing to a 3 × 2 matrix.
When further evolved to 𝑀2, this reduced setup yields a leading-order expression analogous
to eq. 5.6.

𝑀1[𝑀2] = 𝑀1[𝑀3] + 4 log (𝑀3
𝑀2

) ∑
𝑎,𝑏

P(𝑎𝑏)T
M[𝑀3]P(𝑎𝑏), 𝑀2[𝑀2] = 𝑀2, (5.10)

with P(𝑎𝑏) = 1
16𝜋2 Y(𝑎)†

Y(𝑏). Inserting 𝑀1[𝑀3], M[𝑀3] and ignoring all 1/𝑀3 corrections
gives

𝑀1[𝑀2] ≃ 4𝑀2𝑃 (𝑎𝑏)
21 𝑃 (𝑏𝑎)

21 log (ΛPl
𝑀2

) + 4𝑀3𝑃 (𝑎𝑏)
31 𝑃 (𝑏𝑎)

31 log (ΛPl
𝑀3

) . (5.11)

Overall minus signs in 𝑀1 can be absorbed in a phase redefinition of 𝑁1. Furthermore,
P

(𝑎𝑏)
12 ≃ 𝑃 (𝑎𝑏)

12 and log(ΛPl/𝑀3) + log(𝑀3/𝑀2) = log(ΛPl/𝑀2) were used. Again, 𝑁2
corresponds to the mass eigenstate to first order, and integrating it out yields

ℒ′
eff ⊂ 1

2
Y

(𝑎)
𝛼2 Y

(𝑏)
𝛽2

𝑀2
(ℓ𝛼L𝐻𝑎) (𝐻𝑇

𝑏 ℓ𝑐
𝛽L) − Y

′(𝑎)
𝛼1 ℓ𝛼L𝐻𝑎𝑁1R − 1

2
M′

11𝑁 c
1R𝑁1R, (5.12)

with

Y
′(𝑎)
𝛼1 ≃ (Y

(𝑎)
𝛼1 − M12Y

(𝑎)
𝛼2

𝑀2
)∣

𝜇=𝑀2

,

M′
𝛼𝑖 ≃ (M11 − M12M12

𝑀2
)∣

𝜇=𝑀2

.
(5.13)
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Similar to 1/𝑀3 corrections, those involving 1/𝑀2 are negligible and can be safely
disregarded. Effectively, the Lagrangian describes the SM extended by one RHN of mass
𝑀1 ≃ 𝒪 (𝑃 (𝑎𝑏)2ΛPl) = 1014−15GeV for 𝑌 (𝑎) ≃ 𝒪 (1). Between the scales 𝑀2 and 𝑀1

(eq. 5.11) corrections to 𝑀1[𝜇] of the form 𝑀1𝑃 (𝑎𝑏) log(𝑀2/𝑀1) can be safely dropped.
Ultimately, 𝑁1 can be integrated out as well, leading to 2HDM Lagrangian supplemented
by four Weinberg operators

ℒ′′
eff = ℒ2HDM + 1

2
Y

(𝑎)
𝛼1 Y

(𝑏)
𝛽1

𝑀2
(ℓ𝛼L𝐻𝑎) (𝐻𝑇

𝑏 ℓ𝑐
𝛽L) . (5.14)

Moreover, the 1/𝑀1 contribution justifies neglecting the subdominant 1/𝑀3, 1/𝑀2. To
leading order, the matching procedure yields

𝐶(𝑎𝑏)
5𝛼𝛽 ∣

𝜇=𝑀1
≃

𝑌 (𝑎)
𝛼1 𝑌 (𝑏)

𝛽1

𝑀1
. (5.15)

The expansion to four dimension-five operators directly mirrors the presence of two scalar
doublets in the 2HDM framework. This has significant implications for active neutrino
masses due to the mixing between the different operators. Without considering this
mixing, only one active neutrino would acquire mass. This is because the three rows of the
𝐶5 matrix become linearly dependent when 𝑎 = 𝑏 = 1. In other words, the rank-increasing
mechanisms explored in chapter 4 fall short of explaining the observed mass differences
among active neutrinos.

The mixing between the different Weinberg operators relates to the scalar potential,
which includes [72]

𝑉 (𝐻𝑎, 𝐻𝑏) ⊂ ∑
𝑎,𝑏,𝑐,𝑑

𝜆𝑎𝑏𝑐𝑑 (𝐻†
𝑎𝐻𝑏) (𝐻†

𝑐 𝐻𝑑) . (5.16)

Upon choosing a basis such that ⟨𝐻0
1 ⟩ = 𝑣/

√
2 and ⟨𝐻0

2 ⟩ = 0, the active neutrino mass
reads

𝑚𝜈 = 𝑣2

2
𝐶(11)

5 [ΛEW] , (5.17)

however, operator mixing gives contributions stemming from 𝐶(𝑎𝑏)
5 . A connection can be

established with the observed neutrino masses by evolving 𝐶(11)
5 from its matching scale

𝑀1 to the electroweak scale. In the process, corrections in the form

𝐶(11)
5 [ΛEW] ≃ 𝐶(11)

5 [𝑀1] + 𝐵1𝑎𝐶𝑎1
5 [𝑀1] + 𝐶1𝑎

5 [𝑀1]𝐵T
1𝑎 + 𝑏𝐶22

5 [𝑀1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝛿𝐶(11)

5

(5.18)

arise [73]. For simplicity, the contributions depending on 𝐵 are dropped, and only the
ones related to 𝑏 are analyzed. Nevertheless, the quantitive behavior remains the same. 𝑏
relates to the term 𝜆5 (𝐻†

1𝐻1) (𝐻†
2𝐻2) in the scalar potential [73]

𝑏 = −2 𝜆5
16𝜋2 log ( 𝑀1

ΛEW
) . (5.19)
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Figure 5.3.: One-loop operator mixing. In the case of an extended scalar sector, interaction
terms between different scalars lead to mixing between the Wilson coefficients
of the distinct Weinberg operators.

Fig. 5.3 displays the operator mixing diagrammatically. Defining 𝑌 (𝑎)
𝛼1 ≡ 𝑦(𝑎) ⋅ 𝑢(𝑎)

𝛼 in terms

of the unit vecor �⃗�(𝑎) and 𝑦(𝑎) = √𝑌 (𝑎)2
11 + 𝑌 (𝑎)2

21 + 𝑌 (𝑎)2
31 . The active neutrino mass matrix

reads according to eq. 5.17

𝑚𝜈 = 1
2

𝑣2

𝑀1
((𝑦(1))2 �⃗�(1)�⃗�(1)T + 𝑏 (𝑦(2))2 �⃗�(2)�⃗�(2)T) , (5.20)

with overall minus signs absorbed in phase redefinitions and 𝑢(𝑎)𝑢(𝑎)T understood as a
3 × 3 matrix. At leading order, the eigenvalues 𝑏 read:

𝑚1 = 0, 𝑚2 ≃ 1
8

𝑣2

𝑀1
𝑏 ((𝑦(2))2 + 4

∣�⃗�(1) × �⃗�(2)∣
(𝑦(1))2 ) , 𝑚3 = 1

2
𝑣2

𝑀1
(𝑦(1))2, (5.21)

which means that for 𝜆, 𝑦(𝑎) = 𝒪(1), the mass hierarchy matches experimental data for
NO:

𝑚3 ∼ 0.1 eV, 𝑚2 ∼ 0.1 eV𝑏𝒪 ((𝑦(1,2))2) ∼ 𝒪(0.01 eV). (5.22)

Fig. 5.3 presents a qualitative analysis based on a parameter scan across randomized
RHN Yukawa matrices entries, assuming 𝜆5 = 1. Additionally, a scan over absolute active
neutrino masses with 𝑚1 = 0 is included. Notably, the figure illustrates that the oscillation
data and expected neutrino masses are roughly consistent with the predicted values. The
initially massless neutrino acquires a mass term through the rank-increasing two-loop
contributions detailed in section 3.1.

5.2.2. Additional Scalar

In all considerations, a mass matrix with rank < 3 is assumed. The existence of some
gauge symmetry that justifies this form is indirectly implied, as it was argued that gravity
breaks global symmetries. Consequently, the mass matrix arises from combining mass
terms not forbidden by any symmetry and those generated by the VEVs of scalars after
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Figure 5.4.: Scatter plot for Neutrino mass parameters. A parameter scan for randomized
RHN Yukawa matrices of 𝒪(1) is performed for 𝜆5 = 1 and 𝑀2 = 0.4 ⋅
ΛEW, 𝑀3 = 0.6 ⋅ ΛEW. The resulting active neutrino masses with 𝑚1 = 0 are
displaced on the left, and the corresponding squared mass differences on the
right. The experimental best-fit values for 𝑚1 = 0 are indicated in grey.

SSB. Before considering explicit models, the RGE effects on the scalar couplings are
studied. For that, a simple Majoron-type model is assumed:

ℒ𝜙 = ℒSM − (𝛼𝑖𝑗𝑁 c
𝑖R𝑁𝑗R𝜙 + h.c.) − 𝑉 (𝜙). (5.23)

𝑁𝑖 denote 𝑛𝑖 additional chiral fermions and 𝜙
𝑆𝑆𝐵
−−−→ ⟨𝜙⟩ a scalar that aquires a VEV after

SSB of some imposed extra symmetry. One such possibility for the given Lagrangian is a
𝑈(1) with the charges 𝑄(𝑁) = 1, 𝑄(𝜙) = −2 and 𝑉 (𝜙) = 𝛿𝜙𝜙∗ + 𝜆2 (𝜙𝜙∗)2 + 𝜆3𝜙𝜙∗𝐻†𝐻
and ignoring gauge anomlies for the time being. The two-loop RGEs for renormalizable
theories can be calculated with SARAH and read:

𝛽𝛼 = 𝜅𝛼 + 𝛼𝐹 + 𝐹 ∗𝛼 + 𝛼𝑄 + 𝑄T𝛼 − 𝐺∗𝑃 𝑇𝛼 − 𝛼𝑃𝐺 + 4𝑃 𝑇𝛼𝑃 + 28𝐺∗𝛼𝐺, (5.24)

with

𝜅 = 2𝛼Tr[𝛼𝛼∗] + 1
(16𝜋2)2 (𝜆2

2 + 𝜆2
3

4
− 6Tr[𝛼𝑌𝜈

†𝑌𝜈𝛼∗]) − 12Tr[𝐹 2],

𝐹 = 1
16𝜋2 2𝐺 + 1

16𝜋2 (8𝜆2 + 6Tr[𝛼𝛼∗]) 𝐺,

𝑄 = 𝑃 + 1
16𝜋2 (17

8
𝑔1

2 + 51
8

𝑔2
2 − 2𝜆3 − 9

2
Tr[𝑌𝑢𝑌𝑢

†] − 3
2

Tr[𝑌 𝑌 †]) 𝑃 − 1
4

𝑃 2,

𝑃 = 1
(16𝜋2)2 𝑌 †𝑌 ,

𝐺 = 1
(16𝜋2)2 𝛼∗𝛼.

(5.25)

Here, 𝑌𝑒, 𝑌𝑢 contributions were neglected. The transformation behavior of 𝛽𝛼 under chiral
fermion redefinitions (𝑁 → 𝑈𝑁) must mirror that of 𝛼 itself, thus 𝛼 → 𝑈T𝛼𝑈. The
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flavor structures involving 𝐺 (𝐺 → 𝑈†𝐺𝑈) exhibit the correct transformation property,
justifying the general form of eq. 5.24. Compared to the result from eq. 5.1 and the explicit
factors in [18], all terms not involving additional 𝛼 contributions agree. For the model
under consideration, the freedom to redefine 𝑁 allows us to diagonalize 𝛼. After SSB,
this translates to working in the mass basis. Consequently, all additional flavor structures
involving 𝐺 (particularly 𝐺∗𝛼𝐺), which could potentially lead to effects similar to 𝑃 T𝛼𝑃,
remain diagonal. Therefore, the discussions on two-loop mass generation presented at the
beginning of this chapter are expected to hold for masses generated via SSB. Depending
on the specific model and the scalar sector’s form, extra terms of the form 𝐺∗

𝑖 𝛼𝐺𝑖 might
contribute to the rank increase if they cannot be simultaneously diagonalized.

5.3. Additional Gauge Symmetries

This section explores extensions of the SM incorporating gauge groups constructed from
the simplest representations: trivial, fundamental, and triplet/adjoint. Drawing on
their implications for tree-level neutrino mass matrices and potential rank-increasing
contributions similar to the one depicted in fig. 5.1, the concluding section discusses the
general features of these extensions.

5.3.1. U(1)

The simplest extension includes several chiral fermions and a scalar sector charged under
gauged U(1)D (“dark”) symmetry and uncharged under any SM gauge group. The only
gauge anomalies involve U(1)3

D with three external dark bosons and U(1)D × graviton2.
The latter involves one external dark gauge boson and two gravitons. Since only fermions
are running inside the loop, no theory of quantum gravity is necessary. The resulting
conditions on cancelation of both anomalies based on eq. 5.3 lead to

∑
𝑖

𝑄3
𝑖 = 0 , ∑

𝑖
𝑄𝑖 = 0, (5.26)

where 𝑖 denotes all chiral fermions charged under U(1)D and 𝑄𝑖 their corresponding
charges. The most straightforward solution amounts to extend the SM with three right
handed fermions (𝑁1R, 𝑁2R, 𝑁3R) with charges +1, −1, 0. Even without including a scalar
sector that couples 𝑁, 𝑆 to the active neutrinos, the following mass terms are allowed:

𝑀3𝑁 c
3R𝑁3R, 𝑀12𝑁 c

1R𝑁2R, 𝑀12𝑁 c
2R𝑁1R, (5.27)

where the last two are related by hermitian conjugation. The resulting Majorana mass
matrix for ⃗𝑁 = (𝑁1, 𝑁2, 𝑁3) reads

𝑀 = ⎛⎜⎜
⎝

0 𝑀12 0
𝑀12 0 0

0 0 𝑀3

⎞⎟⎟
⎠

, (5.28)
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which has full rank. The same argument also holds for more chiral fermions with charges
𝑄𝑖 = ±1, ±𝑎, … , 0. Other non-trivial solutions that are non-symmetric might exist;
however, it remains complicated to couple 𝑁𝑖 to ℓ𝛼 without introducing multiple scalars
of various U(1)D charges. More desirable solutions, therefore, include non-abelian gauge
groups.

5.3.2. SU(2) + SU(N)

Instead of U(1)D, SU(2)D is introduced. The following fields with representation in regard
to SU(3)𝐶 × SU(2)L × U(1)𝑌 × SU(2)D extend the matter content: one chiral fermion
doublet 𝑁 = (1, 1, 0, 2), one scalar singlet 𝑆, one scalar bi-doublet Φ = (1, 2, 0, 2) and
a one scalar doublet 𝜑 = (1, 1, 0, 2). Since SU(2)𝐷 is pseudo-real, all anomalies cancel
automatically. The Lagrangian amounts to

ℒD = − (𝑌𝛼ℓ𝛼LΦ𝑁R + 𝑌𝑆𝑁R𝜑𝑆c
R + ̃𝑌𝑆𝑁R𝜑𝑆c

R + 𝑀𝑆𝑆𝑐
R𝑆R + h.c.) − 𝑉 (𝐻, Φ, 𝑆). (5.29)

For every term involving 𝜑, an analogue one with the charge cojugated 𝜑 = i𝜎2𝜑∗ exists,
because SU(2) is pseudo-real. Furthermore, it is assumed that 𝑉 (𝐻, Φ, 𝑆) develops minima
such that ⟨𝜑⟩ ≲ 𝑀𝑆 ∼ ΛPl, while ⟨𝐻, Φ⟩ ∼ ΛEW. The large separation in scales demands
fine-tuning on potential parameters, which is a general concern in any scalar extension for
which no distinct solution is yet known.

Upon integrating out 𝑆, the resulting dimension-five operators, which approximate the
emerging masses after SSB, read:

ℒ𝑑=5 = 𝐶11
ΛPl

(𝑁R𝜑) (𝜑T𝑁𝑐
R) + 𝐶12

ΛPl
(𝑁R𝜑) (𝜑T𝑁𝑐

R) + 𝐶22
ΛPl

(𝑁R𝜑) (𝜑T𝑁𝑐
R) + h.c., (5.30)

with ⟨𝜑⟩ = (𝑣𝜑, 0). Choosing the VEV is convention. By performing a gauge transforma-
tion on 𝜑, any other direction in the SU(2)D plane can be selected. The Wilson coefficients
𝐶𝑖𝑖 depend on 𝑌𝑆, ̃𝑌𝑆 and the resulting entries in the mass matrix 𝑀𝑁 are

𝑀𝑖𝑗 ∼
𝑣2

𝜑

ΛPl
, (5.31)

hence, all entries are non-zero, and both mass eigenstates are massive. Including mul-
tiple generations of N does not impact the mass generation scenario, as the underlying
mechanism responsible for their masses remains identical. Without 𝜑, however, 𝑁 will
not acquire Majorana masses.

To prevent the appearance of the charge conjugated scalar field, an additional U(1)D
symmetry – similarly to the SU(2)L × U(1)𝑌 gauge symmetry – with 𝑄𝜑

D ≠ 0 can be
included. This addition, then again, makes anomaly cancelation very difficult. 𝑈(1)3

D
and gravity related 𝑈(1)D anomalies demand for multiple generations 𝑁𝑎,𝑏 with opposing
charges, like ±1. The Lagrangian reads:

ℒ′
𝐷 = − (𝑌𝛼ℓ𝛼LΦ𝑁R + 𝑌 (𝑎)

𝑆 𝑁𝑎R𝜑𝑆c
R + 𝑌 (𝑏)

𝑆 𝑁𝑏R𝜑𝑆c
R + 𝑀𝑆𝑆c

R𝑆R + h.c.)

− (𝑀𝑎𝑏𝑁 c
𝑎Ri𝜎2𝑁𝑏R + h.c.) − 𝑉 [𝐻, Φ, 𝑆].

(5.32)
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Integrating out 𝑆 as in eq. 5.30 but only with 𝐶(𝑎)
11 and 𝐶(𝑏)

22 then gives the mass matrix
for (𝑁𝑎1, 𝑁𝑎2, 𝑁𝑏1, 𝑁𝑎2)

𝑀𝑁 =
⎛⎜⎜⎜⎜
⎝

𝑀11 0 0 𝑀12
0 0 𝑀12 0
0 𝑀12 0 0

𝑀12 0 0 𝑀22

⎞⎟⎟⎟⎟
⎠

. (5.33)

Here 𝑀12 contributions correspond to Dirac type mass terms when identifying i𝜎2𝑁𝑏R
with 𝑁𝐿. The matrix’s full rank excludes the model; however, a similar approach
based on SU(2)R × U(1) ̃𝑌 is used in LR models. Similarly, when considering SU(𝑁)D
instead of SU(2)D × U(1)D, the SU(𝑁)3

D anomaly demands for any chiral fermion in the
fundamental representation, a corresponding one in the anti-fundamental representation,
which effectively makes the theory vector-like. The resulting Dirac mass terms render all
RHNs massive.

Another option to prevent the charge conjugation is by using scalar triplets Σ = Σ𝑖𝜏 𝑖
D (𝜏 𝑖

D
being the generators of SU(2)D – similar to the type II seesaw model). This representation
is real; thus, charge conjugation becomes trivial. Incorporating these scalar triplets leads
to the following Lagrangian:

ℒD ⊂ −𝑌𝑁𝛼Ri𝜎2Σ𝑁, with Σ = (Σ3 Χ
Χ† −Σ3) (5.34)

and with Χ = Σ1 − iΣ2. Without loss of generality, the VEV is assumed to be in the Σ3

direction. Consequently, both 𝑁1,2 become massive. In contrast, if both Σ and 𝑁 = 𝑁 𝑖𝜏 𝑖
D

transform in the triplet representation and a singlet fermion 𝑆 is added, the Lagrangian
amounts to:

ℒD ⊂ −𝑌𝑆c
RTr[𝑁Σ] − 𝑀𝑆𝑆c

R𝑆R − ℓ𝛼L𝜂𝑁 + h.c. . (5.35)

Here, 𝜂 = (2, 3) under (SU(2)L, SU(2)D). Assuming again ⟨Σ⟩ = (0, 0, 𝑣Σ), only 𝑁3
becomes massive at the tree level:

ℒ𝑑=5 = 𝐶
ΛPl

(Tr[𝑁Σ])c (Tr[𝑁Σ]) . (5.36)

The problem amounts to 𝜂 being diagonal in the RHN generation index – other than 𝐻 –
and hence will not increase the rank. This phenomenon is likely to be a general feature of
any gauge theory. Additionally, the diagrams in fig. 5.5 featuring charged gauge bosons of
the SU(2)D group will naturally contribute only diagonal terms in the gauge indices, as
anticipated.

60



LEFT-RIGHT SYMMETRIC MODELS
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Figure 5.5.: Rank increase via charged bosons. Two-loop diagrams involving charged
SU(2)D (𝑊D) increase the rank via flavor-changing charged currents.

5.3.3. Necessary conditions

A gauge extension that gives a Majorana mass matrix with rank < 3 at the cut-off scale
must exhibit the following features:

1. All gauge anomalies must be canceled.

2. Source for lepton number violation in the form 𝜓c
L/R𝜓L/R that relates to at least one

tree level Majorana mass must be present.

3. If one or more components inside a fermionic gauge multiplet stay massless at tree
level, a remaining gauge symmetry protects the massless particle from acquiring
quantum corrections as Yukawa couplings do not contribute (diagonal in gauge
indices).

4. To allow for rank-increasing type diagrams displayed in fig. 5.1, RHNs must couple
to LHNs via the same scalar. This demands multiple copies (generations) of the
RHN in the same representation. Furthermore, at least one of these generations
must be massless.

As shown in the next section, the last point can be fulfilled by considering the seesaw
mechanism for the RHNs.

5.4. Left-Right Symmetric Models

Section 2.2.3 explored left-right extensions to the SM. These extensions represent another
way to achieve an additional SU(2) × U(1) group (discussed in the previous section) but
with RHNs forming part of the SU(2)R doublet. Consequently, right-handed neutrinos
are massless at tree level (ignoring SSB). Importantly, all gauge anomalies vanish as 𝐿c

R,
𝐿L as well as 𝑄c

R, 𝑄L have opposite U(1) ̃𝑌 charges. Hence U(1)3
̃𝑌
and all U(1) ̃𝑌 related

(graviton2 × U(1) ̃𝑌 and SU(2)2U(1) ̃𝑌) cancel. All remaining anomalies vanish similarly to
the SM. Moreover, three generations exist as required for the rank increase. All conditions
presented in the previous section are met upon the coupling to a singlet fermion.
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The fermionic matter content of the LR symmetric models is extended by a chiral singlet
𝑆L and a scalar Ξ = (1, 1, 2, −1) under SU(3) × SU(2)L × SU(2)R × U(1) ̃𝑌. The extension
to the LR Lagrangian reads

ℒext
LR = − (𝑌𝑆𝛼𝐿𝛼RΞ𝑆L + 𝑀𝑆𝑆c

L𝑆L + h.c.) − 𝑉 (Φ, Ξ). (5.37)

The full scalar potential, including the bi-doublet Φ and the right doublet Ξ, can be found
in appendix B. In order to break SU(2)L × SU(2)R × U(1) ̃𝑌 down to SU(2)L × U(1)𝑌, the
VEV of Ξ must be invariant under the later. For

Ξ = (𝑣R
0 ) , (5.38)

the VEV remains invariant under ̃𝑌 + 2𝑇3R. This, however, precisely corresponds to the
weak hypercharge 𝑌 according to eq. 2.30. Furthermore, the right-handed lepton doublet
𝐿R = (𝑁R, 𝐸R) contains the right-handed neutrino 𝑁R in the upper component. After
SSB of SU(2)R × U(1) ̃𝑌, the following mass terms emerge

ℒmass
LR = − (𝑣R𝑌𝑆𝛼𝑁𝛼R𝑆L + 𝑀𝑆𝑆c

L𝑆L + h.c.) , (5.39)

yielding the Majorana mass matrix for ( ⃗𝑁, 𝑆c):

𝑀 = ( 03×3 𝑣R
⃗𝑌𝑆

𝑣R
⃗𝑌 T
𝑆 𝑀𝑆

) . (5.40)

Here, ⃗𝑌𝑆 = (𝑌𝑆1, 𝑌𝑆2, 𝑌𝑆3) and 𝑀𝑆 ∈ R is used. The Majorana mass matrix for ( ⃗𝑁, 𝑆c)
precisely corresponds to the type-I seesaw mechanism with one additional singlet only
for the RHNs. The argument regarding the number of massive particles presented in
[26] remains directly applicable. In this scenario, only one RHN acquires mass, while
introducing two Majorana particles 𝑆 would result in two massive RHNs. Without loss
of generality, one can redefine 𝑁 −→ 𝑈𝑁 to set ⃗𝑌𝑆 = (0, 0, 𝑦𝑆). It is expected, that
𝑀𝑆 and 𝑣R are similar in size (𝒪(ΛPl)). While integrating out S provides a general
understanding of the involved masses, retaining S within the theoretical framework
yields greater precision. The mass matrix can be expressed as: 𝑀 = diag(0, 0, 𝑀1, 𝑀2),
with 𝑀1,2 = 1

2 (𝑀𝑆 ± √𝑀2
𝑆 + 4𝑦2

𝑠𝑣2
R). Furthermore, 𝑁3R and 𝑆 mix with mixing angle

𝜃, resulting in the mass eigenstates (𝑁 ′
3, 𝑆′) = 𝑂(𝜃)(𝑁3, 𝑆). Here, 𝑂(𝜃) denotes an

orthogonal matrix.

5.4.1. Fermion and Boson Masses

Assuming that ⟨Ξ⟩ = 𝒪(ΛPl) and

⟨Φ⟩ = (𝑘 0
0 𝑘′𝑒i𝛼) , with 𝑘 = 𝒪(ΛEW), (5.41)
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the VEVs arise in electromagnetic neutral components. By convention, the relative phase
between ⟨Φ11⟩ and ⟨Φ22⟩ is absorbed in the latter. The gauge boson masses are derived
from (𝐷𝜇𝜙)† (𝐷𝜇𝜙) for 𝜙 = Φ, Ξ. Both neutral and charged boson mass matrices contain
L/R mixed terms. However, 𝑊 3

𝜇R𝑊 𝜇3
R and 𝑊 +

𝜇R𝑊 𝜇−
R are proportional to 𝑣R while all

other entries are of order ΛEW. Consequently, the heavy SU(2)R bosons decouple due to
the suppressed mixing, and the lighter ones obtain masses of order 𝒪(ΛPl), corresponding
to the observed 𝑊 ± and 𝑍 bosons. Fermion masses are obtained by replacing Φ −→ ⟨Φ⟩
and

⟨Φ̃⟩ = (𝑘′𝑒−i𝛼 0
0 𝑘) (5.42)

in all Yukawa terms, which yields:

𝑀𝑈 = 𝑘ℎ + 𝑘′𝑒−i𝛼ℎ̃, 𝑀𝐷 = 𝑘′𝑒i𝛼ℎ + 𝑘ℎ̃,
𝑀Dirac

𝜈 = 𝑘𝑔 + 𝑘′𝑒−i𝛼 ̃𝑔, 𝑀ℓ = 𝑘′𝑒i𝛼𝑔 + 𝑘 ̃𝑔.
(5.43)

𝑔, ̃𝑔, ℎ, ℎ̃ are 3 × 3 matrices that describe the Yukawa couplings between left and right
fermions (section 2.2.3). To provide the observed fermion mass and the mass gap between
𝑀𝑈 and 𝑀𝑈, 𝑘 ∼ 𝑣SM, while 𝑘′ ≲ 0.01𝑘 and 𝑔 = 𝒪(1), ℎ̃ = 𝒪(0.01). Analogously, RHN
Yukawa couplings can be of order one, as discussed before, yielding ℎ = 𝒪(1), ℎ̃ = 𝒪(0.01).
Theoretically, ℎ̃ and ̃𝑔 could be larger and of order one if they cancel with the 𝑔, ℎ precisely
in case of charged lepton and down quark masses. This opens the doors for interesting
effects, as explored in the next section.

5.4.2. Rank Increasing Contributions

After SSB of SU(2)R, all SU(2)R indices can be expanded. Furthermore, SU(2)R × U(1)𝑌
can be treated as unbroken as energies are still far above the EW scale. Hence, the parts
of the Lagrangian that involve 𝑁 are:

ℒSSB
LR ⊂ −1

2
𝑀𝑁𝑖𝑗𝑁𝑐

𝑖R𝑁𝑗R − 𝑔𝛼𝑖ℓ𝛼LΦ(1)
L 𝑁𝑖R − ̃𝑔𝛼𝑖ℓ𝛼LΦ̃(1)

L 𝑁𝑖R, (5.44)

with
Φ = (Φ(1)

L Φ(2)
L ) , Φ̃ = (Φ̃(1)

L Φ̃(2)
L ) . (5.45)

Furthermore, the mass matrix in terms of (𝑁𝑖, 𝑆) is given by

𝑀 = ⎛⎜⎜
⎝

02×2 …
⋮ 0 𝑣R𝑦𝑆

𝑣R𝑦𝑆 𝑀𝑆

⎞⎟⎟
⎠

. (5.46)

The effects of the additional generation on mass matrix RGEs and the charge conjugated
coupling ̃𝑔 from eq. 2.33 are discussed in the following. The rank-increasing contributions
to the Majorana matrix 𝑀𝑁 mirror the 2HDM scenario discussed in section 5.2.1

𝛽𝑀 ⊂ 1
(16𝜋2)

[4 (𝑔†𝑔)T 𝑀 (𝑔†𝑔)] . (5.47)
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Moreover, the same structure also exists with 𝑔 −→ ̃𝑔 and in mixed form as in the 2HDM
case. The question arises if all RHN become massive at 𝑃 2 or if a second bi-doublet is
needed (see the beginning of this chapter). The two effects decouple and can be analyzed
individually.

In presence of 𝑆 but ignoring ̃𝑔, the Yukawa sector in terms of ̂𝑁 ≡ (𝑁1, 𝑁2, 𝑁 ′
3, 𝑆′)

becomes
ℒYuk

LR ⊂ − ̂𝑔𝛼𝛽𝐿𝛼LΦ(1) ̂𝑁𝛽R + h.c., (5.48)

with Φ(1) denoting the first row of Φ that couples to 𝑁. ̂𝑔 describes the modified coupling
to ̂𝑁:

̂𝑔 = ( ⃗𝑔1𝛼 ⃗𝑔2𝛽 cos 𝜃 ⃗𝑔3𝛽 sin 𝜃 ⃗𝑔3𝛽) , (5.49)

with ⃗𝑔𝛼𝛽 = (𝑔𝛼1, 𝑔𝛼2, 𝑔𝛼3) and the mixing angle chosen such that it diagonalizes 𝑀 (see
also section 5.4.1). Consequently, 𝑃 −→ ̂𝑃 = 1

16𝜋2 ̂𝑔† ̂𝑔 in the RGEs from eq. 5.1. The mass
eigenvalues are reconstructed using the Fadeeve-LeVerrier algorithm [74] for the first 4
tensor invariants. Keeping only leading order terms gives:

𝐼1 = Tr𝑀 ≃ 𝑀3 + 𝑀4,

𝐼2 = 1
2

((Tr𝑀)2 − M2) ≃ 𝑀3𝑀4,

𝐼3 = 1
6

((Tr𝑀)3 − 3Tr𝑀Tr𝑀2 + 2Tr𝑀3) ≃ (𝑀1 + 𝑀2) 𝑀3𝑀4,

𝐼4 = − 1
24

(6Tr𝑀4 − 8Tr𝑀3Tr𝑀 + Tr𝑀2(Tr𝑀)2 − (Tr𝑀2)2 − (Tr𝑀)4)

= 𝑀1𝑀2𝑀3𝑀4.

(5.50)

Explicit evaluation of eq. 5.2 gives 𝐼4 = 0 and hence 𝑀1 = 0. With 𝐼3/𝐼2 = 𝑀1 + 𝑀2 = 𝑀2
one obtains

𝑀2 = 4𝑡 (𝑃 2
13 + 𝑃 2

23) (𝑀3 cos2 𝜃 + 𝑀4 sin2 𝜃) . (5.51)

Thus, in perturbation theory, the mixing does not produce a full rank at a lower order.
The existence of a second Yukawa coupling ̃𝑔 presents a unique scenario, effectively

mimicking a second Higgs doublet in [18]. Theoretically, ̃𝑔 can still be of similar size to 𝑔
if both their contributions in the Yukawa sector cancel partially to yield lighter charged
lepton masses. In this case, ̃𝑔 is sufficient to produce active neutrino masses in the ballpark
of measurements. In the case of a single singlet 𝑆, the presence of ̃𝑔 leads to massive
RHNs at second order in PT. If two singlet fermions, 𝑆1,2, are introduced to produce two
massive neutrinos at tree level, operator mixing occurs, as detailed in section 5.2.1.

However, without some ’magical’ cancelation between 𝑔 and ̃𝑔, a suppressed ̃𝑔 (~𝒪(0.01))
is favored. In that case, the scalar sector is incapable of generating a sufficiently massive
second RHN for the seesaw mechanism, as the RHN mass scales quadratically with ̃𝑔.
Furthermore, operator mixing between 𝐶12

5 or 𝐶11
5 (both containing at least one ̃𝑔 factor)

is suppressed due to the smallness of ̃𝑔.
Ultimately, assuming a small ̃𝑔 necessitates a LR model with two bi-doublets Φ, Χ to

recover the impact of a second sizeable Yukawa coupling, akin to ̃𝑔. This goes under the
name Two-Higgs Bi-Doublet Model (2HBDM).
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5.4.3. 2HBDM

With the introduction of a second bi-doublet, two potential mechanisms emerge to explain
the observed hierarchical structure of active neutrino masses. In analogy to [19], the
first involves a single singlet fermion, 𝑆. In this scenario, one RHN gains mass at the
Planck scale, while the remaining two acquire masses through two-loop contributions.
Ignoring ̃𝑔, the Yukawa Lagrangian from eq. 5.44 with a second bi-doublet after SU(2)R
SSB becomes equvivalent to the 2HDM case and the results from [18] apply. The second
involves two singlets 𝑆, according to the discussion from section 5.2.1, that gives two
heavy and one light RHNs (the lighter at the seesaw scale). Operator mixing among the
bi-doublets between the seesaw and electroweak scale then generates a neutrino mass scale
that matches experimental observations.

In the following, the scalar potential, including two bi-doublets and one SU(2)R doublet,
is analyzed. The discussion follows [75], which considers two bi-doublets and two triplet
scalars. Appendix B contains the full scalar potential. The VEVs read:

⟨Φ⟩ = (𝑘 0
0 𝑘′𝑒i𝛼𝑝

2
) , ⟨Χ⟩ = (𝑤𝑒i𝛼𝑐

1 0
0 𝑤′𝑒i𝛼𝑐

2
) , ⟨Ξ⟩ = ( 0

𝑣R
) , (5.52)

where the phases accompaning 𝑘 and 𝑣R were rotated away. The VEVs of the charge
conjugated fields follow analog to 5.48. The minimalization conditions are:

0 = 𝜕𝑉
𝜕𝑘

= 𝜕𝑉
𝜕𝑘′ = 𝜕𝑉

𝜕𝑤
= 𝜕𝑉

𝜕𝑤′ = 𝜕𝑉
𝜕𝑣R

= 𝜕𝑉
𝜕𝛼𝑝

2
= 𝜕𝑉

𝜕𝛼𝑐
1

= 𝜕𝑉
𝜕𝛼𝑐

2
. (5.53)

There are 8 conditions and 7 bilinear terms 𝜇2𝜙†𝜙 with 𝜙 = Φ, Φ̃, Χ, Χ̃, Ξ. Eliminating all
𝜇 results in one equation that relates all quartic couplings 𝛼, 𝛾 (with two bi-doublets and
two doublets), 𝛿 (four doublets) and 𝜆 (four bi-doublets)

( ̃𝛾𝑐𝑝
2 − 𝛾𝑐𝑝

2 ) [𝑘′𝑤′ sin (𝛼𝑐
2 − 𝛼𝑝

2) + 𝑘𝑤 sin (𝛼𝑐
1)]

− ( ̃𝛾𝑐𝑝
1 − 𝛾𝑐𝑝

1 ) [𝑘′𝑤 sin (𝛼𝑐
1 + 𝛼𝑝

2) + 𝑘𝑤′ sin (𝛼𝑐
2)]

− ( ̃𝛾𝑐
1 − 𝛾𝑐

1) 𝑤𝑤′ sin (𝛼𝑐
1 + 𝛼𝑐

2)

− ( ̃𝛾𝑝
1 − 𝛾𝑝

1 ) 𝑤𝑤′ sin (𝛼𝑝
2) = 𝜆𝑖𝒪 ((𝑘, 𝑘′, 𝑤, 𝑤′)4

𝑣2
R

) .

(5.54)

This means the smaller 𝑘′ and 𝑤′ become compared to 𝑤 and 𝑘, the smaller ( ̃𝛾𝑐𝑝
2 − 𝛾𝑐𝑝

2 )
or 𝛼𝑐

1 have to become. However, at least two phases satisfy non-trivial conditions and
can contribute to CP violation. Furthermore, it was checked in analogy to [75], that for
𝑘′, 𝑤′, ( ̃𝛾𝑐𝑝

2 − 𝛾𝑐𝑝
2 ) −→ 0 and solving the minimalization conditions for 𝜇, both Φ(2) and

Χ(2) become very heavy (Planck scale). At the same time, Φ(1), Χ(1) have masses around
the electroweak scale and effectively correspond to the two Higgs bosons from the 2HDM
model.
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6. Conclusion

This thesis is divided into two parts, both investigating the radiative two-loop generation
of neutrino masses. First, the two-loop renormalization of the Weinberg operator is
performed and related to active neutrino masses. Second, gauge extensions of the seesaw
type-I model are investigated, which allow for similar quantum corrections for the RHN
masses.

Before performing the complete two-loop renormalization of the Weinberg operator,
the calculation of the individual rank-increasing diagrams was presented in this work.
Although there are more diagrams than accounted for in [16], their contribution to the
beta function cancels, and our result agrees with theirs. Nevertheless, we found that
including the additional diagrams is mandatory to fulfill the recursion relations between
the 1/𝜖 and 1/𝜖2 poles. The background field method was used in this thesis for the
complete two-loop renormalization in order to maintain explicit gauge invariance and
simplify the gauge sector renormalization. The SM parameters and the Wilson coefficient
of the Weinberg operator were renormalized at one-loop in this gauge to prepare for the
two-loop calculations. Only single insertions of the Weinberg operator were considered,
corresponding to cut-off suppression to first order. IR regular masses were introduced to
prevent spurious IR divergences. We calculated the two-loop CT of dimension-five Wilson
coefficient, which proved to be independent of the renormalization scale or regulator
masses, as expected for local physical counterterms. Additionally, the second-order poles
satisfy recursion relations that relate them to one-loop counterterms. Although this is not
a direct proof of the two-loop beta function, both the cancelation of all logarithmic terms
in our result and the consistency of the recursion relations make the obtained two-loop
RGEs highly probable to be correct.

Phenomenological implications on neutrino mixing parameters and masses were derived
here using the complete two-loop RGE of the Weinberg operator. The setup assumes
one massless active neutrino at the cut-off scale, as oscillation experiments only require
two massive neutrinos. Furthermore, a seesaw type-I extension with two RHNs realizes
this situation and motivates a seesaw scale cut-off. Analytical relations of oscillation
parameters were derived here, and numerical evolution of the running parameters was
conducted. These results confirm a radiatively generated neutrino mass of approximately
10−14 eV − 10−13 eV, which constitutes a lower limit on the lightest mass eigenstate (also
discussed in [16]). In this work, the Majorana phase associated with the light neutrino
was found to run into an infrared quasi-fixed point, which was explicitly confirmed by
numerically evaluating its energy dependence. The calculation determined the dependence
of the lightest neutrino mass and the Majorana phase fixed point on the remaining
CP-violating phases. Although the fixed point takes non-trivial and sizeable values, its

67



CONCLUSION

association with the tiny light neutrino mass makes it nearly unobservable. Compared to
the genuinely massless limit, only significantly suppressed corrections contribute to the
neutrinoless double beta decay mass.

Similar diagrams that increased the rank of the active neutrino mass matrix exist for
RHNs, too [17]. If the RHN mass eigenstates are highly hierarchical, the seesaw scale is
generated via two-loop effects and does not need to be introduced separately. Gravity’s
violation of global symmetries further motivates the breaking of lepton number at the
Planck scale. Justification for why some RHN become massive at the Planck scale while
others remain massless at the cut-off should be provided through gauge extensions to the
type-I seesaw model.

In this thesis, general considerations were made regarding the number of massive RHNs
and the inclusion of mass terms via SSB. In the presence of a second Higgs doublet,
both one [19] and two heavy RHNs – as was found here – predict mass hierarchies in
accordance with oscillation experiments. Additionally, it was noted that Majorana masses
via SSB do not affect the rank-increasing contributions. Based on the consideration of
the most minimal gauge groups U(1), SU(2), SU(𝑁), a set of minimal requirements was
derived in this work. Any model must be anomaly-free and contain singlet fermions that
break lepton number and couple the right-handed neutrinos via Yukawa interactions.
Moreover, multiple generations of RHNs with the same quantum numbers must exist,
allowing flavor-violating interactions and rank increase. These motivate a seesaw-type
mechanism for the RHN masses. A natural implementation in the LR extension was found
here that includes a SSB pattern different from the scalar triplet approach. The presented
model provides sufficient sources of flavor violation to explain the observed active neutrino
masses, provided there is slight fine-tuning and cancelation between the coupling to the
bi-doublet and its charge conjugate. However, a second bi-doublet must be introduced if
there is no accidental cancelation. This thesis demonstrated that, after SSB around the
Planck scale, the resulting fermionic and Yukawa sectors correspond to the hierarchical
RHN mass spectrum, which generates the seesaw scale radiatively and predicts active
neutrino masses in the ballpark of experimental data.

Based on the effect of a second Higgs field on the RHN mass renormalization, future
work could extend the two-loop beta functions of the Weinberg operator Wilson coefficient
to 2HDM scenarios. These provide an additional source of flavor violation in the form
of a second Yukawa coupling. Furthermore, there are three distinct Weinberg operators,
and operator mixing occurs at the one-loop and two-loop levels. This opens the door
to having larger lower bounds on the lightest neutrino mass, the possibility of only one
massive active at the cut-off scale, and other interesting phenomenological implications.
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A. Two-Loop Renormalization

A.1. Master Integrals

In this section, the master integrals introduced in qq. 3.67 are evaluated. These integrals
represent two-loop vacuum polarization topologies involving either one or three massive
propagators. The first integral, denoted for convenience as ℐ1, represents the case with a
single massive propagator:

ℐ1 ≡ 𝐾(𝑑)
{1,𝑀},{1,0},{1,0} = ̃𝜇4𝜀 ∫ dΠ𝑘,𝑙

1
(𝑙2 − 𝑀2) 𝑘2 (𝑘 − 𝑙)2 . (A.1)

Here, dΠ𝑝 denotes the 𝑑-dimensional invariant phase space volume element: ∫ d𝑑𝑝
(2𝜋)𝑑 , with

𝑑 = 4 − 2𝜀. Including the renormalization scale ̃𝜇 serves two purposes: 1) maintaining
dimensional scaling and 2) facilitating the cancelation of finite terms arising from dimen-
sional regularization. Subsequently, the integral is decomposed into terms involving 𝑘 and
𝑙 and reformulated using Feynman parameterization.

ℐ1 = ̃𝜇4𝜀 ∫ dΠ𝑙
1

(𝑙2 − 𝑀2)
∫ dΠ𝑘 ∫

1

0
d𝑥 1

[𝑥𝑘2 + 𝑥(𝑘 − 𝑙)2]2

= ̃𝜇4𝜀 ∫ dΠ𝑙
1

(𝑙2 − 𝑀2)
i

(4𝜋) 𝑑
2

Γ (2 − 𝑑
2

) ∫
1

0
d𝑥 [−𝑥𝑥𝑙]−𝜀 .

(A.2)

The 𝑘 integration follows the usual steps: Wick rotation, momentum shift, and evaluating
the phase space integral via Passariono-Veltman functions. With

∫
1

0
𝑥𝛼−1𝑥𝛽−1 = Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
(A.3)

ℐ1 reduces to

ℐ1 = i(−1)−𝜀

(4𝜋) 𝑑
2

Γ (2 − 𝑑
2) Γ (𝑑

2 − 1)2

Γ(𝑑 − 2)
̃𝜇4𝜀 ∫ dΠ𝑙

𝑙−𝜀

(𝑙2 − 𝑀2)
. (A.4)

Abbreviating the constant prefactor with 𝐶 for simplicity and applying Feynman parame-
terization once more yields:

ℐ1 = 𝐶 ∫ dΠ𝑙
Γ(1 + 𝜀)

Γ(𝜀)
∫

1

0
d𝑥 𝑥𝜀−1

[𝑥 (𝑙2 − 𝑀2) + 𝑥𝑙2]1+𝜀
⏟⏟⏟⏟⏟⏟⏟⏟⏟

= 𝑥𝜀−1

[𝑙2−𝑥𝑀2]1+𝜀

= 𝐶 Γ(1 + 𝜀)
Γ(𝜀)

∫
1

0
d𝑥 i(−1)1+𝜀

(4𝜋) 𝑑
2

𝑥𝜀−1 Γ (1 + 𝜀 − 𝑑
2)

Γ(1 + 𝜀)
(𝑥𝑀2)𝑑/2−1−𝜀 .

(A.5)
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Employing Wick rotation and using the Passarino-Veltman functions, the Feynman
parameter integral is subsequently evaluated with the help of eq. A.3:

ℐ1 = i𝐶(−1)1+𝜀

(4𝜋) 𝑑
2

Γ (𝑑
2 − 𝜀)

Γ (𝑑
2)

𝑀2
𝑑
2 −1−𝜀

= 𝜇4𝜀𝑒2𝛾𝜀

(4𝜋)4
Γ (𝜀) Γ (1 − 𝜀)2 Γ (2 − 2𝜀) Γ (−1 + 2𝜀)

Γ (2 − 2𝜀) Γ (2 − 𝜀)
𝑀2

𝑑
2 −1−𝜀

= 𝑀2

(4𝜋)4 ( 𝜇2

𝑀2 )
2𝜀

(− 1
2𝜀2 − 3

2𝜀
− 1

4
(14 + 𝜋2)) ,

(A.6)

where the dimension regularization-specific terms log 4𝜋 − 𝛾 vanishes as espected in MS.
Continuing with the second master integral, denoted as ℐ2 for simplicity, which contains
three massive propagators:

ℐ2 ≡ 𝐾(𝑑)
{1,𝑀},{1,𝑀},{1,𝑀} = ̃𝜇4𝜀 ∫ dΠ𝑘,𝑙

1
(𝑙2 − 𝑀2) (𝑘2 − 𝑀2) ((𝑘 − 𝑙)2 − 𝑀2)

. (A.7)

The ∫ d8𝑝
𝑝6 behavior leads to problematic divergences in the Feynman parameter integrals,

which, however, can be cured by raising the overall degree of divergence (in analogy to
[76]). For that, IBP relations are employed. Abbreviating 𝑙2 − 𝑀2 = 𝐷1, 𝑘2 − 𝑀2 = 𝐷2
and (𝑘 − 𝑙)2 − 𝑀2 = 𝐷3 and inserting 1 = 1

2𝑑 (𝜕𝑘𝜇

𝜕𝑘𝜇 + 𝜕𝑙𝜇

𝜕𝑙𝜇 ) into ℐ2 yields:

ℐ2 = 1
2𝑑

̃𝜇4𝜀 ∫ dΠ𝑘,𝑙 (𝜕𝑘𝜇

𝜕𝑘𝜇 + 𝜕𝑙𝜇

𝜕𝑙𝜇
) 1

𝐷1𝐷2𝐷3

IBP= 1
2𝑑

̃𝜇4𝜀 ∫ dΠ𝑘,𝑙
2𝑘2

𝐷2
1𝐷2𝐷3

+ 2𝑙2

𝐷1𝐷2
2𝐷3

+ 2(𝑘 − 𝑙)2

𝐷1𝐷2𝐷2
3

= 1
𝑑

̃𝜇4𝜀 ∫ dΠ𝑘,𝑙3
1

𝐷1𝐷2𝐷3
+ 3 𝑀2

𝐷1𝐷2𝐷2
3

,

⟶ ℐ2 = 3𝑀2

𝑑 − 3
̃𝜇4𝜀 ∫ dΠ𝑘,𝑙

1
𝐷2

1𝐷2𝐷3
.

(A.8)

Here, surface terms from partially integrating were dropped (justified after going to
Euclidean space), ±𝑀2 was inserted in the third step, and 𝑘, 𝑙 were shifted to unify terms
as (𝐷2

1𝐷2𝐷3)−1. To simplify the integral, 𝑘, 𝑙 −→ 𝑀 ⋅ 𝑘, 𝑙 to extract the overall scale:

ℐ2 = − ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
∫ dΠ𝑘,𝑙

1
(𝑙2 − 1) (𝑘2 − 1) ((𝑘 − 𝑙)2 − 1)2 . (A.9)

Decomposing in 𝑘, 𝑙 and employing Feynman parameterization yields:

ℐ2 = ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
∫ dΠ𝑙

1
(𝑙2 − 1)2 ∫ dΠ𝑘 ∫

1

0
d𝑥 1

[𝑥 (𝑘2 − 1) + 𝑥 ((𝑘 − 𝑙)2 − 1)]2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
[(𝑘 − 𝑥𝑙)2 + 𝑥𝑥𝑙2 − 1]−2

= i ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(𝜀)

(4𝜋) 𝑑
2

∫ dΠ𝑙
1

(𝑙2 − 1)2 ∫
1

0
d𝑥 (1 − 𝑥𝑥𝑙2)−𝜀 .

(A.10)
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Following momentum shift and Wick rotation, the scalar 𝑘 integral was evaluated using
Passarino-Veltman functions. Subsequently, factoring out −𝑥𝑥 simplifies the introduction
of another Feynman parameterization:

ℐ2 = i ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(𝜀)

(4𝜋) 𝑑
2

∫ dΠ𝑙 ∫
1

0
d𝑥 (−𝑥𝑥)−𝜀

(𝑙2 − 1)2 (− 1
𝑥𝑥 + 𝑙2)𝜀

= i ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(2 + 𝜀)
(4𝜋) 𝑑

2
∫ dΠ𝑙 ∫

1

0
∫

1

0
d𝑥d𝑦 𝑦𝑦𝜀−1(−1)𝜀

[𝑦 (𝑙2 − 1) + 𝑦 (𝑙2 − 1
𝑥𝑥)]2+𝜀

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦𝑦𝜀−1(−1)𝜀

[𝑙2−1− 𝑦
𝑥𝑥 +𝑦]2+𝜀

. (A.11)

After performing the second phase space integral, the remaining 𝑥, 𝑦 integrals read:

ℐ2 = − ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(2 + 𝜀)

(4𝜋)𝑑
Γ(2𝜀)

Γ(2 + 𝜀)
∫

1

0
∫

1

0
d𝑥d𝑦 𝑦𝑦𝜀−1(𝑥𝑥)−𝜀 (1 + 𝑦

𝑥𝑥
− 𝑦)

−2𝜀
. (A.12)

While an analytical evaluation of the entire integral proves challenging, the first and
second-order pole in 𝜀 can be systematically extracted. For that matter, rewriting

𝑦𝜀−1 as 1
𝜀

d𝑦𝜀

d𝑦
and Δ(𝑥, 𝑦) ≡ 1 + 𝑦

𝑥𝑥
− 𝑦 (A.13)

and partially integrating the expression in 𝑦 yields:

ℐ2 = ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(2𝜀)
(4𝜋)𝑑

1
𝜀

∫
1

0
∫

1

0
d𝑥d𝑦 (𝑥𝑥)−𝜀𝑦𝜀 d

d𝑦
𝑦Δ(𝑥, 𝑦)−2𝜀. (A.14)

In this form, 𝑦𝜀 = 1 + 𝜀 log 𝑦 can be expanded in 𝜀. Hence, the 𝑦 integral becomes

∫
1

0
d𝑦 (1 + 𝜀 log 𝑦) d

d𝑦
𝑦Δ(𝑥, 𝑦)−2𝜀

= [𝑦Δ(𝑥, 𝑦)−2𝜀]1
0

+ 𝜀 ∫
1

0
d𝑦 log 𝑦 d

d𝑦
𝑦Δ(𝑥, 𝑦)−2𝜀

= − Δ(𝑥, 0)−2𝜀 + 𝜀 ∫
1

0
d𝑦 log 𝑦 d

d𝑦
𝑦 (1 − 2𝜀 log Δ(𝑥, 𝑦)) + 𝒪 (𝜀3)

= − 1 − 𝜀 ∫
1

0
d𝑦 log 𝑦 + 𝒪 (𝜀2) = −1 + 𝜀 + 𝒪 (𝜀2) .

(A.15)

Since Δ(𝑥, 1) is non-singular in 𝑦, the upper boundary term vanished (line 2). Upon
reinserting back into the ℐ2:

ℐ2 = − ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(2𝜀)
(4𝜋)𝑑

1
𝜀

∫
1

0
d𝑥 (𝑥𝑥)−𝜀(1 − 𝜀) + 𝒪 (𝜀2)

= − ̃𝜇4𝜀 3𝑀2𝑑−3

𝑑 − 3
Γ(2𝜀)
(4𝜋)𝑑

1
𝜀

(1 − 𝜀)Γ(1 − 𝜀)2

Γ(2 − 2𝜀)
+ 𝒪 (𝜀0)

= −3
2

𝑀2 ( 1
𝜀2 + 1

𝜀
(3 − 2 log (𝑀2

𝜇2 )) + 𝒪 (𝜀0)) ,

(A.16)

where log 4𝜋 − 𝛾 vanished as expected.
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TWO-LOOP RENORMALIZATION

A.2. One- and two-loop CTs

One-Loop CTs

The one-loop CTs determined with the BFM for all SM parameters, the Wilson coefficient
of the Weinberg operator and the regulator masses read:

𝛿𝑍(1)
ℓ = − 1

16𝜋2𝜀 ⋅ 4
(𝑔2

1 + 3𝑔2
2 + 2𝑌𝑙𝑌

†
𝑙 ) ,

𝛿𝑍(1)
𝑒 = − 1

16𝜋2𝜀
(𝑔2

1 + 𝑌 †
𝑙 𝑌𝑙) ,

𝛿𝑍(1)
𝑞 = − 1

16𝜋2𝜀 ⋅ 36
(𝑔2

1 + 27𝑔2
2 + 48𝑔2

3 + 18𝑌d𝑌 †
d + 18𝑌u𝑌 †

u ) ,

𝛿𝑍(1)
𝑢 = − 1

16𝜋2𝜀 ⋅ 9
(4𝑔2

1 + 12𝑔2
3 + 9𝑌 †

u 𝑌u) ,

𝛿𝑍(1)
𝑑 = − 1

16𝜋2𝜀 ⋅ 9
(𝑔2

1 + 12𝑔2
3 + 9𝑌 †

d 𝑌d) ,

𝛿𝑍(1)
𝐻 = 1

16𝜋2𝜀 ⋅ 2
(𝑔2

1 + 3𝑔2
2 − 2𝑇) ,

𝛿𝑍(1)
𝑀𝐻

= 1
16𝜋2𝜀

(6𝜆 + 𝑇) ,

𝛿𝑍(1)
𝜆 = 1

16𝜋2𝜀 ⋅ 16𝜆
[32𝜆𝑇 + 3(𝑔12 + 𝑔22)2 + 6𝑔4

2 − 24𝜆(𝑔2
1 + 3𝑔2

2) + 192𝜆2 − 16𝑇 ′] ,

𝛿𝑍(1)
𝑌u

= 1
16𝜋2𝜀 ⋅ 24

𝑌 −1
u [𝑌u (12𝑇 − 17𝑔2

1 − 27𝑔2
2 − 96𝑔2

3) + 18𝑌u𝑌 †
u 𝑌u − 18𝑌d𝑌 †

d 𝑌u] ,

𝛿𝑍(1)
𝑌d

= 1
16𝜋2𝜀 ⋅ 24

𝑌 −1
d [𝑌d (12𝑇 − 5𝑔2

1 − 27𝑔2
2 − 96𝑔2

3) − 18𝑌u𝑌 †
u 𝑌d + 18𝑌d𝑌 †

d 𝑌d] ,

𝛿𝑍(1)
𝑌𝑙

= 1
16𝜋2𝜀 ⋅ 8

𝑌 −1
𝑙 (𝑌𝑙 [4𝑇 − 15𝑔2

1 − 9𝑔2
2) + 6𝑌𝑙𝑌

†
𝑙 𝑌𝑙] ,

𝛿𝐶(1)
5 = 1

16𝜋2𝜀 ⋅ 4
[2 (4𝜆 − 3𝑔2

2 + 2𝑇) 𝐶5 − 3𝑌𝑙𝑌
†

𝑙 𝐶5 − 3𝐶5 (𝑌 †
𝑙 𝑌𝑙)

T
] ,

𝛿𝑍(1)
𝑀�̂�

= 1
16𝜋2𝜀

41
6

𝑔2
1,

𝛿𝑍(1)
𝑀�̂�

= − 1
16𝜋2𝜀

7
6

𝑔2
2.
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ONE- AND TWO-LOOP CTS

Two-loop CTs

The two-loop CTs determined with the BFM for Lepton and Higgs wavefunction as well
as the Wilson coefficient of the Weinberg operator read:

𝛿𝑍(2)
ℓ = 1

(16𝜋2)2 𝜀2 ⋅ 32
[𝑔4

1 + 6𝑔2
1𝑔2

2 + 57𝑔4
2 + 2 (17𝑔2

1 + 15𝑔2
2) 𝑌𝑙𝑌

†
𝑙

− 8𝑇 𝑌𝑙𝑌
†

𝑙 − 8𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ]

+ 1
(16𝜋2)2 𝜀 ⋅ 64

[85𝑔4
1 + 18𝑔2

1𝑔2
2 − 231𝑔4

2 − 2 (7𝑔2
1 + 33𝑔2

2) 𝑌𝑙𝑌
†

𝑙

+ 24𝑇 𝑌𝑙𝑌
†

𝑙 + 8𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ] ,

𝛿𝑍(2)
𝐻 = 1

(16𝜋2)2 𝜀2
{43

16
𝑔4

1 + 3
4

𝑔2
1𝑔2

2 − 15
16

𝑔4
2 + 1

8
𝑔2

1Tr (11𝑌𝑙𝑌
†

𝑙 + 5𝑌 u𝑌 †
u − 7𝑌d𝑌 †

d )

− 3
8

𝑔2
2𝑇 + 12𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u ) − 3
4

Tr (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u 𝑌u𝑌 †

u

+ 3𝑌d𝑌 †
d 𝑌d𝑌 †

d − 6𝑌u𝑌 †
u 𝑌d𝑌 †

d )}

+ 1
(16𝜋2)2 𝜀

{−431
192

𝑔4
1 − 9

32
𝑔2

1𝑔2
2 + 163

64
𝑔4

2 − 3𝜆2

− 15
16

𝑔2
2𝑇 + 3

8
Tr (3𝑌𝑙𝑌

†
𝑙 𝑌𝑙𝑌

†
𝑙 + 9𝑌u𝑌 †

u 𝑌u𝑌 †
u + 9𝑌d𝑌 †

d 𝑌d𝑌 †
d − 2𝑌u𝑌 †

u 𝑌d𝑌 †
d )

− 5
48

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 10𝑔2

3Tr (𝑌d𝑌 †
d + 𝑌u𝑌 †

u )} ,

𝛿𝐶(2)
5 = 1

(16𝜋2)2 𝜀2
{[ 3

16
𝑔4

1 + 3
8

𝑔2
1𝑔2

2 + 65
16

𝑔4
2 − 𝜆 (3

2
𝑔2

1 + 15
2

𝑔2
2 − 14𝜆 − 4𝑇)

− 1
8

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 21

8
𝑔2

2𝑇 − 12𝑔2
3Tr (𝑌u𝑌 †

u + 𝑌d𝑌 †
d )

+ 𝑇 2 − 1
4

𝑇 ′ − 9
2

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] 𝐶5 + (45
32

𝑔2
1 + 63

32
𝑔2

2 − 3
2

𝜆 − 9
8

𝑇)

× [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] − 9
32

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

+ 9
16

𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

}

+ 1
(16𝜋2)2 𝜀

{− [129
32

𝑔4
1 + 83

16
𝑔2

1𝑔2
2 + 169

96
𝑔4

2 + 𝜆 (𝑔2
1 + 7𝜆 + 2𝑇) − 15

16
𝑔2

2𝑇

− 5
48

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) − 10𝑔2

3Tr (𝑌u𝑌 †
u + 𝑌d𝑌 †

d )

+ 1
8

𝑇 ′ − 3
4

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] 𝐶5 − (57
64

𝑔2
1 − 33

64
𝑔2

2 − 5
16

𝑇)

× [𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

] + 19
16

[𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝐶5 + 𝐶5 (𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 )
T

]

+ 1
2

𝑌𝑙𝑌
†

𝑙 𝐶5 (𝑌𝑙𝑌
†

𝑙 )
T

} .
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TWO-LOOP RENORMALIZATION

A.3. Two-Loop SM RGEs

The two-loop RGE for the Weinberg operator Wilson coefficient is supplemented by the
two-loop SM RGE. These were extracted from SARAH and RGBeta:

𝜇d𝑔1
d𝜇

= 1
16𝜋2 𝑔3

1 {41
6

+ 1
16𝜋2 [199

18
𝑔2

1 + 9
2

𝑔2
2 + 44

3
𝑔2

3 − 1
6

Tr (15𝑌𝑙𝑌
†

𝑙 + 17𝑌u𝑌 †
u + 5𝑌d𝑌 †

d )]},

𝜇d𝑔2
d𝜇

= − 1
16𝜋2 𝑔3

2 {19
6

− 1
16𝜋2 (3

2
𝑔2

1 + 35
6

𝑔2
2 + 12𝑔2

3 − 1
2

𝑇)} ,

𝜇d𝑔3
d𝜇

= − 1
16𝜋2 𝑔3

3 {7 − 1
16𝜋2 [11

6
𝑔2

1 + 9
2

𝑔2
2 − 26𝑔2

3 − 2Tr (𝑌u𝑌 †
u + 𝑌d𝑌 †

d )]} ,

𝜇d𝜆
d𝜇

= 1
16𝜋2 [3

8
𝑔4

1 + 9
8

𝑔4
2 + 3

4
𝑔2

1𝑔2
2 − 2𝑇 ′ + (−3𝑔2

1 − 9𝑔2
2 + 24𝜆 + 4𝑇) 𝜆]

+ 1
(16𝜋2)2 {−379

48
𝑔6

1 + 305
16

𝑔6
2 − 289

48
𝑔2

1𝑔4
2 − 559

48
𝑔4

1𝑔2
2 − 3

4
𝑔4

2𝑇

− 1
4

𝑔4
1Tr (25𝑌𝑙𝑌

†
𝑙 + 19𝑌u𝑌 †

u − 5𝑌d𝑌 †
d ) + 1

2
𝑔2

1𝑔2
2Tr (11𝑌𝑙𝑌

†
𝑙 + 21𝑌u𝑌 †

u + 9𝑌d𝑌 †
d )

− 4
3

𝑔2
1Tr (3𝑌𝑙𝑌

†
𝑙 𝑌𝑙𝑌

†
𝑙 + 2𝑌u𝑌 †

u 𝑌u𝑌 †
u − 𝑌d𝑌 †

d 𝑌d𝑌 †
d )

− 32𝑔2
3Tr (𝑌u𝑌 †

u 𝑌u𝑌 †
u + 𝑌d𝑌 †

d 𝑌d𝑌 †
d ) + 𝜆 [629

24
𝑔4

1 − 73
8

𝑔4
2 + 39

4
𝑔2

1𝑔2
2

+ 5
6

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) + 15

2
𝑔2

2𝑇 + 80𝑔2
3Tr (𝑌u𝑌 †

u + 𝑌d𝑌 †
d ) − 3𝑇 ′

− 42Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )] + 2𝜆2 (18𝑔2
1 + 54𝑔2

2 − 156𝜆2 − 24𝑇) + 2Tr (5𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙

+ 15𝑌u𝑌 †
u 𝑌u𝑌 †

u 𝑌u𝑌 †
u + 15𝑌d𝑌 †

d 𝑌d𝑌 †
d 𝑌d𝑌 †

d − 3𝑌d𝑌 †
d 𝑌d𝑌 †

d 𝑌u𝑌 †
u

− 3 𝑌d𝑌 †
d 𝑌u𝑌 †

u 𝑌u𝑌 †
u )} ,

𝜇d𝑌𝑙
d𝜇

= 1
16𝜋2 {−15

4
𝑔2

1 − 9
4

𝑔2
2 + 𝑇 + 3

2
𝑌𝑙𝑌

†
𝑙 + 1

16𝜋2 [457
24

𝑔4
1 + 9

4
𝑔2

1𝑔2
2 − 23

4
𝑔4

2 + 6𝜆2

+ 5
24

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) + 15

8
𝑔2

2𝑇 − 9
4

𝑇 ′ + 3
2

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )

+ (129
16

𝑔2
1 + 135

16
𝑔2

2 − 12𝜆 − 9
4

𝑇) 𝑌𝑙𝑌
†

𝑙 + 3
2

𝑌𝑙𝑌
†

𝑙 𝑌𝑙𝑌
†

𝑙 ]} 𝑌𝑙 ,
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𝜇
d𝑌u
d𝜇

= 1
16𝜋2 {−17

12
𝑔2

1 − 9
4

𝑔2
2 − 8𝑔2

3 + 𝑇 + 3
2

(𝑌u𝑌 †
u − 𝑌d𝑌 †

d )

+ 1
16𝜋2 [1187

216
𝑔4

1 − 23
4

𝑔4
2 − 108𝑔4

3 − 3
4

𝑔2
1𝑔2

2 + 19
9

𝑔2
1𝑔2

3 + 9𝑔2
2𝑔2

3 + 6𝜆2

+ 5
24

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) + 15

8
𝑔2

2𝑇 + 20𝑔2
3Tr (𝑌u𝑌 †

u + 𝑌d𝑌 †
d )

+ (223
48

𝑔2
1 + 135

16
𝑔2

2 + 16𝑔2
3 − 12𝜆 − 9

4
𝑇) 𝑌u𝑌 †

u

+ (−43
48

𝑔2
1 + 9

16
𝑔2

2 − 16𝑔2
3 + 5

4
𝑇) 𝑌d𝑌 †

d − 9
4

𝑇 ′ + 3
2

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )

+ 3
2

𝑌u𝑌 †
u 𝑌u𝑌 †

u + 11
4

𝑌d𝑌 †
d 𝑌d𝑌 †

d − 𝑌d𝑌 †
d 𝑌u𝑌 †

u − 1
4

𝑌u𝑌 †
u 𝑌d𝑌 †

d ]} 𝑌u ,

𝜇
d𝑌d
d𝜇

= 1
16𝜋2 {− 5

12
𝑔2

1 − 9
4

𝑔2
2 − 8𝑔2

3 + 𝑇 − 3
2

(𝑌u𝑌 †
u − 𝑌d𝑌 †

d )

+ 1
16𝜋2 [−127

216
𝑔4

1 − 23
4

𝑔4
2 − 108𝑔4

3 − 9
4

𝑔2
1𝑔2

2 + 31
9

𝑔2
1𝑔2

3 + 9𝑔2
2𝑔2

3 + 6𝜆2

+ 5
24

𝑔2
1Tr (15𝑌𝑙𝑌

†
𝑙 + 17𝑌u𝑌 †

u + 5𝑌d𝑌 †
d ) + 15

8
𝑔2

2𝑇 + 20𝑔2
3Tr (𝑌u𝑌 †

u + 𝑌d𝑌 †
d )

+ (187
48

𝑔2
1 + 135

16
𝑔2

2 + 16𝑔2
3 − 12𝜆 − 9

4
𝑇) 𝑌d𝑌 †

d

+ (−79
48

𝑔2
1 + 9

16
𝑔2

2 − 16𝑔2
3 + 5

4
𝑇) 𝑌u𝑌 †

u − 9
4

𝑇 ′ + 3
2

Tr (𝑌u𝑌 †
u 𝑌d𝑌 †

d )

+ 3
2

𝑌d𝑌 †
d 𝑌d𝑌 †

d + 11
4

𝑌u𝑌 †
u 𝑌u𝑌 †

u − 𝑌u𝑌 †
u 𝑌d𝑌 †

d − 1
4

𝑌d𝑌 †
d 𝑌u𝑌 †

u ]} 𝑌d.

Here, 𝑇 = Tr [𝑌𝑙𝑌
†

𝑙 + 3𝑌u𝑌 †
u + 3𝑌d𝑌 †

d ] and 𝑇 ′ = Tr [(𝑌𝑙𝑌
†

𝑙 )
2

+ 3 (𝑌u𝑌 †
u )

2
+ 3 (𝑌d𝑌 †

d )
2
].
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B. Scalar Potential in LR Model

The full scalar potential introduced in section 5.2.1 is presented in this chapter. For
simplicity, it is split into different types of couplings: dimensionful scales 𝜇, quartic
couplings 𝛼, 𝛾 (with two bi-doublets and two doublets), 𝛿 (four doublets), and 𝜆 (four
bi-doublets) or schematically

𝑉 (Φ, Χ, Ξ) = 𝑉𝜇 + 𝑉𝛿 + 𝑉𝛼 + 𝑉𝛾 + 𝑉𝜆. (B.1)

In detail, these read:

𝑉𝜇 = − (𝜇𝑝
1)2 Tr [Φ†Φ] − (𝜇𝑐

1)2 Tr [Χ†Χ]

− (𝜇𝑝𝑐
1 )2 Tr [Φ†Χ + Χ†Φ]

− (𝜇𝑝
2)2 Tr [Φ̃Φ† + Φ̃†Φ] − (𝜇𝑝

2)2 Tr [Χ̃Χ† + Χ̃†Χ] (B.2)

− (𝜇𝑝𝑐
2 )2 Tr [Φ̃Χ† + Φ̃†Χ]

− 𝜇2
ΞΞ†Ξ,

𝑉𝜌 = 𝛿 (Ξ†Ξ)2 , (B.3)

𝑉𝛼 = 𝛼𝑝
1Tr [Φ†Φ] Ξ†Ξ + 𝛼𝑐

1Tr [Χ†Χ] Ξ†Ξ
+ 𝛼𝑝𝑐

1 Tr [Φ†Χ + Χ†Φ] Ξ†Ξ

+ 𝛼𝑝
2Tr [Φ̃Φ† + Φ̃†Φ] Ξ†Ξ + 𝛼𝑝

2Tr [Χ̃Χ† + Χ̃†Χ] Ξ†Ξ (B.4)

+ 𝛼𝑝𝑐
2 Tr [Φ̃Χ† + Φ̃†Χ] Ξ†Ξ,

𝑉𝛾 = 𝛾𝑝
1 Ξ†Φ†ΦΞ + 𝛾𝑐

1Ξ†Χ†ΧΞ

+ ̃𝛾𝑝
1 Ξ†Φ̃†Φ̃Ξ + ̃𝛾𝑝

1 Ξ†Χ̃†Χ̃Ξ

+ 𝛾𝑝𝑐
1 Ξ† (Φ†Χ + Χ†Φ) Ξ + ̃𝛾𝑝𝑐

1 Ξ† (Φ̃†Χ̃ + Χ̃†Φ̃) Ξ

+ 2𝛾𝑝
2 Ξ† (Φ†Φ̃ + Φ̃†Φ) Ξ + 2𝛾𝑐

2Ξ† (Χ†Χ̃ + Χ̃†Χ) Ξ (B.5)

+ 𝛾𝑝𝑐
2 Ξ† (Χ†Φ̃ + Φ̃†Χ) Ξ

+ ̃𝛾𝑝𝑐
2 Ξ† (Χ̃†Φ + Φ†Χ̃) Ξ.

𝑉𝜆 contains quartic couplings of Φ, Χ and their charge conjugated respectively. Since 𝑉𝜆
does not include the doublet Ξ that was newly introduced, its form remains the same
(for details, see [75]). Moreover, its contribution is highly suppressed as only electroweak
scales are involved, and the exact structures become less relevant.
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