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Chapter 1

Introduction

1.1 The Birth of a Neutron Star

When a star approaches the end of its life the nuclear fire in its core, which has
stabilized the star against its own gravity so far, extinguishes. Initially the core
is stabilized by the degeneracy pressure of electrons. But for sufficiently massive
stars with a birth mass above approximately ten times the mass of our sun photo-
disintegration of iron group nuclei robs the core of some of its thermal pressure
support, causing an initially slow contraction. Since this contraction results in an
increase in density, electron capture on nuclei and free protons becomes more fre-
quent, additionally reducing the pressure support by degenerate electrons causing a
further contraction. A fateful feedback cycle of contraction, rising density, and elec-
tron captures is started, causing the core to collapse. At the beginning the neutrinos
released in the electron captures can escape the collapsing core, but when the density
reaches approximately 1012 g/cm3 the diffusion time scale of the neutrinos exceeds
the timescale of the collapse, hence the neutrinos become trapped in the core, and
with them lepton number and entropy of the infalling matter, rendering the rest of
the collapse adiabatic. Only when the inner part of the core reaches nuclear density
of approximately 2.7× 1014 g/cm3 the strong repulsive interactions between nucleons
provide enough pressure support against gravity again to enable a new equilibrium,
stopping the collapse of the inner core abruptly. However, due to inertia the inner
core overshoots this new equilibrium and then bounces back against the still infalling
outer layers, starting a shock wave outwards. This shock initially propagates outward
against the still infalling overlying layers, but photo-disintegration of nuclei quickly
drains the region inside the shock of its thermal pressure support and thus the shock
stops still inside the iron core, all velocities inside the shock become negative and
the expanding shock transforms into an accretion shock. Since the density inside
the shock by approximately this time has decreased to values where the neutrinos
can escape, a luminous flash of electron neutrinos released from electron captures is
radiated away as the so called νe-burst. Matter from overlying layers still infalling
through the shock accretes onto the central core, accumulating in a hot, neutrino
radiating layer around the forming proto-neutron star (PNS). Shortly after the shock
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Chapter 1 Introduction

has stagnated, neutrinos radiated by the contracting and therefore continuously hot-
ter PNS begin to be reabsorbed on nucleons in the matter behind the shock. If this
neutrino-heating mechanism, assisted by hydrodynamic instabilities of the matter
between the PNS and the shock, i.e. convective overturn and an accretion instability
of the shock, is strong enough, neutrinos can deposit enough energy to restart the
expansion of the shock. Eventually accretion abades and the still hot and lepton-rich
PNS is left behind to evolve toward the final neutron star by the emission of enorm-
ous numbers of neutrinos (O

(
1058

)
). These neutrinos carry away the gravitational

binding energy of the compact remnant and mediate the conversion of the initially
proton-rich matter to the neutron-dominated composition of the final neutron star.
Approximating the neutron star as a homogeneous sphere of mass MNS and radius
RNS, a Newtonian estimate for the gravitational binding energy yields

Eg =
3

5

GM2
NS

RNS
≈ 2× 1053 erg

(
MNS

M�

)2( RNS

10 km

)−1

. (1.1)

1.2 Proto-Neutron Star Evolution

The PNS deleptonizes by electron neutrino emission and cools by the emission of all
kind of neutrinos. With a diffusion argument the timescale for the cooling of the
PNS is estimated as

τE =
3R2

NS

π2cλ

E0
th

2E0
ν

≈ 10 s (1.2)

(Burrows 1984), and for the deleptonization or neutronization of the PNS one gets

τL =
3R2

NS

π2cλ

dYL

dYνe
≈ 3 s (1.3)

(Burrows 1990). Here λ is the initial mean free path of neutrinos in the PNS, RNS

the radius of the neutron star, E0
th and E0

ν the initial thermal energy of the neutron
star medium and neutrinos respectively, and the derivative dYL/dYνe accounts for the
refilling of electron neutrinos from the total lepton content of the PNS. As described
by Roberts and Reddy (2016), the evolution of the PNS following shock revival can
be divided into three subsequent phases:
After shock revival the PNS consists of an inner core of approximately 0.6 M�

of matter at nuclear density formed during the collapse, surrounded by a mantle
of approximately 1 M� of accreted material. Within around one second neutrinos
carry away energy and electron number from the mantle, causing it to shrink from
a radius around 100 km to a value close to the final radius of the cold neutron star
around 12 km. During this phase the neutrino emission from the PNS is dominated
by neutrinos from the contracting mantle and due to a positive temperature gradient
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1.2 Proto-Neutron Star Evolution

electron anti-neutrinos and heavy lepton neutrinos even diffuse inward from the hot
mantle into the comparatively cold core. Deleptonization also moves inward, but
does not yet reach the centre of the PNS.
After the mantle has settled onto the core, the neutrino emission from the PNS

is dominated by deleptonization moving inward through the PNS. Electron anti-
neutrinos and heavy lepton neutrinos still heat the inner core by inward diffusion,
while the deleptonization by electron neutrinos causes additional Joule heating (Bur-
rows and Lattimer 1986). Eventually this turns the temperature gradient negative
throughout the whole PNS.
Once the chemical potential of electron neutrinos is close to zero throughout the

PNS, the compact star continues to contract slowly due to radiating away thermal
energy. As the equilibrium electron fraction of nuclear matter decreases with the
falling temperature, the PNS still deleptonizes, however on a much slower rate than
before. Eventually the PNS becomes transparent for neutrinos, which defines the
transition from the PNS phase to the final neutron star, which will continue to cool
by neutrino emission for hundreds of years before photons begin to dominate the
long-time cooling.
However not only neutrinos can transport energy and lepton number through the

PNS but also hydrodynamic flows of matter. While most of the PNS is hydrostatic,
due to the spatial and temporal changes in entropy and lepton number gradients
there may be regions unstable to convection. Epstein (1979) argued that the mantle
is unstable against convection at early times due to the negative lepton number gradi-
ent. During the deleptonization and thermal cooling phases also negative entropy
gradients can drive convection in the PNS. Convective mass motions are typically
very efficient in transporting energy and lepton number and therefore play a crucial
role in the PNS evolution.
One crucial ingredient of relevance for the PNS evolution and the associated neut-

rino emission is the equation of state (EoS) at the extreme conditions in a PNS for
densities from far below to several times the nuclear saturation density, temperat-
ures up to more than 50−60MeV, and a wide range of proton-to-neutron ratios. The
EoS can be decisive for convective instability in the PNS (Roberts et al. 2012b).
Furthermore the neutrino opacities due to neutrino-matter interactions depend on
the composition of the PNS matter, the chemical potentials of the individual con-
stituents, and also on nucleon interactions, all of which are determined by the EoS
(c.f. Roberts and Reddy 2016 for a discussion of contributions to the neutrino opa-
cities relevant in the PNS evolution). In turn this makes the neutrino emission from
PNS cooling an intriguing probe of neutrino and nuclear physics at conditions inac-
cessible to laboratory experiments on earth. Indeed a signal of two dozen electron
anti-neutrinos from a stellar core collapse and subsequent PNS cooling event was
first (and until now only) detected in 1987 (Bionta et al. 1987, Hirata et al. 1987,
Alexeyev et al. 1988), in spatial and temporal correlation with optical observations
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Chapter 1 Introduction

of the associated supernova SN1987A, providing observational confirmation of the
theoretical picture of core collapse supernovae and PNS evolution.

1.3 Exploration of Proto-Neutron Star Evolution with
Simulations

Numerical simulations have been used to study the evolution of PNS for many
years, starting the year before SN1987A with the work of Burrows and Lattimer
(1986), who employed a grey diffusion scheme for the neutrino transport coupled
to quasi-hydrostatic evolution of spherical Tolman-Oppenheimer-Volkoff solutions,
later improved by including Ledoux-convection, i.e. convection driven by gradients
of entropy and/or lepton-number, via a mixing-length scheme (Burrows 1987), which
approximates convective transport of energy and lepton number by an effective one-
dimensional treatment using a diffusive description. Burrows (1987) recognized that
convective energy and lepton-number transport increases the neutrino luminosities
and thus might aid the neutrino-driven shock revival. Wilson and Mayle (1988),
using a flux-limited multi-group neutrino diffusion description, expanded this early
work on PNS convection, suggesting that salt-finger-like convective activity, driven
by different efficiencies of heat and lepton-number transport by neutrinos, can be
beneficial for shock revival. Among this early work one should also mention Suzuki
and Sato (1991), who also employed flux-limited multi-energy group diffusion to
treat the neutrino transport in PNS cooling models with the goal to compare signal
predictions with the SN1987A neutrino measurements.
Over the past 30 years since these early studies, a lot of labour has been invested to

extend the scope of explored physics and to improve the accuracy of the modelling.
This concerns updated and upgraded, more modern input physics on the one hand
and better numerical treatments on the other hand. Three lines of progress can be
mentioned in this context:

• Investigations of the influence of different models for the nuclear equation of
state of hot neutron-star matter. This also includes possible phase transitions
at supranuclear density.

• Improvements of the treatment of neutrino transport and the description of
neutrino-matter and neutrino-neutrino interactions.

• The advancement from spherically symmetric, thus one-dimensional, model-
ling, partly with the use of the mixing-length approximation to describe convec-
tion in the hot PNS, to direct hydrodynamical simulations in axial symmetry,
thus two dimensions, and most recently in three dimensions.
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The goal of such studies are better predictions of the neutrino signal that can be
expected in terrestrial detectors from a future supernova in our galaxy or repeated
efforts to use the measured neutrino events from SN1987A to constrain the nuclear,
neutrino and particle physics that plays a role at the extreme conditions in a new-
born neutron star.
Neutrino cooling models of nascent neutron stars suffer from our still incomplete

knowledge of the physics at supra-nuclear densities and the corresponding high-
temperature EoS at neutron-to-proton ratios that can reach far away from isospin
symmetry. Therefore considerable attention has been paid to exploring the influence
of a large variety of models for the EoS including theoretical descriptions of phase
transitions in the supra-nuclear medium. A first study of this kind was performed by
Keil and Janka (1995), who considered the influence of the formation of new hadronic
states, such as hyperons and ∆-resonances, on PNS evolution, the associated neutrino
signal, and the finite-temperature mass limit for black hole formation. Another study
of PNS evolution and the associated neutrino signal was performed by Sumiyoshi et
al. (1995), who explored the effect of the symmetry energy of nuclear matter in the
EoS using two versions of a relativistic mean-field EoS, of which one has an artificially
reduced symmetry energy. A later series of works (Pons et al. 1999, Pons et al. 2001b,
Pons et al. 2001a) investigated the effects of the possible appearance of hyperons,
kaons, or deconfined quarks on PNS cooling, associated neutrino signals, and the
evolution of metastable PNS configurations, which collapse to a black hole during
the cooling phase. Roberts et al. (2012b) utilized a mixing-length convection scheme
and two different EoS to investigate connections between the density dependence of
the nuclear symmetry energy and the convective activity in PNS. Recently Nakazato
et al. (2022) investigated the expected neutrino signal from a nearby core-collapse
supernova in a present detector (Super-Kamiokande) for four EoS employing an
quasi-hydrostatic evolution coupled to a multi-energy-group diffusion scheme for the
neutrino radiation.
Reliable predictions of the measurable neutrino signal from supernovae and neut-

ron star formation require a most accurate treatment of the neutrino transport and
neutrino interactions, which are subsumed in what is called neutrino opacity. While
the early works used diffusion descriptions for the neutrino transport, either energy
integrated (e.g. Burrows and Lattimer 1986, Burrows 1987, Keil and Janka 1995) or
improved by a multi-energy-groups description (e.g. Wilson and Mayle 1988, Suzuki
and Sato 1991), more recent simulations were performed with transport solvers that
directly integrate the Boltzmann transport equation (e.g. Mezzacappa and Bruenn
1993, Yamada et al. 1999). Alternatively, Rampp and Janka (2002) developed an
iterative scheme to solve the neutrino transport problem, the Vertex code, which
couples the Boltzmann moment equations for energy and momentum of the neut-
rino radiation with the Boltzmann equation to close this non-linear set of integro
partial-differential equations. The Vertex code has been applied for long-time PNS
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Chapter 1 Introduction

evolution simulations by Hüdepohl et al. (2010), Hüdepohl (2013), Bollig (2018), and
Mirizzi et al. (2016).
Parallel and connected to these works also the description of the neutrino opa-

cities has been gradually upgraded. Suzuki (1993) demonstrated the importance
of nucleon-nucleon bremsstrahlung, since it enhances the muon and tau neutrino
fluxes. Hüdepohl et al. (2010) found that nucleon-nucleon correlations altering the
kinematics of neutrino-matter interactions can shorten the evolution timescales of
PNS. Moreover the hierarchy of the mean energies between different neutrino spe-
cies is affected by the consequences of non-isoenergetic neutrino-nucleon scattering.
The importance of mean-field effects on the energy-momentum relation of nucleons
for neutrino-nucleon interactions via beta-processes was demonstrated by Martinez-
Pinedo et al. (2012) and Roberts et al. (2012a), who found that these effects reduce
neutrino luminosities and increase spectral differences between electron neutrinos
and anti-neutrinos.
Another important step was the transition from one dimensional simulations to

multi-dimensional modelling. This line of work was started by Keil et al. (1996)
with the first two-dimensional simulations by solving the hydrodynamic equations
for a direct treatment of convection in non-rotating PNS and later including rotation
(Janka et al. 2001), following the evolution for more than one second with a equi-
librium diffusion treatment for the neutrino transport. Buras et al. (2006) started
to upgrade this work by employing the iterative Boltzmann moment solver Vertex
for neutrino transport in this context. Recently Bollig et al. (2017) upgraded such
two-dimensional simulations by including, for the first time, muons in the EoS and
the description of neutrino-matter interactions. More recently Nagakura et al. (2021)
expanded two-dimensional investigations to a large mass spectrum of PNS and to
evolution times up to 4 s, although with less sophisticated treatment of neutrino
interactions and relatively coarse numerical resolution. Very recently the first rigor-
ous three-dimensional simulations of PNS formation became possible over a period
of nearly 2 s, although with an enormous investment of supercomputing resources
(Bollig et al. 2021).
However, in this thesis we retreat again to one-dimensional modelling including

a mixing-length description of PNS convection, since the presently available contin-
gents of supercomputing power impede calculations of large model sets by three-
dimensional or well-resolved two-dimensional simulations. Moreover, a comparison
of long-time two-dimensional simulations with one-dimensional PNS evolution cal-
culations including mixing-length treatment of convection has demonstrated good
agreement of the predicted neutrino emissions and thus lends support to the applic-
ation of the mixing-length approximation (Mirizzi et al. 2016).
The PNS evolution calculations discussed in this thesis were carried out with the

Prometheus hydrodynamics code in combination with the Vertex neutrino trans-
port module. The code includes new upgrades to the neutrino-nucleon interactions
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by virial corrections (Horowitz et al. 2017) as well as nucleon mean-field corrections
(Martinez-Pinedo et al. 2012) for the beta-processes. It also includes the effects of
muons in the EoS and neutrino-lepton interactions implemented by Bollig (2018).
The main goal of this thesis is the systematic study of PNS evolution and the

associated neutrino emission for different masses of the PNS with a sample of modern
finite-temperature EoS that represent state-of-the-art theoretical descriptions and
are compatible with all available experimental and and astrophysical constraints,
including recent measurements of gravitational waves from a merger event of two
neutron stars (GW170817, Abbott et al. 2017), for different masses of the PNS. The
neutrino signals obtained from our set of models are planned to be used for a detailed
comparison with the SN1987A neutrino data and as a start of a growing library of
self-consistently computed supernova neutrino signals for improved predictions of the
diffuse supernova neutrino background in dependence on the uncertain supra-nuclear
EoS.
In chapter 2 the fundamental equations for describing the evolution of PNS are

briefly presented, including a summary of their numerical implementation. In chapter
3 the basic properties of the employed sample of EoS models is described. In chapter
4 we report on the results of our set of PNS evolution simulations for the different
EoS and PNS masses. Finally chapter 5 concludes with a short summary of our main
findings and an outlook for future work.
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Chapter 2

Hydrodynamic and Radiation
Transport

2.1 Hydrodynamic

2.1.1 Euler Equations

To follow the core collapse of a massive star, the formation of the hot proto-neutron
star, and its subsequent cooling one has to solve the equations for the hydrodynamic
of stellar plasma and the equations for the radiation transport of neutrinos together.
For the case of negligible viscosity and non-relativistic velocity the hydrodynamic of
the stellar plasma is described by the well-known Euler equations. With the sum
over i for the three spatial directions implied they read in Cartesian coordinates (t,x)

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (2.1)

describing mass conservation,
∂(ρvj)

∂t
+
∂(viρvj + δijP )

∂xi
= QMj − ρ

∂Φ

∂xj
(2.2)

describing momentum conservation for each spatial direction j, and
∂(ρε)

∂t
+
∂(vi(ρε+ P ))

∂xi
= QE + viQMi − ρvi

∂Φ

∂xi
(2.3)

describing energy conservation. ρ denotes the mass density, vi a Cartesian component
of the velocity v, P the pressure, and ε = e+ 1

2v
2 the total energy density containing

internal energy e and kinetic energy. Rest mass density does not necessarily have to
be conserved due to possible nuclear reactions. Therefore we define the mass density
ρ = munB as a proxy for the conserved baryon number density nB multiplied with
the atomic mass unit mu = 1.66× 10−24 g. Φ denotes an external potential, QM

and QE sources or sinks of momentum and energy which can not be expressed as a
potential. In the case of spherical symmetry they reduce to

∂ρ

∂t
+

1

r2

∂
(
r2ρv

)
∂r

= 0, (2.4)
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∂(ρv)

∂t
+

1

r2

∂
(
r2ρv2

)
∂r

+
∂P

∂r
= QM − ρ

∂Φ

∂r
, (2.5)

∂(ρε)

∂t
+

1

r2

∂
(
r2(ρε+ P )v

)
∂r

= QE + vQM − ρv
∂Φ

∂r
(2.6)

in spherical coordinates (t, r). In our case QM and QE represent exchange of mo-
mentum and energy with the neutrino radiation. The potential Φ accounts for the
self-gravity of the collapsing star and is determined by the Poisson equation

∇2Φ = 4πGρ (2.7)

where G is the gravitational constant. For the spherical symmetric Newtonian case
the solution is given by

Φ(r) = −4π

∞∫
0

dr′ r′2
ρ

|r − r′|
. (2.8)

However this set of equations is not closed and therefore requires the pressure to be
given as a function of mass density, internal energy, and composition. This is called
the equation of state discussed in more detail in chapter 3. As this work is limited to
one dimensional models we limit the following discussion to the spherical symmetric
case.

2.1.2 Advection of Mass Fractions

Since nuclear reactions, neutrino reactions on nuclei, and advection can change the
composition of the stellar plasma and the different species contribute individually
to the thermodynamic variables and cross-sections for neutrino interactions an ad-
ditional equation

∂(ρXj)

∂t
+

1

r2

∂
(
r2vρXj

)
∂r

= QNj . (2.9)

for each species j must be solved to keep track of the chemical evolution. Xj de-
notes the mass fraction of species j and QNj the corresponding source term. Only
if the nuclear reactions happen on a much shorter timescale as the hydrodynamical
evolution (e.g. in the case of high density and temperature) nuclear statistical equi-
librium is established. Then the composition is given as a function of mass density,
temperature T , and charge fraction Yq = Ye+Yµ (the net number of charged leptons
per baryon assuming there is no net tauon population) and only the equations

∂(ρYe)

∂t
+

1

r2

∂
(
r2vρYe

)
∂r

= QNe, (2.10)

∂(ρYµ)

∂t
+

1

r2

∂
(
r2vρYµ

)
∂r

= QNµ (2.11)
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for net electron number Ye (the number of electrons less the number of positrons per
baryon) and net muon number Yµ have to be solved to track the chemical evolution.

2.1.3 Mixing-Length Convection

As one dimensional models can not reproduce the inherently multidimensional con-
vection naturally, we use a mixing-length scheme similar to the one by Wilson and
Mayle (1988) to account for the additional energy and lepton number transport in
convectively unstable regions of the proto-neutron star. In mixing length-schemes
the key assumption is that a fluid element in a convectively unstable region once
displaced out of its labile equilibrium travels a characteristic distance - the mixing-
length - before it mixes with the surrounding medium. This mixing-length lmix is
commonly expressed as multiple of the pressure scale height, hence

lmix = α · P/dP

dr
(2.12)

with α as a free parameter of the scheme. The Ledoux criterion identifying convect-
ively unstable regions is given by

CL = − ∂P

∂ρ

∣∣∣∣−1

s,Yl

·

(
∂P

∂s

∣∣∣∣
ρ,Yl

ds

dr
+
∂P

∂Yl

∣∣∣∣
ρ,s

dYl
dr

)
(2.13)

where positive values for the Ledoux criterion CL indicate regions unstable against
convection and Yl denotes the net lepton fraction, i.e. the number of leptons (elec-
trons, muons, neutrinos) minus the number of anti-leptons (positrons, anti-muons,
anti-neutrinos) per baryon. The Ledoux criterion can be recasted into the form
(Hüdepohl 2013)

CL =
dρ

dr
− 1

c2
s

dP

dr
(2.14)

so only derivatives with respect to the spatial coordinate and the speed of sound cs
calculated as

c2
s =

dP

dρ

∣∣∣∣
s

= Γ · P
ρ

(2.15)

are needed for evaluating the Ledoux criterion. Γ denotes the adiabatic index defined
as

Γ =
d logP

d log ρ

∣∣∣∣
s

, (2.16)

which is a quantity provided by the EoS. For positive values of the Ledoux criterion
the Brunt - Väisälä frequency

ωBV =

√
−g
ρ
CL (2.17)
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with g = −∂Φ/∂r denoting the gravitational acceleration gives a linearised growth
rate for convective fluid elements an hence a measure for the strength of convection.
Energy conservation implies that a convectively unstable fluid element will attain a
velocity

vmix =

√
2g
l2mixCL

ρ
. (2.18)

Hence the additional energy flux and lepton fluxes are

Fε = −ρvmixlmix

(
dε

dr
+ P

d(1/ρ)

dr

)
, (2.19)

Fe,µ = −ρvmixlmix
dYe,µ

dr
. (2.20)

These fluxes enter the divergence term of the energy equation (2.6) and the lepton
equations (2.10), (2.11) respectively. If nuclear statistical equilibrium does not apply,
an equation analogue to (2.20) applies for every nuclear species. In regions of high
density where neutrinos are effectively coupled to the medium, neutrino contribu-
tions to pressure, energy density, entropy and lepton fraction have to be included in
evaluating the Ledoux criterion and convective fluxes.

2.2 Radiation Transport

The neutrinos on the other hand are trapped in the very dense interior of the proto-
neutron star and can only slowly diffuse outward but decouple once they reach less
dense regions. Therefore we have to solve neutrino transport for the diffusive trapping
regime at high density, the free streaming in the thin outer layers of the star, and
the intermediate regions. Approximating neutrinos to have vanishing rest mass the
Boltzmann equation describing the transport problem reads

1

c

∂fν
∂t

+ n∇fν = Bν (2.21)

where c denotes the speed of light, fν the distribution function for the neutrinos
of species ν, n the direction of propagation, and Bν a source term accounting for
absorption, emission and scattering. An equation of this type applies to each of the
neutrino species ν ∈ {νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ}. In the following we omit the neutrino
species index ν. It is customary to use the specific intensity

I(t, r, ε,n) =
( ε
hc

)3
cf (2.22)

so that I(t, r, ε,n) dε rn/|r| dΩ dAdt is the energy transported through the normal
surface dA at r into the solid angle dΩ around the direction n by neutrinos of
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2.2 Radiation Transport

energy [ε, ε+ dε] in the time [t, t+ dt]. With S(t, r, ε,n) = (ε/hc)3cB the Boltzmann
equation reads

1

c

∂I
∂t

+ n∇I = S (2.23)

or in spherical symmetry

1

c

∂I
∂t

+ µ
∂I
∂r

+
1− µ2

r

∂I
∂µ

= S (2.24)

where µ = n · r/|r| denotes the cosine of the angle between the radial direction
and the direction of propagation. As above we limit the following discussion to the
spherical symmetric case.
Because the source term depends on the intensity and integrals over the intens-

ity (e.g. due to inelastic scattering) this is a four dimensional integro-differential
equation. To tame the dimensionality of this problem it is beneficial to use angular
moments, where the nth moment is defined as

I(n) =
1

4π

+1∫
−1

dµµnI (2.25)

and hence in contrast to the specific intensity the angular moments do not depend
on the propagation angle cosine. For the first four moments the labels J = I(0),
H = I(1), K = I(2), and L = I(3) are customary. The corresponding integrals of the
Boltzmann equation (2.24) yield the moment equations

1

c

∂J

∂t
+

1

r2

∂
(
r2H

)
∂r

= S(0), (2.26)

1

c

∂H

∂t
+

1

r2

∂
(
r2K

)
∂r

+
K − J
r

= S(1) (2.27)

with the source terms

S(0) =
1

4π

+1∫
−1

dµS, (2.28)

S(1) =
1

4π

+1∫
−1

dµµS. (2.29)

These source terms couple the neutrino radiation to the hydrodynamic of the stellar
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plasma since

QE = −4π

∞∫
0

dε
∑
ν

S(0)
ν , (2.30)

QM = −4π

c

∞∫
0

dε
∑
ν

S(1)
ν , (2.31)

QNl = −4πmu

∞∫
0

dε
S

(0)
νl − S

(0)
ν̄l

ε
(2.32)

hold. Note that in the first two of the equations above the sum runs over all six
neutrino species, whereas the third equation holds for each lepton flavour l ∈ {e, µ}
individually (assuming that there is no net tauon population).
The source terms account for neutrino - neutrino reactions and neutrino - matter

reactions. Table 2.1 lists the reactions that enter the calculation of the source term of
the Boltzmann equation. The interaction rates for beta reactions and scattering on
nucleons account for modifications due to nucleon phase space blocking and nucleon
nucleon interactions (Burrows and Sawyer 1998), weak magnetism (Horowitz 2002),
quenching of the axial-vector coupling (Carter and Prakash 2002), and reduction
of the effective nucleon mass (Reddy et al. 1999). The interaction potentials and
effective masses are supplied by the EoS tables discussed in the following chapter.
In using the Boltzmann equation as (2.24) we have assumed an inertial reference

frame. However as pointed out by Rampp (2000) it can be beneficial to measure
physical quantities (e.g. intensity, source terms) in a frame comoving with the stel-
lar plasma. Furthermore one may consider general relativistic effects. We include
gravitational time dilation and red shift but neglect the distinction between proper
radius and coordinate radius. In this case the Boltzmann equation for the spherical
symmetric case including terms to O(β) becomes (Rampp 2000, Rampp and Janka
2002) (

1

c

∂

∂t
+ β

∂

∂r

)
I + eΦ

(
µ
∂

∂r
+

1− µ2

r

∂

∂µ

)
I

+
∂

∂µ

((
1− µ2

)(
µ

(
β

r
− ∂β

∂r

)
− ∂eΦ

∂r

)
I
)

− ∂

∂ε

(
ε

((
1− µ2

)β
r

+ µ2∂β

∂r
+ µ

∂eΦ

∂r

)
I
)

+

((
3− µ2

)β
r

+
(
1 + µ2

)∂β
∂r

+ 2µ
∂eΦ

∂r

)
I = eΦS (2.33)
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2.2 Radiation Transport

Table 2.1: Neutrino reactions considered in calculating the source term for the
Boltzmann equation in Vertex. Here (A,Z) denotes a nucleus with mass num-
ber A and charge Z, N a nucleon, ν without subscript a neutrino or anti-neutrino of
any flavour, νx a neutrino or anti-neutrino of µ or τ flavour, and a prime indicates
energy exchange between the reaction partners, i.e. inelastic scattering.

Interactions References
Beta - Processes
νe + n ⇀↽ e− + p Bruenn (1985), Mezzacappa and Bruenn

(1993), Burrows and Sawyer (1999)
ν̄e + p ⇀↽ e+ + n ibid.

νe + (A,Z) ⇀↽ e− + (A,Z − 1) Bruenn (1985), Mezzacappa and Bruenn
(1993), Langanke et al. (2003)

νµ + n ⇀↽ µ− + p Lohs (2015), Burrows and Sawyer (1999),
Bollig (2018)

ν̄µ + p ⇀↽ µ+ + n ibid.
Leptonic Absorption
νµ + e− ⇀↽ νe + µ− Lohs (2015), Bollig (2018)
ν̄µ + e+ ⇀↽ ν̄e + µ+ ibid.
ν̄e + e− ⇀↽ ν̄µ + µ− ibid.
νe + e+ ⇀↽ νµ + µ+ ibid.

Muon Decay
µ− ⇀↽ e− + ν̄e + νµ ibid.
µ+ ⇀↽ e+ + νe + ν̄µ ibid.

Scattering
ν + (A,Z) ⇀↽ ν + (A,Z) Horowitz (1997), Bruenn and Mezzacappa

(1997)
ν + (A,Z) ⇀↽ ν ′ + (A,Z)′ Langanke et al. (2008)

ν +N ⇀↽ ν ′ +N ′ Bruenn (1985), Mezzacappa and Bruenn
(1993), Burrows and Sawyer (1998)

ν + e± ⇀↽ ν ′ + e±
′ Mezzacappa and Bruenn (1993), Cherno-

horsky (1994)
ν + µ± ⇀↽ ν ′ + µ±

′ Lohs (2015), Mezzacappa and Bruenn
(1993), Chernohorsky (1994), Bollig (2018)

Buras et al. (2003)
νx + {νe, ν̄e}⇀↽ νx

′ + {νe′, ν̄ ′e} Buras et al. (2003)
Pair Production
ν + ν̄ ⇀↽ e− + e+ Bruenn (1985), Pons et al. (1998)

νµ,τ + ν̄µ,τ ⇀↽ νe + ν̄e Buras et al. (2003)
Nucleon - Nucleon Bremsstrahlung

ν + ν̄ +N +N ⇀↽ N +N Hannestad and Raffelt (1998)
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and the moment equations read(
1

c

∂

∂t
+ β

∂

∂r

)
J +

1

r2

∂

∂r

(
r2HeΦ

)
− ∂

∂ε

(
ε

(
β

r
(J −K) +

∂β

∂r
K +

∂eΦ

∂r
H

))
+
β

r
(3J −K) +

∂β

∂r
(J +K) +

∂eΦ

∂r
H = eΦS(0) (2.34)

and (
1

c

∂

∂t
+ β

∂

∂r

)
H +

1

r2

∂

∂r

(
r2KeΦ

)
+ eΦK − J

r

− ∂

∂ε

(
ε

(
β

r
(H − L) +

∂β

∂r
L+

∂eΦ

∂r
K

))
+ 2

(
∂β

∂r
+
β

r

)
H +

∂eΦ

∂r
J = eΦS(1) (2.35)

where β = v/c denotes the fluid velocity in units of the speed of light and eΦ the
lapse function. Here all physical quantities are measured in the frame comoving with
the stellar plasma, but the coordinates (r, t) are Eulerian.
While in the system of equations (2.26), (2.27) (or (2.34), (2.35)) the direction

dependence is removed and hence the dimensionality reduced, the system is not
closed. Of course it is in principle possible to calculate higher order moments and
the corresponding moment equations, but every moment equation always depends
on the next (or next two) higher moment. A common way to solve this problem is to
introduce the Eddington factors fK , fL so that the higher moments can be expressed
as a function of the zeroth moment:

fK =
K

J
, (2.36)

fL =
L

J
. (2.37)

These factors can, for example, be computed from an approximate solution of the
Boltzmann equation. This requires the numerical integration of equation (2.33),
solving it iteratively together with equations (2.34), (2.35), which provide the input
values of J and H needed to express the interaction integral on the right hand side
of equation (2.33). This is called variable Eddington factor technique for solving the
Boltzmann transport problem.
For comparison of models among each other and with observations it is often
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beneficial to use the luminosity

L = 16π2r2

∞∫
0

dεH. (2.38)

Defining the normalized neutrino energy spectrum

f(ε) =

∫ +1
−1 dµ I∫∞

0 dε
∫ +1
−1 dµ I

(2.39)

we can write the energy moments of the neutrino radiation as

〈εn〉 =

∞∫
0

dε εnf(ε). (2.40)

2.3 Numerical Implementation

For our simulations we use Prometheus-Vertex. Prometheus is a time-explicit
implementation of the Piecewise Parabolic Method of Colella and Woodward (1984)
developed by Fryxell et al. (1989). We include the improvements of Keil (1997)
allowing for the radial grid to contract during the collapse phase and Kifonidis et al.
(2003) who implemented the consistent multi fluid advection scheme of Plewa and
Müller (1999) reducing numerical diffusion of nuclear species.
Motivated by a comparison of the Newtonian Prometheus with fully relativistic

hydrodynamic codes Marek et al. (2006) developed and tested several effective gravit-
ational potentials to capture relativistic effects with Newtonian hydrodynamics. We
utilize Case A from this work, hence instead of using equation (2.8) the gravitational
potential is computed according to

Φ(r) = −4πG

∞∫
r

dr′

r′2

(
mTOV

4π
+ r′3

P + Pν
c2

)
1

Γ2

(
1 +

ρε+ P

ρc2

)
(2.41)

with a modified Tolman-Oppenheimer-Volkoff mass

mTOV(r) =

r∫
0

4πr′2 dr′ Γ ·
(
ρ+

ρε+ Eν + vFν/Γ

c2

)
(2.42)

and the metric function

Γ =

√
1 +

v2

c2
− 2G

c2

mTOV

r
(2.43)
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Chapter 2 Hydrodynamic and Radiation Transport

where c denotes the speed of light, v the fluid velocity, and Eν , Fν , Pν energy density,
energy flux and radiation pressure of the neutrinos.
We follow the implementation of the mixing-length scheme by Hüdepohl (2013) to

account for convection in the proto-neutron star, but generalized in one important
aspect: In the current version the mixing-length scheme accounts for neutrino con-
tributions in the high density regime by adding contributions from an ideal Fermi
gas of neutrinos to energy, pressure, lepton number, and entropy. The corresponding
flux of lepton number is added to the electron fraction flux. Thereby an explicit
coupling of the mixing-length scheme in the hydrodynamic part of the code to the
neutrino solver is avoided.
For the neutrino radiation transport we use Vertex by Rampp and Janka (2002),

an time-implicit Boltzmann solver employing a variable Eddington factor method
along the lines described in section 2.2. We use the improvements by Bollig (2018)
to account for non vanishing net muon population and the corresponding neutrino-
muon reactions. As pointed out by Keil (1997) the time step for the implicit solution
of the neutrino transport is computationally expensive. Contrary the time step for
the explicit solution of the hydrodynamic is comparatively computationally cheap
but limited by the Courant-Friedrichs-Lewy condition. Therefore it is advantageous
to split up a transport time step ∆tT into several smaller hydro time steps ∆tH in
a manner that ∆tT = NH∆tH holds for an integer NH and ∆tT is chosen so that
radiation moments and hydrodynamic quantities do not change by more than a few
percent. The complete problem is then solved with an operator split tactic.
Following the description in Rampp (2000) we give a rough outline of the update

procedure starting from a state
(
ρn, vn, en, Y n

e , Y
n
µ

)
at time tn. At first the advec-

tion (i.e. equations (2.4)-(2.6), (2.10), (2.11) with the right hand side set to zero) is
solved for a time step ∆tH. This provisional result is used to calculate the gravit-
ational potential which is then used to add the gravitational sources to energy and
momentum. These two steps are repeated NH times. The resulting intermediate
state

(
ρn+1, v∗, e∗, Y ∗e , Y

∗
µ

)
contains the updates due to advection and gravity over

a time step ∆tT. Together with initial guesses for the radiation moments J,H (e.g.
from the previous time step) this state is used to calculate the source term S for
the Boltzmann equation (2.33). With the right hand side of the Boltzmann equation
given rather than being an integral of the intensity, an approximate solution can be
computed. This solution provides the Eddington factors closing the moment equa-
tions (2.34), (2.35). The solution of the moment equations yields new values for J,H
which are used for an improved guess of the right hand side of the Boltzmann equa-
tion. In this way the Boltzmann equation and the moment equations are iterated
to convergence. Finally the source terms for energy, momentum and lepton number
are mapped back to the hydrodynamic grid and used to apply the neutrino effects to
the intermediate state giving the fully updated state

(
ρn+1, vn+1, en+1, Y n+1

e , Y n+1
µ

)
at time tn+1 = tn + ∆tT.
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2.3 Numerical Implementation

This implementation has been tested and compared against other codes used
to simulate core collapse supernovae (Liebendörfer et al. 2005, Müller et al. 2010,
O’Connor et al. 2018).
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Chapter 3

Equation of State

As already mentioned before, the system of the Euler equations (2.4)-(2.6) is not
closed and solutions therefore need an additional equation providing the gas pres-
sure as a function of the thermodynamic state (i.e. mass density, energy density, and
composition or charge fraction). Furthermore the mixing-length convection scheme
also requires the pressure and entropy as functions of the thermodynamic state. For
the solution of the neutrino radiation transport additionally the chemical potentials
of nucleons, electrons, and muons, as well as the effective masses and interaction
potentials of nucleons at high density are needed. Therefore we need a so-called
equation of state (EoS), describing the thermodynamic conditions of the PNS me-
dium and providing the necessary quantities.

3.1 Equation of State below Nuclear Density

If the mass density is sufficiently smaller than the nuclear density, the stellar plasma
can be described as a mix of ideal Boltzmann gases of nuclei and nucleons, Fermi
gases of electrons, muons and their respective anti-particles, and a photon gas, taking
into account Coulomb lattice corrections. For this regime we employ pre-calculated
tables for the contributions of electrons, positrons, and photons by Janka (1995)
and for the contributions of muons by Bollig (2018), combined with routines for the
Boltzmann gas of nuclei and nucleons, whose composition is either determined by
nuclear statistical equilibrium or a simplified treatment of nuclear burning. Since
the tables use mass density, charge fraction, and temperature instead of internal
energy density as primary variables defining a thermodynamic state, an inversion of
the energy temperature relation of the EoS along constant mass density and charge
fraction is necessary. The separate contributions are then evaluated for the thermo-
dynamic state defined by mass density, charge fraction, and temperature and added
up. A detailed description of this procedure is given by Bollig (2018).
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Chapter 3 Equation of State

3.2 Equation of State at and above Nuclear Density

However as the mass density and with it the baryon number density approaches
nuclear values interactions between the constituents become relevant and physical
models more complex than a mix of ideal gases are needed. Therefore we have to
use tabulated results from nuclear physics calculations for the baryonic contributions
in the high density regime together with the tabulated contributions for electrons,
muons, and photons. The determination of the temperature corresponding to a given
internal energy density and the evaluation of the equation of state is done analogue
to the low-density regime.
Since both theoretical ab initio calculations of strongly interacting many-body

systems and laboratory measurements of asymmetric nuclear matter at and above
nuclear density are restricted by severe difficulties, the equation of state for the
conditions in proto-neutron stars (spanning several orders of magnitude in density
up to more than 1× 1015 g/cm3, temperatures from close to zero up to approximately
100 MeV and charge fractions from one to close to zero) is calculated using effective
descriptions. Therefore we employ several different EoS tables for the high density
contribution of baryons calculated with different assumptions and descriptions. A
common way to characterize a nuclear EoS is to expand the binding energy per
baryon E at vanishing temperature in a Taylor series (see for example Oertel et al.
2017)

E(x, δ) = −E0 +
1

2
Kx2 + δ2

(
J + Lx+

1

2
Ksx

2

)
+O

(
x3
)

(3.1)

where x = 1/3(n − n0)/n0 is the deviation of the baryon number density n from
saturation density n0 defined by the condition

dE

dn

∣∣∣∣
n=n0,δ=0

= 0, (3.2)

δ = (nn−np)/n the isospin-asymmetry (related to the charge fraction by δ = 1−2Yq),
E0 the binding energy of symmetric matter, K the incompressibility, J the symmetry
energy, L the slope of the symmetry energy, and Ks the incompressibility of the
symmetry energy at saturation density. Table 3.1 gives an overview of the values for
these quantities for the EoS used in this work.
Figure 3.1 shows the adiabatic index as function of density and charge fraction

and the temperature fixed by the condition of constant entropy for the different EoS
in the transition region to saturation density (approximately 2.7× 1014 g/cm3). The
gRDF EoS shows a peculiar rise in the adiabatic index below saturation density.
This may be an artefact of the treatment of the phase transition.
In the following paragraphs we give a short description of the EoS used in this

work following the review by Oertel et al. (2017) and the specific works cited in the
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Figure 3.1: Plots of the adiabatic index as function of density and charge fraction at
constant entropy of 1.5 kB per baryon for the different EoS. The lower right panel
shows Γ = 2 isarithms for the different EoS.
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Table 3.1: Nuclear properties at saturation density as defined by equation (3.1),
radius of a cold 1.4 solar mass neutron star, and maximum gravitational mass for
different EoS. Data for DD2, LS220, SFHo, SFHx from Fischer et al. (2014) and
CompOSE, for gRDF from Typel (2018) and CompOSE ( https://compose.obs
pm.fr) entry for GRDF2_DD2. Note that the GRDF2_DD2 differs from the gRDF
used in this work, but as both use the same parametrization for nuclear interactions
the differences should be small.

EoS n0 E0 K J L Ks R1.4 Mmax

DD2 0.1491 16.02 243 31.67 55.04 -93.2 13.22 2.42
gRDF 0.149 16.02 243 31.67 55.04 -93.2 13.19 2.42
LS220 0.1550 16.00 220 28.61 73.82 -24.0 12.67 2.05
SFHo 0.1583 16.19 245 31.57 47.10 -205 11.89 2.06
SFHx 0.1602 16.16 238 28.67 23.18 -40.0 11.99 2.13

1/fm3 MeV MeV MeV MeV MeV km M�

paragraphs. In all cases matter is assumed to be electrically neutral, in thermal,
chemical, and mechanical equilibrium, but not necessarily in weak beta equilibrium.

LS220 The EoS from Lattimer and Swesty (1991) uses the Single Nucleus Ap-
proximation to describe non-uniform nuclear matter, i.e. below the transition to
homogeneous nuclear matter the chemical composition is represented by neutrons,
protons, alpha particles, electrons and positrons, photons, and a single species of
heavy nuclei with a mean nuclear mass A and charge Z representing the true di-
versity of heavy nuclei. The latter is known as the single nucleus approximation. At
densities below nuclear values the heavy nuclei are treated as a body centred cubic
ion lattice embedded in a less dense medium of the other constituents mentioned
above with interactions between nucleons, alpha particles and heavy ions treated
by an excluded volume formalism. The photon, electron, and positron contributions
are treated independently from the baryonic part as non-interacting ultra-relativistic
Bose and Fermi gases, respectively. Alpha particles are treated as an ideal Boltzmann
gas of hard shells of fixed volume contributing to the excluded volume. The heavy
nuclei are described by a compressible liquid drop model with Coulomb term and
surface term depending on the filling factor, i.e. the fraction of volume occupied by
nuclei, to describe the formation of non-spherical nuclei and bubble phases ("nuclear
pasta"). Nucleons are treated as non-relativistic fermions. The nucleon interac-
tions are included as a momentum independent potential model: A density and
charge fraction dependent term with free parameters adds to the bulk energy of
nucleons. The free parameters are determined by the choice of saturation density,
binding energy, incompressibility, and symmetry energy. This approach reproduces
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3.2 Equation of State at and above Nuclear Density

the thermodynamic properties of bulk nuclear matter calculated with Skyrme-type
interactions. The same approach is used for the bulk contributions of nucleons in
nuclei. A Maxwell construction describes the transition to homogeneous nuclear
matter.

DD2 The DD2 EoS from Typel et al. (2010) is based on the work of Hempel and
Schaffner-Bielich (2010) which describes non-uniform matter as a mixture of neut-
rons, protons, light clusters (i.e. deuterons, tritons, 3-helions, and alpha particles),
photons, electrons and positrons, and heavy nuclei in nuclear statistical equilibrium.
Electrons and positrons are treated as a uniformly distributed non-interacting Fermi
gas, photons as ultra-relativistic Bose gas. In contrast to the single nucleus ap-
proximation in combination with a liquid drop model used for the LS220, several
thousand species of nuclei with tabulated masses are considered. The heavy nuclei
are treated as a classical Boltzmann gas. Nuclei and unbound nucleons contribute to
the excluded volume like hard spheres with volume 1/n0 per baryon, where nucleons
and nuclei reduce the volume available to nuclei but only nuclei are considered for
the volume excluded for nucleons, as the nucleon-nucleon interactions are treated
with a relativistic mean field (RMF) model. Coulomb contributions are calculated
assuming spherical Wigner - Seitz cells for every nucleus. Excited states of nuclei at
finite temperature are accounted for by an internal partition function for the nuclei.
Unbound nucleons are computed as relativistic Fermi gas within a relativistic mean
field approach, where nuclear interactions are represented by coupling to a meson
field with the nucleon and meson masses as well as the coupling strengths as free
parameters. Here the coupling strengths are not constants but functions of the ba-
ryon density. These parameters are set by a fit to measurable properties of finite
nuclei. A Maxwell construction describes the transition to homogeneous nuclear
matter.

SFHo, SFHx The EoS from Steiner et al. (2013) is based on the work of Hempel
and Schaffner-Bielich (2010) as well, therefore many aspects of the model are the
same as for the DD2 described above. However the key distinction of these EoS
is that the free parameters of the RMF model used for the unbound nucleons are
determined not only by a fit to laboratory measurements of nuclear properties but
also observed neutron star masses and radii. The SFHo fits the mass-radius relation
of Steiner et al. (2010), whereas the SFHx attempts to minimize the radius of low
mass neutron stars.

gRDF The EoS gRDF in our work is a rather recent offspring of the GRDF2(DD2)
from Typel (2018) with a detailed description of some model aspects in Pais and
Typel (2017). In contrast to the GRDF2(DD2) (which is also used for table 3.1 and
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figure 3.2) the gRDF EoS used in this work was calculated without muons and uses
a Maxwell construction for the phase transition to homogeneous nuclear matter.
The general relativistic density functional (gRDF) used for this EoS is an extension
of the density dependent RMF model used for example for the EoS DD2, SFHo,
and SFHx. The model consist of neutrons, protons, two-nucleon correlations as
quasi-particles, light clusters, photons, electrons and positrons, and heavy nuclei.
As usual electrons, positrons, and photons are treated as non-interacting Fermi and
Bose gases. The heavy nuclei are treated as classical Boltzmann gases. Unbound
nucleons, the quasi-particle two-nucleon states, and light clusters are treated as
relativistic Fermi or Boson gases. Different to the RMF approach all nucleons (in-
cluding nucleons bound in nuclei) couple to the meson field, however the coupling is
scaled according to the nuclei surface for the heavy nuclei. Furthermore all particles
are assumed to be point-like, hence there is no excluded volume mechanism. Instead
a density and temperature dependent shift of the effective masses is applied facil-
itating dissolution of nuclei at saturation density. For the nucleon-meson coupling
the same parameter set as for the DD2 is used. Coulomb effects are calculated in
Wigner - Seitz approximation.

3.3 Slope of Symmetry Energy and Ledoux Convection

Roberts et al. (2012b) pointed out that in particular the slope of the symmetry
energy is an interesting parameter for PNS models including convection. Recalling
the Ledoux criterion (2.13) and noting that both

∂P

∂ρ

∣∣∣∣
s,Yl

,
∂P

∂s

∣∣∣∣
ρ,Yl

are always positive, for given entropy and electron fraction gradients the sign and
magnitude of

∂P

∂Yl

∣∣∣∣
ρ,s

/
∂P

∂s

∣∣∣∣
ρ,Yl

are decisive for convective stability. For negligible neutrino contributions (Pν �
P, Yq ≈ Yl) and negligible temperature the lepton fraction derivative is approximated
by (Roberts et al. 2012b)

∂P

∂Yl

∣∣∣∣
n

≈ h̄c

3

(
3π2
)1/3

n4/3Y 1/3
q − 4n2

3n0
(L+Ksx)δ (3.3)

where the first term on the right hand side is the charge fraction derivative of the
pressure of an ultra-relativistic complete-degenerate electron gas and the second term

26



3.4 Constraints on the Equation of State

is derived from equation (3.1)

∂Pnuc

∂Yq

∣∣∣∣
n

=
∂

∂Yq

∣∣∣∣
n

(
n2∂E

∂n

)
= −4n2

3n0
(L+Ksx)δ, (3.4)

establishing a connection between the slope of symmetry energy and the Ledoux
criterion. Hence for a negative lepton fraction gradient larger values of the dens-
ity derivative of the symmetry energy act stabilizing against convection. However,
equation (3.3) only holds in limited vicinity of the nuclear saturation density, since
we only included terms to second order in density in the expansion of the symmetry
energy.

3.4 Constraints on the Equation of State

While the physics for the equation of state well below saturation density is mostly
understood, the nature of matter at higher densities is still uncertain. However
there are some constraints from both laboratory measurements and astronomical
observations. Measurements of nuclear masses and charge radii limits possible values
for the saturation density and binding energy to (0.16± 0.01) fm−3 and (16± 1) MeV
respectively (see for example Fiorella and Fantina (2018) and references therein).
The nuclear incompressibility can be constrained by measurements of giant monopole
resonances of nuclei, but is complicated by dependencies to other nuclear parameters
in the evaluation of the measurements (see Oertel et al. 2017 for a short discussion
of the problem). Values in the literature range from (240± 20) MeV (Shlomo et al.
2006) to 250 MeV to 315 MeV (Stone et al. 2014). The symmetry energy and its slope
can be constrained by a variety of measurements and theoretical calculations. The
combined analysis of Oertel et al. (2017) yields (31.7± 3.2) MeV for the symmetry
energy and (58.7± 28.1) MeV for the slope. While the nuclear parameters of the
EoS used in this work (table 3.1) are generally consistent with these constraints,
they are in tension with the high values for the incompressibility of Stone et al.
(2014). Also the SFHx EoS has a very low slope of symmetry energy compared with
these constraints.
Another approach to constrain the EoS for neutron stars is the comparison of

model calculations with observed neutron stars. A spherical and cold neutron star
may be described by the well known Tolman - Oppenheimer - Volkoff equation and
the EoS in the zero temperature limit with the composition determined by beta
equilibrium. Under these assumptions it is possible to calculate not only the maximal
mass of a neutron star (the famous Tolman - Oppenheimer - Volkoff limit), but also a
relation between the neutron star mass and its radius. Figure 3.2 shows these mass-
radius relations for the EoS used in this work together with the neutron star mass
inferred from observations of the neutron star - white dwarf binary PSR J0348+0432,
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with (2.04± 0.04) M� (Antoniadis et al. 2013) one of the most precisely measured
neutron star masses above 2 M�, and the mass - radius - relation of Steiner et al.
(2010) extracted from observations of x-ray binaries. However the measurement of
neutron star radii is complicated, and the inferred values in the literature differ
(see for example figure 7 in Oertel et al. (2017) showing radius estimations for the
canonical 1.4 M� neutron star ranging from 8 km to 16 km). The figure also shows
two independent evaluations of x-ray observations of PSR J0740+6620 yielding a
neutron star radius from 11.96 km to 14.26 km (Miller et al. 2019) or 11.52 km to
13.85 km (Riley et al. 2019). We also show limits derived from observations of the
binary neutron star merger GW170817 (Bauswein et al. 2017, Abbott et al. 2018).
Recently measurements of even heavier neutron stars are reported. Romani et al.
(2021) report PSR J1810+1744 with (2.13± 0.04) M�, and Cromartie et al. (2020)
PSR J0740+6620 with (2.14± 0.10) M�.
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Figure 3.2: Mass-radius relation for cold neutron stars for the different EoS used
in this work. Data for the different EoS taken from their respective entry in the
CompOSE database. Note that the gRDF in this plot is the PT(GRDF2_DD2)
which differs from the gRDF used for the simulations. Horizontal colour bands show
the one sigma range for neutron star masses of pulsars J0348+0432 (Antoniadis et al.
2013), J0740+6620 (Cromartie et al. 2020), and J1810+1744 (Romani et al. 2021).
The shaded region shows the one sigma range of a mass-radius relation derived
from X-ray observations (Table 8 in Steiner et al. 2010) used for construction of the
SFHo EoS. The black arrow shows the limit for the radius of a 1.6 M� neutron star
derived from observations of neutron star merger GW170817 (Bauswein et al. 2017).
Furthermore we show the combined limits on mass and radius from the neutron star
merger GW170817 (Abbott et al. 2018) and two independent evaluations of x-ray
observations of PSR J0030+0451 (Riley et al. 2019, Miller et al. 2019).
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Chapter 4

Simulations

4.1 Model Set-up

As progenitors we use four different stellar models advanced to the onset of core
collapse, namely the s18.6 and s27.0 models from Woosley et al. (2002), the s20.0
model from Woosley and Heger (2007), and the s18.8 model from Sukhbold et al.
(2018). Figure 4.1 shows profiles of the progenitors at the start of the simulation.
Each of these progenitors is advanced through core collapse into the proto-neutron

star phase using the five different choices for the EoS listed in chapter 3. Since
our one dimensional models do not in general feature successful neutrino driven
explosion we initiate them using the recipe of Hüdepohl (2013). Hence after core
bounce and accretion we scale down the mass density outside of the shock starting
at usually 500 km by a factor of order ten, causing a drop in accretion which allows
the shock to expand. As this leads to a nearly complete stop of accretion onto
the PNS within some milliseconds, choosing the time for initiating the explosion
allows us to determine the mass of the neutron star. For the s18.8 models this is
done at the time of bounce, for the s18.6 models 400 ms post bounce, for the s20.0
models 500 ms post bounce, and for the s27.0 models 550 ms post bounce in order
to produce models with different neutron star masses. The models are labelled with
their progenitor (s18.6, s18.8, s20.0, s27.0) followed by a two letter code indicating
the applied high density EoS (DD for DD2, GR for gRDF, LS for LS220, SO for
SFHo, SX for SFHx). We define the exact moment of bounce as the time when the
entropy per baryon inside the newly formed shock reaches 3.2 kB for the first time.
For the evolution following core bounce we use a time coordinate tpb relative to the
moment of bounce tb as defined above, hence tpb = t− tb. Following the procedure
of Bollig 2018 we simulate the collapse phase with electron neutrino transport only,
switching to the full six species when the central density reaches 1.4× 1014 g/cm3.
Furthermore muons are not included before the core bounce, to avoid complications
in disentangling the pressure during the phase transition to nuclear matter. In some
exceptional cases the switch to including muons has to be delayed beyond the the
moment of core bounce as defined above by some additional 5 ms (s27.0LS) or 10 ms
(s18.6GR, s18.8GR, s27.0GR).
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Figure 4.1: Density, pressure, entropy per baryon, and electron fraction as function
of the enclosed baryonic mass of the progenitors at the start of our simulations.
The entropy profiles show the models with the DD2 EoS. Models with different
EoS might differ slightly, since the initialization of the models uses an inversion of
the EoS for the pressure given by the progenitors (see Hüdepohl (2013) for a short
discussion of the differences between initialization using temperature or pressure as
third thermodynamic variable).
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In table 4.1 we give an overview over our model set.

4.2 Different Equations of State

In this section we focus on the influence of the applied EoS on the general develop-
ment of the models. Therefore we limit the discussion to models from one progenitor
(s18.6) and explosion time (tpb = 400 ms), which result in a gravitational neutron
star mass of approximately 1.5 M� at the end of our simulations and discuss snap-
shots of the models representative for the different evolution stages.

4.2.1 Core Collapse and Bounce

In table 4.2 we give an overview over the duration of the collapse till core bounce,
radius of the newly formed shock and the mass enclosed by the shock at the time of
core bounce. We see that the collapse duration, shock radius and enclosed mass at
bounce mainly depend on the progenitor and not on the EoS. As already pointed out
by Hüdepohl (2013) this is expected, since the collapse phase is mainly determined by
the progenitor structure and the well constrained physics below saturation density.
However the models with the gRDF EoS show noticeable deviations, especially in
the shock radius. This might be caused by the early rise of the adiabatic index of
the gRDF EoS.
In figure 4.2 we show profiles of density, temperature, electron fraction, and entropy

per baryon at the moment of core bounce. We can see that the model with the gRDF
EoS indeed bounces at lower density then all other models and also shows an entropy
profile clearly differing from the other models. Temperature profiles for the models
with DD2, SFHo, and SFHx EoS are rather similar. While the model with the LS220
EoS reaches about the same temperature as the aforementioned at the shock position
the inner core does not exhibit a further rise of the temperature but a modest decline.
The model with the gruff exhibits a peak in temperature inside the shock alike the
DD2, SFHo, and SFHx models in shape, however the temperatures in the core are
overall clearly reduced compared to the other models.
Figure 4.3 shows neutrino luminosities and mean energies for the first 40 ms fol-

lowing core bounce. Here and throughout this thesis we use the energy unit Bethe
common in supernova studies, defined as 1 B = 1051 erg. Clearly visible is the intense
νe-burst. The differences between the EoS are small, however a slightly increased
mean energy of electron neutrinos for the LS220 around 20 ms post bounce and
slightly decreased luminosities and mean energies for the muon and tau neutrinos
and anti-neutrinos for the gRDF around 10 ms post bounce is observed. An interest-
ing observation is that the hydrodynamic profiles as well as the neutrino emission in
this phase is very similar for the models with DD2, SFHo, and SFHx EoS, which are
based on the same thermodynamic model and mainly differ in the parametrization
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Table 4.1: Overview over our model set. For each model we list model name, the
employed nuclear EoS, time post bounce the simulation has reached and the neutron
star radius, defined as the 1011 g/cm3 isodensity radius, gravitational neutron star
mass, and baryonic neutron star mass at this time. The column MNS shows the
values for the ’gravitational’ mass as given in the Prometheus-Vertex output
files. However, this is n o t the true gravitaional mass of the neutron star.

Model EoS tpb RNS MG
NS MB

NS

s km M� M�

s18.8DD DD2 10.0 13.6 1.33 1.44
s18.8GR gRDF 4.23 15.2 1.34 1.44
s18.8LS LS220 10.0 13.2 1.33 1.44
s18.8SO SFHo 10.0 12.5 1.32 1.44
s18.8SX SFHx 10.0 12.5 1.32 1.44
s18.6DD DD2 10.0 13.9 1.48 1.62
s18.6GR gRDF 4.55 15.4 1.50 1.62
s18.6LS LS220 10.0 13.3 1.48 1.62
s18.6SO SFHo 10.0 12.6 1.47 1.62
s18.6SX SFHx 10.0 12.7 1.47 1.62
s27.0DD DD2 10.0 14.0 1.60 1.77
s27.0GR gRDF 3.15 16.9 1.64 1.77
s27.0LS LS220 9.29 13.3 1.60 1.77
s27.0SO SFHo 10.0 12.7 1.59 1.77
s27.0SX SFHx 10.0 12.7 1.59 1.77
s20.0DD DD2 10.0 14.0 1.73 1.93
s20.0GR gRDF 4.04 16.3 1.77 1.93
s20.0LS LS220 10.0 13.2 1.73 1.93
s20.0SO SFHo 10.1 12.8 1.72 1.93
s20.0SX SFHx 10.0 12.9 1.72 1.93
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Table 4.2: Time from the start of the simulation till core bounce, the radius of the
shock, and the baryonic mass enclosed by the shock at the time of core bounce for
the different progenitors and EoS.

EoS tb Rsh Msh tb Rsh Msh

s km M� s km M�

s18.6 s18.8
DD2 0.256 11.81 0.487 0.237 11.80 0.485
gRDF 0.254 16.13 0.419 0.235 16.20 0.421
LS220 0.242 11.58 0.460 0.224 11.59 0.458
SFHo 0.256 11.06 0.478 0.237 11.10 0.477
SFHx 0.256 10.83 0.476 0.237 10.82 0.473

s20.0 s27.0
DD2 0.329 11.94 0.496 0.297 11.85 0.492
gRDF 0.330 15.89 0.410 0.298 15.95 0.414
LS220 0.317 11.53 0.462 0.283 11.53 0.462
SFHo 0.329 11.20 0.486 0.297 11.11 0.482
SFHx 0.329 10.99 0.487 0.297 10.90 0.482

of nucleon interactions, while there are small but in comparison to the other models
notable differences for the LS220 and gRDF model. While the LS220 EoS differs
both in thermodynamic modelling and parametrization of nucleon interactions from
all other EoS, the gRDF employs the same parametrization as the DD2 for nucleon
interactions.

4.2.2 Accretion

Figure 4.4 shows density, temperature, electron fraction, and entropy per baryon
profiles at 100 ms post bounce. We see the characteristic profile of a nearly unchanged
electron fraction in the inner core (up to around 0.4 M�) and an already deleptonizing
mantle between the inner core and the accretion shock at around 1.5 M�. Again we
see the most notable variance in the model with the gRDF EoS, the rather peculiar
electron fraction profile in the core is likely a relict of the special behaviour of the
adiabatic index around bounce. The very flat entropy profile around 1 M� hints
at convective mixing being active in this region. The temperature profiles for the
models with DD2, LS220, SFHo, and SFHx are similar in shape, but clearly differ
in the maximal temperature reached in the mantle at approximately 0.6 M�. In the
inner core the temperatures for the models with DD2, SFHo, and SFHx are similar,
while the the models with LS220 and gRDF reach slightly lower temperatures.
Figure 4.5 shows the luminosities and mean energy of neutrino signal for the first
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Figure 4.2: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at the moment of core bounce (tpb = 0) for s18.6
models with different EoS.

second following core bounce. Clearly visible is the drop of the luminosities shortly
after 400 ms (most pronounced in the electron flavour) due to fading accretion after
inserting the density step artificially restarting shock. The mean energies exhibit a
clear ordering dependent on the EoS, with the LS220 resulting in the highest mean
energies, followed by the SFHo and SFHx, and the DD2 and gRDF resulting in the
lowest mean energies.

4.2.3 Mantle Contraction

Figure 4.6 shows density, temperature, electron fraction, and entropy per baryon
profiles at 500 ms post bounce, hence shortly after artificially triggering the shock
revival and curbing accretion onto the PNS. By this time the proto neutron star’s
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Figure 4.3: Neutrino luminosities and mean energies for the s18.6 models extracted
at 500 km as seen by a distant observer. Shown are the first 40 ms post bounce. Note
the different scaling of the ordinates for the electron flavours.
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Figure 4.4: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 100 ms for s18.6 models with different EoS.

radius has shrunken from its maximum ≈77 km it reached some tens of milliseconds
after bounce to values between 26 km (LS220), 28 km (SFHo, SFHx), and 30 km
(DD2, gRDF). As expected higher neutrino luminosities cause quicker contraction.
Of course this replicates in the density profiles, with the LS220 model exhibiting the
highest densities, followed by the SFHo and SFHx models, and the DD2 and gRDF
exhibiting the lowest densities. Compared to the profiles at 100 ms we can observe
an increased maximal temperature in the mantle, with the ordering between the
different EoS the same as at 100 ms, i.e. LS220 exhibits the highest temperatures,
followed by SFHo and SFHx, followed by DD2 and gRDF. The transition from the
flat entropy zone in the mantle to sudden rise at the PNS boundary has sharpened.
The peak in electron fraction at the interface of inner core and mantle is nearly
levelled.
Figure 4.7 shows density, temperature, electron fraction, and entropy per baryon

38



4.2 Different Equations of State

0

20

40

60

L
[B

/s
]

e

0

20

40

0

20

40

0

20

40

60

L
[B

/s
]

e

0

20

40

0

20

40

10

12

14

[M
eV

] e

12

14

16

12

14

16

0.0 0.5 1.0
tpb [s]

12

14

16

[M
eV

] e

0.0 0.5 1.0
tpb [s]

12

14

16

0.0 0.5 1.0
tpb [s]

12

14

16

DD2 gRDF LS220 SFHo SFHx

Figure 4.5: Neutrino luminosities and mean energies for the s18.6 models extracted
at 500 km as seen by a distant observer. Shown is the first 1 s post bounce. Note
the different scaling of the ordinates for the electron flavour. The models with the
SFHo and SFHx EoS are nearly concurring, as are the models with gRDF and DD2
EoS after approximately 300 ms until approximately 700 ms. The sharp drop most
pronounced in the electronic flavours shortly after 400 ms is caused by artificially
restarting shock expansion (see section 4.1).
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Figure 4.6: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 500 ms for s18.6 models with different EoS.

profiles at 1 s post bounce. By this time the proto neutron star’s radius has shrunken
to 20 km (LS220), 22 km (SFHo, SFHx), and 24 km (DD2, gRDF). Compared to our
previous snapshot at 500 ms we observe a reduction in the entropy of the mantle.
By now the electron fraction gradient is negative throughout the PNS for all EoS.
The ordering of the temperatures in the mantle has changed. The SFHo model now
reaches about the same maximal temperature as the LS220 model, the SFHx model
follows with small difference, followed by the DD2 and gRDF models.

4.2.4 Deleptonization

Figure 4.8 shows density, temperature, electron fraction, and entropy per baryon
profiles at 2 s post bounce. Both the peak in temperature and the decline of electron
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Figure 4.7: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 1 s for s18.6 models with different EoS.

number initially placed at the core mantle interface moved inward compared to our
last snapshot, the deleptonization of the core starts.
Figure 4.9 shows density, temperature, electron fraction, and entropy per baryon

profiles at 4 s post bounce. The deleptonization has reached the centre of the PNS
in the case of the models with DD2, gRDF, and SFHo EoS causing a reduction
in the central electron fraction which retained its values from core bounce nearly
unchanged in the previous snapshots. In the case of the models with SFHx and
LS220 the deleptonization is already very close to the centre. The peculiar phase
transition behaviour of the gRDF EoS is still visible, but has moved outwards in
mass to around 1.5 M� due to the rising densities in the centre. Compared to the
previous snapshots the temperature profiles have changed. The peak has reached the
centre, leaving behind a negative temperature gradient throughout the PNS. Also the
maximal temperatures started to fall. The model with the LS220 EoS now, except
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Figure 4.8: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 2 s for s18.6 models with different EoS.

for the very centre, exhibits the lowest temperatures, while the other models kept
their order relative to each other. While the entropy and electron fraction profiles
are now flat from the centre to close beneath the surface of the PNS for the other
four models, the model with the LS220 EoS exhibits negative gradients. Due to
numerical difficulties the model with the gRDF EoS currently ends shortly after this
snapshot.
Figure 4.10 shows density, temperature, electron fraction, and entropy per baryon

profiles at 8 s post bounce. The profiles of the models with SFHo and SFHx EoS
are very similar again, after differing in temperature in our last three snapshots.
The temperatures of all our models has fallen significantly. Similar to the previous
snapshots the model with the LS220 exhibits steeper gradients in electron fraction
and entropy as the other models.
Figure 4.11 shows the luminosities and mean energy of the neutrino signal for
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Figure 4.9: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 4 s for s18.6 models with different EoS.

1 s to 3 s post bounce. The mean energies still exhibit a clear dependency on the
EoS. However, different to the situation during the first second (cf. figure 4.5) the
ordering between the different EoS changes. Starting from the configuration at one
second with the LS220 resulting in the highest mean energies, followed by the SFHo
and SFHx, and the DD2 and gRDF resulting in the lowest mean energies the mean
energies and luminosities of the model with the gRDF EoS rise peculiarly for around
one second before falling below their initial values again. The mean energies of the
model with the LS220 EoS start to drop comparatively quickly around 2 s post core
bounce.
Figure 4.12 shows the luminosities and mean energy of the neutrino signal for

3 s to 10 s post bounce. The luminosities and mean energies of the LS220 model
continue to drop quickly until around 5 s post bounce, making them the lowest until
the corresponding quantities of the DD2 model, which start to drop around 5 s post
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Figure 4.10: Density, temperature, electron fraction, and entropy per baryon as func-
tion of enclosed baryonic mass at tpb = 8 s for s18.6 models with different EoS.

core bounce, fall below them again at around 7 s post bounce. SFHo and SFHx
remain very similar till the end of our simulations.
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Figure 4.11: Neutrino luminosities and mean energies for the s18.6 models extracted
at 500 km as seen by a distant observer. Shown are 1 s to 3 s post bounce evolution
of our models. Note the different scaling of the ordinates for the electron flavour.
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Figure 4.12: Neutrino luminosities and mean energies for the s18.6 models extracted
at 500 km as seen by a distant observer. Shown are 3 s to 10 s post bounce evolution
of our models. Note the different scaling of the ordinates for the electron flavour.
The simulation for s18.6GR currently ends shortly after 4 s post bounce.
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4.3 Convection in Models with Different Equations of
State

As already mentioned in 3.3 Roberts et al. (2012b) found that the nuclear EoS,
in particular the slope of the symmetry energy, can have a decisive influence on
the convective activity in PNS. They find that a larger slope of symmetry energy
increases the stabilizing effect of negative electron fraction gradients. Unfortunately
the Ledoux criterion including the neutrino contributions at high densities is not
easily available from our simulation output. However, since convection usually is
very efficient in transporting entropy and electron number, regions unstable against
convection are quickly driven into marginal stability when applying a mixing-length
scheme by flattening of the respective gradients. We therefore take a closer look at
the evolution of the entropy and electron fraction and the respective radial gradients
in our models.
Figures 4.13 to 4.17 show the temporal evolution of the electron fraction and

entropy per baryon and the respective radial gradients in the PNS for the s18.6
models with different EoS.
In all five models we can see a clear separation between the inner core with electron

fractions moderately above and entropies moderately below the overlaying mantle.
Core and mantle are clearly separated by a thin region of negative electron fraction
gradient, initially (tpb = 0 s) located slightly above 100 km. While the inner core and
the surface just beneath the neutron star radius exhibits positive entropy gradients,
a layer of 0.8 M� to 1 M� between is essentially flat. We assume this to be the
convectively mixed region.
The inner boundary of the convective regions gradually moves inward over a times-

cale of some seconds until it reaches the centre. However, the exact time until the
inner boundary of the convection zone reaches the centre is model dependent. For
the case of the s18.6GR model this takes only around 2.5 s, for the s18.6DD around
3 s, for the s18.6SO around 3.4 s, for the s18.6SX around 4.4 s, and for the s18.6
around 4.5 s. As mentioned before, gRDF and DD2 EoS share the parametrization
of nucleon interactions and therefore have the same slope of symmetry energy and
compressibility of symmetry energy, yet the time until the inner boundary reaches
the centre differs slightly. Also the SFHo EoS has a smaller slope of symmetry en-
ergy and compressibility of symmetry energy than the DD2 or gRDF EoS, but in the
s18.6SO model the inner boundary of the convection zone still takes longer to reach
the centre.
Previous studies (Roberts et al. 2012b, Hüdepohl 2013) showed that the outer

boundary of the convective zone follows the inner boundary with a delay of some
seconds in moving inward. Unfortunately we are not able to track the outer boundary
of the convection zone in the same way as the inner boundary, as the electron fraction
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profiles and entropy profile in the outer regions stay mostly flat for the rest of the
simulation. Therefore we can neither determine the end of convective activity in the
PNS nor the size of the convective zone and can not directly compare our results to
aforementioned works.
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Figure 4.13: Electron fraction and entropy per baryon and radial gradients thereof
for model s18.6DD. The orange line indicates the neutron star radius. Grey lines are
mass shells of 0.05 M� (dotted) and 0.2 M� (dashed). The solid grey line indicates
1 M� enclosed baryonic mass.
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Figure 4.14: Electron fraction and entropy per baryon and radial gradients thereof
for model s18.6GR. The orange line indicates the neutron star radius. Grey lines are
mass shells of 0.05 M� (dotted) and 0.2 M� (dashed). The solid grey line indicates
1 M� enclosed baryonic mass. As the simulations for this model currently end at
4.55 s the abscissa has a different scaling compared to the plots of the other models
in this section.

50



4.3 Convection in Models with Different Equations of State

100

101

102

r
[k

m
]

Ye

100

101

102

r
[k

m
]

s [kB]

100

101

102

r
[k

m
]

dYe/dr [1/km]

0 2 4 6 8 10
tpb [s]

100

101

102

r
[k

m
]

ds/dr [kB/km]

0.0
0.1
0.2
0.3
0.4

0

2

4

0.10
0.05

0.00
0.05
0.10

0.2

0.0

0.2

Figure 4.15: Electron fraction and entropy per baryon and radial gradients thereof
for model s18.6LS. The orange line indicates the neutron star radius. Grey lines are
mass shells of 0.05 M� (dotted) and 0.2 M� (dashed). The solid grey line indicates
1 M� enclosed baryonic mass.
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Figure 4.16: Electron fraction and entropy per baryon and radial gradients thereof
for model s18.6SO. The orange line indicates the neutron star radius. Grey lines are
mass shells of 0.05 M� (dotted) and 0.2 M� (dashed). The solid grey line indicates
1 M� enclosed baryonic mass.
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Figure 4.17: Electron fraction and entropy per baryon and radial gradients thereof
for model s18.6SX. The orange line indicates the neutron star radius. Grey lines are
mass shells of 0.05 M� (dotted) and 0.2 M� (dashed). The solid grey line indicates
1 M� enclosed baryonic mass.
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Figure 4.18: Neutron star radius as function of time for different EoS and gravita-
tional neutron star masses. The upper left panel shows models s18.8, the upper right
s18.6, the lower left s27.0, and the lower right s20.0.

4.4 Overview over the full Model Set

In this section we give a concise overview over our full model set. Table 4.3 lists the
time post bounce each model has reached, the neutron star radius at this time, which
we define as the radius where the density has fallen to 1011 g/cm3, the gravitational
neutron star mass at this time, and the total and species specific energies radiated
away in neutrinos until the end of our simulations.
In Figures 4.18 and 4.19 we show an overview over the time evolution of the

neutron star radius defined as the 1011 g/cm3 isodensity radius. Over all neutron
star masses the EoS dependencies are the same: DD2 and gRDF EoS result in the
largest radii at early times. Until approximately 2 s post bounce the DD2 and gRDF
yield similar radii, after that the gRDF results in slightly smaller radii. Until 5 s to
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Table 4.3: Post bounce time at the current end of the simulation and neutron star
radius, neutron star gravitational mass, total and species specific energy emitted
by neutrinos at this time. Note that the models with the gRDF EoS are currently
calculated until between 3 s to 5 s, whereas the other models are calculated to 10 s.
Therefore the given values for models with the gRDF should not be directly compared
with other models. The column MNS shows the values for the ’gravitational’ mass
as given in the Prometheus-Vertex output files. However, this is n o t the true
gravitaional mass of the neutron star.

Model tpb RNS MNS Etot Eνe Eν̄e Eνµ Eν̄µ Eντ Eν̄τ
s km M� B B B B B B B

s18.8DD 10.0 13.6 1.33 205.0 35.1 32.4 33.6 35.6 33.5 34.8
s18.8GR 4.23 15.2 1.34 184.4 33.8 30.0 30.0 31.6 29.0 30.1
s18.8LS 10.0 13.2 1.33 212.0 35.7 32.5 35.0 37.5 34.9 36.5
s18.8SO 10.0 12.5 1.32 223.6 37.9 34.9 36.8 39.1 36.7 38.2
s18.8SX 10.0 12.5 1.32 224.4 37.9 35.0 37.0 39.3 36.8 38.4
s18.6DD 10.0 13.9 1.48 262.5 46.3 43.5 42.2 44.8 42.0 43.7
s18.6GR 4.55 15.4 1.50 233.3 44.2 40.0 37.0 39.1 35.8 37.2
s18.6LS 10.0 13.3 1.48 267.7 46.8 43.4 43.0 46.4 43.0 45.0
s18.6SO 10.0 12.6 1.47 287.6 50.2 47.1 46.5 49.4 46.2 48.2
s18.6SX 10.0 12.7 1.47 289.5 50.3 47.4 46.9 49.8 46.6 48.6
s27.0DD 10.0 14.0 1.60 314.5 55.6 53.0 50.3 53.5 50.1 52.2
s27.0GR 3.15 16.9 1.64 236.3 46.5 41.6 36.6 39.0 35.5 37.1
s27.0LS 9.29 13.3 1.60 317.4 55.7 52.5 50.7 54.9 50.6 53.0
s27.0SO 10.0 12.7 1.59 345.1 60.4 57.4 55.6 59.1 55.2 57.6
s27.0SX 10.0 12.7 1.59 347.1 60.5 57.6 56.0 59.5 55.5 58.0
s20.0DD 10.0 14.0 1.73 375.2 66.2 63.8 59.9 63.7 59.6 62.1
s20.0GR 4.04 16.3 1.77 304.7 58.7 53.9 47.6 50.6 46.0 48.0
s20.0LS 10.0 13.2 1.73 382.3 67.0 63.8 60.9 66.1 60.7 63.7
s20.0SO 10.1 12.8 1.72 412.3 72.0 69.2 66.3 70.5 65.7 68.6
s20.0SX 10.0 12.9 1.72 415.5 72.2 69.6 66.9 71.2 66.2 69.2
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Figure 4.19: Neutron star radius as function of time for different EoS and gravita-
tional neutron star masses. The upper left panel shows models s18.8, the upper right
s18.6, the lower left s27.0, and the lower right s20.0.

7 s the LS220 EoS yields the smallest radii, with the very similar results of models
with SFHo and SFHx between LS220 and DD2. However at late times a crossing
between the models with LS220 and SFHo / SFHx EoS occurs. Hence at the end of
our simulations the SFHo and SFHx models yield the smallest radii.
A common way to characterize the neutrino spectra is to use model spectra that

reproduce the first two energy moments of the actual spectra. We use the power law
spectrum of Keil et al. (2003) given as

fα,ε̄(ε) =
(1 + α)(1+α)

ε̄ · Γ(1 + α)
·
(ε
ε̄

)α
exp
{
−(1 + α)

ε

ε̄

}
(4.1)
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with the parameter alpha determined by

〈ε2〉
〈ε〉2

=
2 + α

1 + α
(4.2)

and the mean energy ε̄ = 〈ε〉. Here Γ denotes the Euler gamma function. The para-
meter α can be interpreted as a measure of spectral pinching, i.e. α = 2 reproduces
a Maxwell-Boltzmann spectrum, α < 2 indicates an anti-pinched spectrum with en-
hanced high energy tail, and α > 2 an pinched spectrum with suppressed high energy
tail.
The time average of a neutrino radiation quantity Q(t) is computed as

Q̄ =

∫
dt Ṅ(t)Q(t)∫

dt Ṅ(t)
(4.3)

where Ṅ denotes the neutrino number flux, hence we calculate neutrino number
weighted time averages. In table 4.4 we list time averaged mean energies and α
parameters for our models.
We exclude models with the gRDF EoS from the following discussion, since they

are currently only simulated up to 3 s to 5 s, whereas the other models are simulated
to ≈ 10 s. Time integrated quantities of models with gRDF EoS can therefore not
be compared with the majority of our model set at the moment.
Figure 4.20 visualizes the dependence of the total energy emitted till the end of

our simulations on neutron star mass and EoS. As expected more massive neutron
stars release more energy in neutrinos. We can also observe an dependence on the
EoS. Since the SFHo and SFHx EoS lead to a smaller neutron star radius compared
to the DD2 and LS220 EoS, more gravitational energy is released and emitted in
neutrinos.
Figure 4.21 shows the time energies emitted in the different neutrino species till the

end of our simulation as function of the neutron star mass for models with different
EoS. We can see, that the same dependencies as for the total emitted energy holds,
i.e. more neutron star mass and smaller neutron star radius lead to an increase in
emitted energy, where the latter depends on the EoS for a given neutron star mass.
Figure 4.22 shows the time averaged mean neutrino energies at the end of our

simulations as function of neutron star mass for models with different EoS. The
dependency on the neutron star mass is less pronounced as for the emitted energies.
The different EoS lead to small differences in the mean energies. Across all neutron
star masses and neutrino species the LS220 EoS leads to the highest mean energies,
followed by SFHo and SFHx resulting in very similar mean energies, and the DD2
yielding the lowest mean energies. This order differs from the EoS dependence of the
energies emitted in neutrinos.
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Figure 4.20: Total energy emitted in neutrinos till the end of our simulations (tpb ≈
10 s) as function of gravitational neutron star mass for the models with DD2, LS220,
SFHo, and SFHx EoS. Models with gRDF EoS are not shown since they are currently
only simulated up to 3 s to 5 s post bounce and therefore the total emitted energy
can not be compared to the other models. The total emitted energy of the SFHo
models are very close to the total emitted energies of the SFHx models and therefore
overlapping in the plot.

Figure 4.23 shows the time averaged spectral shape parameter alpha as defined
by equation (4.2) as function of gravitational neutron star mass for models with
different EoS. We see that the spectra of the electron flavoured neutrinos and anti-
neutrinos are more pinched than the other flavours. Increasing neutron star mass
slightly reduces spectral pinching in all neutrino species. The EoS dependence is
weak. Models with the DD2 EoS have slightly more pinched spectra in all neutrino
species than models with other EoS.
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Figure 4.21: Energy emitted in neutrinos of different species till the end of our simu-
lations (tpb ≈ 10 s) as function of gravitational neutron star mass for the models with
DD2, LS220, SFHo, and SFHx EoS. Models with gRDF EoS are not shown since
they are currently only simulated until between 3 s to 5 s post bounce and therefore
the emitted energies cannot be compared to the other models. The emitted energies
of the SFHo models are very close to the emitted energies of the SFHx models and
therefore overlapping in the plot.
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Figure 4.22: Time average of mean neutrino energies at the end of our simulations
(tpb ≈ 10 s) as function of gravitational neutron star mass for the models with DD2,
LS220, SFHo, and SFHx EoS. Models with gRDF EoS are not shown since they
are currently only simulated until between 3 s to 5 s post bounce and therefore the
mean energies cannot be compared to the other models. The mean energies of the
SFHo models are very close to the mean energies of the SFHx models and therefore
overlapping in the plot. The labels are wrong, the mean neutrino energy is shown in
MeV!
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Figure 4.23: Time average of spectral shape parameters as defined by equation 4.2
for the emitted neutrinos at the end of our simulations (tpb ≈ 10 s) as function of
gravitational neutron star mass for the models with DD2, LS220, SFHo, and SFHx
EoS. Models with gRDF EoS are not shown since they are currently only simulated
until between 3 s to 5 s post bounce and therefore the spectra cannot be compared
to the other models. The alpha parameters of the SFHo models are very close to
the alpha parameter of the SFHx models and therefore overlapping in the plot. The
labels are wrong, the alpha parameter is unitless. Furthermore this is n o t the
spectral shape parameter of the time integrated emission.
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Table 4.4: Gravitational neutron star mass, time averaged mean neutrino energies and spectral shape parameters at
the end of our simulations. Note that the models with the gRDF EoS are currently calculated until between 3 s to 5 s,
whereas the other models are calculated to 10 s. Therefore the given values for models with the gRDF should not be
directly compared with other models. The spectral shape parameter is n o t the spectral shape of the time integrated
emission.

Model MNS 〈ενe〉 〈εν̄e〉 〈ενµ〉 〈εν̄µ〉 〈εντ 〉 〈εν̄τ 〉 ανe αν̄e ανµ αν̄µ αντ αν̄τ
M� MeV MeV MeV MeV MeV MeV 1 1 1 1 1 1

s18.8DD 1.33 9.81 12.51 12.11 12.62 12.11 12.59 3.34 3.14 2.56 2.52 2.55 2.51
s18.8GR 1.34 10.34 12.95 12.87 13.31 12.78 13.26 3.45 3.19 2.57 2.49 2.53 2.47
s18.8LS 1.33 10.12 12.65 12.54 13.14 12.52 13.07 3.27 3.03 2.55 2.52 2.54 2.50
s18.8SO 1.32 10.10 12.69 12.37 12.91 12.37 12.88 3.32 3.07 2.55 2.51 2.54 2.50
s18.8SX 1.32 10.09 12.69 12.37 12.91 12.36 12.87 3.32 3.07 2.55 2.51 2.54 2.49
s18.6DD 1.48 10.34 13.01 12.38 12.91 12.37 12.87 3.19 3.13 2.53 2.49 2.52 2.48
s18.6GR 1.50 10.91 13.51 13.19 13.66 13.10 13.61 3.29 3.17 2.54 2.45 2.49 2.43
s18.6LS 1.48 10.82 13.37 12.97 13.61 12.94 13.53 3.14 3.01 2.51 2.48 2.50 2.46
s18.6SO 1.47 10.69 13.28 12.73 13.30 12.71 13.25 3.18 3.05 2.50 2.47 2.50 2.45
s18.6SX 1.47 10.69 13.30 12.75 13.33 12.73 13.28 3.17 3.04 2.50 2.47 2.50 2.45
s27.0DD 1.60 10.63 13.30 12.57 13.12 12.56 13.08 3.12 3.09 2.50 2.47 2.50 2.46
s27.0GR 1.64 11.36 14.13 13.72 14.29 13.66 14.23 3.26 3.27 2.55 2.48 2.51 2.46
s27.0LS 1.60 11.30 13.92 13.41 14.08 13.38 14.01 3.09 2.99 2.48 2.45 2.47 2.43
s27.0SO 1.59 11.05 13.65 13.03 13.63 13.00 13.57 3.11 3.01 2.48 2.44 2.47 2.43
s27.0SX 1.59 11.06 13.68 13.06 13.66 13.03 13.60 3.10 3.01 2.48 2.44 2.47 2.43
s20.0DD 1.73 10.92 13.60 12.82 13.40 12.80 13.34 3.09 3.08 2.48 2.44 2.47 2.43
s20.0GR 1.77 11.63 14.35 13.88 14.44 13.80 14.38 3.20 3.19 2.51 2.44 2.47 2.42
s20.0LS 1.73 11.69 14.34 13.74 14.45 13.70 14.37 3.05 2.96 2.45 2.42 2.44 2.40
s20.0SO 1.72 11.41 14.05 13.37 14.01 13.35 13.95 3.06 2.99 2.45 2.41 2.44 2.40
s20.0SX 1.72 11.44 14.10 13.42 14.07 13.40 14.00 3.06 2.99 2.45 2.41 2.44 2.40
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Conclusions and Outlook

In this master thesis project we conducted and analysed a set of neutrino-cooling sim-
ulations for proto-neutron stars (PNS) of different masses, using a variety of modern
hadronic nuclear equations of state (EoS) models to describe the physical conditions,
i.e. thermodynamic state and particle composition, in the hot supra-nuclear medium.
We also included muons in the plasma and for neutrino interactions. All of our con-
sidered finite-temperature EoS are compatible with experimental and astrophysical
constraints, including the best measured lower limits for the maximum neutron star
mass, the most recent radius limits deduced from gravitational-wave measurements
of neutron star merger events and X-ray measurements by the Neutron Star Interior
Composition Explorer (NICER) on the International Space Station. Despite this
compatibility, the considered EoS models lead to considerably different mass-radius
relations for cold neutron stars and predict maximum gravitational neutron star
masses between about 2.05 M� and 2.4 M�.
The simulations of stellar core collapse, PNS formation, and subsequent PNS cool-

ing were performed with the neutrino-hydrodynamics code Prometheus-Vertex
(Rampp and Janka 2002) in its most recent version (Bollig et al. 2017, Bollig 2018),
assuming spherical symmetry, but including a treatment of convection by using the
mixing-length approximation. Since supernova explosions by the neutrino-driven
mechanism require the presence of multi-dimensional hydrodynamic instabilities
(convective overturn, turbulent flows, and the standing accretion shock instability)
the explosion was triggered artificially in our spherically symmetric models such that
neutron stars with chosen baryonic masses were obtained. Our goal of constructing
an initial library of 20 models with 4 different neutron star masses and 5 differ-
ent EoS, whose evolution needs to be computed for at least 10 seconds, would not
be feasible in three dimensions with currently available supercomputing resources.
Moreover, the library of models is planned to be extended continuously over the
coming years.
The main goals of this project are improved predictions of the neutrino signal

that can be measured from a future supernova in the Milky Way. Furthermore
the predictions can be employed for theoretical modelling of the diffuse supernova
neutrino background (DSNB).
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As a next step it is planned to use the results of this study for a comparison
with the so far only detection of supernova neutrinos from SN1987A. Our models,
computed with state-of-the-art descriptions of the nuclear EoS, Boltzmann neutrino
transport, a most refined treatment of neutrino interactions taking muons into ac-
count, and PNS convection will permit a revision of the conclusions drawn from
the SN1987A neutrino data, including a revised view on the puzzles connected to
some signal features, for example the 7 seconds gap in the Kamiokande II data and
the marginal compatibility between the events reported by the Kamiokande II and
Irvine-Michigan-Brookhaven (IMB) experiments. In this context it is most interest-
ing that in our calculations electron anti-neutrinos as well as muon and tau neutrinos
are considerably less energetic than predicted by the astrophysical models used for
the first interpretations of the SN1987A neutrino data. The reason for this finding is
the inclusion or improvement of a larger set of neutrino reactions that were either ig-
nored or treated only approximately in earlier models, for example neutrino-nucleon
scatterings were only considered as iso-energetic reactions.
In another line of follow-up work, our repository of neutrino signals from stellar

core collapse will be expanded by adding a bigger grid of neutron star masses and
also including black hole formation cases. A large library of such self-consistently
computed neutrino signals will help to consolidate the predictions of the DSNB
with respect to the necessary input of source signals from supernova models. Our
results contain already a number of interesting messages. While we find the expected
increase of the energy release in neutrinos with increasing neutron star mass and a
subdominant variation with the nuclear EoS (softer EoS leading to a smaller final
neutron star radius and hence more energy release), we witness only a rather weak
dependence of the neutrino spectra on the neutron star mass and EoS, and an even
weaker variation of the spectral shape parameter α, which measures the width of the
time-integrated source spectrum or, in other words, its deviation from a Maxwell-
Boltzmann spectrum. Our results strengthen assumptions that had to be made
because of a lack of systematic, detailed calculations for the neutrino source spectra
adopted in a recent comprehensive theoretical investigation of the DSNB by Kresse
et al. (2021).
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