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Abstract

Decaying Cold Dark Matter (DCDM) is a model that is currently under in-
vestigation regarding primarily the σ8 tension between cosmological and local
measurements. Recent papers suggest that the tension can be lessened, how-
ever, no preference over ΛCDM is found. We want to contribute to these studies
by following a different approach than in other works. We use Lyman-α forest
data from BOSS together with a model where we find an expression of the one-
dimensional flux power spectrum via the matter power spectrum up to 1-loop
corrections. This model can then be fitted to the data and exclusion bounds
can be extracted. We test this method at first for warm dark matter (WDM)
which provides us with reasonable bounds on the more conservative side. After
studying the background evolution of DCDM, we then apply the fitting method
to it. We find, that we can provide tighter constraints for the upper lifetime
in the ε ∼ 0.001 − 0.005 regime with τ & 18Gyrs, which can be attributed to
our treatment of non-linearities. In the larger ε regimes, our method performs
worse since we don’t include an in-depth analysis of CMB data. Regarding the
σ8 tension, we observe, that our model allows for lower values and doesn’t put
much constraints on it. As the final word on DCDM is not yet spoken, we are
curios for the future of it with regard to upcoming surveys.
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1 | Introduction

The standard model of cosmology known as ΛCDM is a very successful model
in explaining the large scale structure (LSS) of the universe. At the heart of
this sits cold dark matter (CDM) which causes the typical bottom-to-top struc-
ture formation we see in the LSS by being non-relativistic during the clustering
process. Despite the success of CDM, there are still unresolved issues that are
hinting that there may be more. This sparks of course interest in different cos-
mological models that are able to address these issues. Mostly the two large
unknowns, meaning dark energy or dark matter, are altered in some way to try
and achieve better results. The challenge hereby lies in conserving the winning
properties of ΛCDM on larger scales while still tackling problems of todays cos-
mology. These are mainly given by three larger issues [1].
The first one is the Hubble tension [2] which arises between mostly cosmic mi-
crowave background (CMB) and supernovae data. CMB data from Planck with
H0 = 67.27± 0.60km/(sMpc) [3] is an example of a probe of the early universe
since it relies on the recombination time. More precisely, it measures the an-
gular scale of the sound horizon. Values derived by other CMB independent
early universe probes like the Big Bang Nucleosynthesis (BBN) and baryonic
acoustic oscillations (BAOs) also tend towards lower H0 values [4, 5]. This
makes it even more worrying that methods of inferring H0 directly, arrive at a
much larger value resulting in a 4 to 6σ tension. SHOES for example, measures
H0 = 73.2±1.2km/(sMpc) [6], which is based on a calibration of the cosmic dis-
tance ladder using Cepheids. Again, other methods based on supernovae with
e.g. calibrating the tip of the red giant branch or even methods not based on
supernovae tend to higher values, hinting at either unknown systematic errors,
like for example dust modeling in SN1a, or a problem with the cosmological
model [7]. Systematic errors seem unlikely at this point regarding this large
number of independent measurements. If so, a single source of uncertainty will
probably not suffice [5]. More interesting are new cosmological models. Possible
solutions either try to alter the early universe and the sound horizon or they
focus on the late universe. Early universe solutions like early dark energy seem
the most promising, however, their preference relies on the included datasets
[2].
The second problem is the weaker but still unexplained tension for σ8, which is
a measure of the amplitude of matter fluctuations at a scale of 8Mpc/h. Usu-
ally, it is additionally given in terms of S8 = σ8

√
Ωm/0.3 that also includes

the matter density Ωm. Similar to Hubble, the 2 − 3σ tension arises between
early universe cosmological data preferring larger values of S8, and local, low
redshift measurements tending towards lower values [1, 8]. CMB measures by
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e.g. Planck are at S8 = 0.834 ± 0.016 [3] which also perfectly coincides with
other CMB data like from ACT [9]. On the other hand, weak gravitational
lensing surveys provide constraints via cosmic shear and galaxy clustering with
e.g. S8 = 0.759+0.024

−0.021 from the Kilo-Degree Survey KiDS-1000 [10]. Other simi-
lar measurements [11, 12] might not produce such large deviations but they are
still significantly lower compared to CMB data. To account for this, there ei-
ther needs to be some unknown systematic error or alternatives to ΛCDM where
proposed models need some kind of suppression of the matter power spectrum
in the k ∼ 0.1−1h/Mpc regime. This can be achieved in multiple ways [8] with
for example interacting dark energy models [13], massive neutrinos [14], canni-
bal DM [15], decaying CDM [16] and many more. Currently, there is no model
which can ease the tension completely but even more in depth investigations
based on newer surveys in the future will hopefully help shedding some light on
this issue.
Lastly, there are several incongruities regarding the simulation and observation
of structure on smaller scales [17]. These include the cusp-core problem of DM
halos, where the inner densities are less dense and less cuspy when determined
by e.g. rotation curves [18] compared to simulations. Another one is the fa-
mous missing satellite problem which addresses the larger number of predicted
satellite galaxies compared to how many are actually observed. Even if one
argues that we may not be able to see all of them since they are lacking visible
stars, this still leads to another famous problem. Called ’Too Big To Fail’, it
states that predicted satellites are too massive to not include stars we can ob-
serve. These issues rely on numerical simulations that, while being a powerful
cosmological tool, often don’t include the more complex baryonic physics like
stellar feedback and tidal effects which are able to alter and ease the observed
properties [19, 20, 17]. Further advancement in hydrodynamical simulations
will therefore be crucial in studying such effects. Apart from such explanations,
DM and its properties can also provide solutions [21, 17]. One possibility is
decreasing the DM fluctuation on small scales which damps halo substructure
and lowers their central densities. Another way is to consider self interactions
of DM (SIDM). Depending on its cross section, these could produce less cuspy
density cores and also lower the number of observed halos [22, 23].

A combined effort of observations in astrophysics, numerical simulations includ-
ing baryonic processes and theoretical work will be needed to ultimately solve
such questions which makes the next decades promising to look forward to.
Overall, we can see that a model with some kind of suppression on the smaller
scales is a popular idea for tackling several cosmological issues. While not very
promising regarding the Hubble tension, σ8 and deviating halo and galaxy prop-
erties prove very interesting to study. A suppression can be achieved in many
ways, with for example the well known warm dark matter (WDM) model. Its
larger free streaming length inhibits structure growth and causes a cutoff on
small scales. A similar effect can be achieved by a decaying dark matter model
with one massless and one massive daughter particle taking the part of WDM.
Such a model has the additional advantage of being flexible in time, depending
on the decay width of the mother particle. Thus, it can keep the early universe
almost completely unaffected, conserving the LSS and background evolution,
while still allowing for a reduction at small scales. Since it can still affect the
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background and thus H0, it was also previously discussed regarding the Hubble
tension. Even when not considering cosmological problems, it is still interesting
to try and constrain meaningful properties like the lifetime of DM. Especially
regarding how little we know about the actual nature of DM, as well as the fact
that very few particles are naturally stable [24], the scope at which decaying
DM is compatible with ΛCDM is very study worthy.

The goal of this thesis is to ultimately study the large and small-scale struc-
ture formation of a decaying cold dark matter (DCDM) model with regard to
Lyman-α BOSS data. The biggest issue for such data sets is the extraction of
the actual matter fluctuations from the measured flux power spectrum since it
requires a modeling of the complex intergalactic medium (IGM). We use a phys-
ically well motivated model relating the power spectra to the data which leaves
overall six parameters free to capture the complicated IGM behavior and the
non-linearities among other things. Nonetheless, we include non-linear correc-
tions for the power spectra in order to sufficiently describe the smaller scales.
To generate them, we make use of a newly developed modified CLASS code
[16] and use cosmological perturbation theory for computing the 1-loop spectra.
This then allows us to determine robust constraints on first WDM masses and
then DCDM parameters.
The structure of this work is now as follows: First, we give an overview of the
formalism of DCDM, the basic background dynamics and the work that has
already been done regarding this model. Then, we explain our data set and
the fitting model we will use, as well as our handling with the non-linearities
arising for small scales. Afterwards, our ΛCDM reference model is fitted to the
data and different aspects and variations of the method are discussed. This
is followed by an analysis of the fit and its variations regarding a warm dark
matter model which serves mainly as a test for our method. It is completed by
an extraction of mass constraints that are evaluated.
The last main point finally deals with DCDM. We make a more detailed discus-
sion about the background evolution and the power spectra before we use the
latter in several fits. Lastly, we present our resulting constraints and set them
in context with other measurements.

3



2 | Review of Decaying Cold
Dark Matter

At first, we will now start to give an overview of the Decaying Cold Dark Matter
(DCDM) model we want to study. That includes explaining the model and its
parameters, the changes in the background dynamics and discussing the current
state of investigations.

2.1 Mathematical Description

The general idea is that of ordinary collisonless cold dark matter particles that
aren’t stable and are instead decaying into two components. One is warm dark
matter (WDM) whereas the other is dark radiation (DR). To describe this model
mathematically, we mostly follow [16, 25, 26]. The ratio characterizing how
much energy goes into the DR compared to the WDM is given by

ε =
1

2

(
1− m2

wdm

m2
dcdm

)
. (2.1)

In the case of mwdm → mdcdm – so ε = 0 – the daughter particle has the same
mass as the mother particle and therefore no energy is transferred to DR which
would of course correspond to ΛCDM. In the opposite case of mwdm → 0 – so
ε = 0.5 – only dark radiation is produced. This corresponds to a decay into only
massless daughters and is also separately studied in the literature. The second
parameter describing DCDM is the decay time τ or Γ−1 with τ → ∞ leading
again to ΛCDM.
For the formalism, we use a synchronous gauge which is co-moving with the
mother particle, so we have Pdcdm = (mdcdm, 0), Pwdm = (

√
m2
wdm + p2, ~p) and

Pdr = (p,−~p). Therefore, we can calculate the maximum momentum of the
daughter particles:

mdcdm =
√
m2
wdm + p2 + p

⇒ pmax =
1

2mdcdm
(m2

dcdm −m2
wdm) = mdcdmε. (2.2)

The density parameter of DCDM today at t0 is given by an initial density times
an exponential factor describing the decay

Ω0
dcdm = Ωinidcdme

−Γt0 =
ρ(t0)

ρcrit,0
(2.3)
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with the critical density today, ρcrit,0. The density at an arbitrary time is in
turn given by

ρdcdm = ρcrit,0Ωinidcdme
−Γta−3 = mdcdmN̄a

−3 (2.4)

where a−3 gives the additional expansion factor. It can alternatively be written

as the time dependent number density N̄dcdm =
Ωinidcdmρcrit,0
mdcdm

e−Γt times the energy
of the mother particle expanding in time. Now, we can look at the Boltzmann
equations which in general relates the total time derivative of the phase-space-
distribution to the collision term describing for example scattering events or in
our case the decay. In our model they are given by

˙̄fdcdm = −aΓf̄dcdm and

˙̄fdr = ˙̄fwdm =
aΓN̄dcdm

4πq2
δ(q − apmax). (2.5)

The collision term for DCDM is only depending on Γ due to the exponential de-
cay. The scale factor a comes from switching to conformal time with dτ = dt/a.
For WDM and DR, the collision term has the opposite sign and the energy
transferred to them is proportional to the number density N̄ of DCDM and a
factor of 1/q2. The momentum q is determined by the delta function to apmax,
the momentum transferred to the daughter particles.
The phase-space-distribution is related to the mean energy density ρ̄ and pres-
sure P̄ by the integrals

ρ̄ =
1

a4

∫ ∞
0

dq4πq2Ef̄ and

P̄ =
1

3a4

∫ ∞
0

dq4πq2 q
2

E
f̄. (2.6)

E =
√
m2a2 + q2 is here the co-moving energy and – in the case of DCDM

– reduces to Edcdm = mdcdm due to our gauge choice. Making use of these
definitions, we can transform the Boltzmann equations to

˙̄ρdcdm = −3Hρ̄dcdm − aΓρ̄dcdm, (2.7)

˙̄ρdr = −4Hρ̄dr + εaΓρ̄dcdm, (2.8)

˙̄ρwdm = −3(1 + ω)Hρ̄wdm + (1− ε)aΓρ̄dcdm, (2.9)

with the equation-of-state parameter ω = P̄wdm
ρ̄wdm

for WDM. The more detailed
derivations can be found in appendix B.1.1.
Solving these coupled equations is not completely straight forward but for a nu-
merical solution we can bring it in a different form (see cite2021PhRvD.104l3533A.
For this, we start again with equation 2.5 for at first WDM and rewrite the delta
function. Since the co-moving momentum is given by q = a(τq)pmax with τq
being the time the daughter particles with q are produced, we can write

δ(q − apmax) = δ((a(τq)− a(τ))pmax) =
δ(τ − τq)
ȧ(τq)pmax

=
δ(τ − τq)
Hqq

. (2.10)
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The subscript q will now be used to indicate τq. Integrating over τ , we then get∫
dτ ˙̄fwdm =

∫
dτ
aΓN̄

4πq2

δ(τ − τq)
Hqq

f̄wdm =
aqΓN̄

4πq2

1

Hqq
.

Now, we multiply by 4πq2E
a4 and integrate over q:

ρ̄wdm(a) =

∫
dq
aqΓN̄q
Hqa4

√
m2
wdma

2 + q2

q

=
C

a4

∫
dq
e−Γtq

Hq
m2
wdma

2 + a2
qε

2m2
dcdm

m2
dcdmε

=
C

a4

∫ a

0

daq
e−Γtq

Hq

√
ε2a2

q + (1− 2ε)a2

In the second step we used the short notation C = ρcrit,0ΩinidcdmΓ and in the next
step we switched to the new variable aq with dq = εmdcdmdaq. In the case of
DR, we lack the mass and thus the result changes to

ρ̄dr(a) =
C

a4

∫ a

0

daq
e−Γtq

Hq
εaq. (2.11)

Together with the equation for DCDM 2.4, we now have a set of equations that
can be solved iteratively. The only two other quantities needed, are the Hubble
parameterH = aH0

√
ΩΛ + Ωma−3 + Ωra−4 and the time t =

∫ a
0

da′

H′ . Ωm means
here all matter species, Ωr all relativistic species and ΩΛ dark energy. With this
setup, we can now solve for the densities. More details on the implementation
of this solution can be found in appendix B.1.2.
The resulting densities for DCDM, WDM and DR for the parameters ε = 0.01
and τ = 20Gyrs in purple as well as ε = 0.3 and τ = 1Gyrs in orange can be
seen in Figure 2.1. The black line indicates the evolution of normal cold dark
matter without any decays. In both parameter cases, the DCDM density traces
the CDM one since the model should and does resemble ΛCDM for large z. For
the lower τ , the decrease of DCDM and increase of the daughter particles starts
much earlier. Additionally, for a higher ε, WDM and DR evolve more closely
together. Depending on the parameters, the matter content can be manipulated
very subtly or strongly, affecting in turn the matter power spectrum.
Another change is visible for the Hubble rate which is plotted in Figure 2.2 for
the same parameter cases as above. In the first case, with the lifetime being
larger than the age of the universe and a not too large ε, H(z) almost perfectly
traces the one of ΛCDM. In the second case however, the extremely short lifetime
and large ε cause a visible deviation of H(z). Since H0 was fixed in the solution,
it also converges to ΛCDM for high and low z. In between, we have a decrease.
This is a result of gradually replacing matter with dark radiation, which scales
with a−4 instead of a−3. Since this happens during matter domination, the
energy content decreases. To keep the sum of all energy densities at 1, ΩΛ will
be corrected upwards. Whereas ΩΛ ∼ 0.69 for the first case, we have ΩΛ ∼ 0.77
in the second, more extreme case.
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Figure 2.1: Evolution of the densities for DCDM, WDM and DR with redshift
z for two different parameter sets. For comparison, CDM without any decay is
plotted in black. For large z the CDM density is traced by DCDM.

Figure 2.2: The conformal Hubble rate H(z) with redshift z for two different
parameter sets. For large and small z, the ΛCDM case is again traced. For
intermediate values, a decrease of H is possible for large ε and short τ .

The deviating matter densities induce of course also a change in the matter
power spectrum, namely a suppression with its scale and depth being determined
by ε and τ . They are discussed in detail in the DCDM section later on. Nonethe-
less, to give a general idea, the matter power spectrum for ε = 0.001, 0.01 and
τ = 20Gyrs normalized to ΛCDM at a redshift of z = 3.0 is shown in Figure 2.3.
The suppression on small scales is clearly visible and the reason why DCDM is
discussed regarding cosmological problems.

7



Figure 2.3: The matter power spectrum normalized to ΛCDM at a redshift of
z = 3.0 for two different ε at the same τ . A suppression depending on the
parameters is clearly visible.

2.2 State of Decaying Dark Matter and Con-
straints

Since we already talked about the current challenges in cosmology, we now want
to focus on the discussions regarding variations of decaying dark matter models
and their resulting constraints.
There are mainly two different kind of models, one describing a decay into only
relativistic particles and the other one including two daughter particles where
one is massless and the other massive. They are of course related since the first
one corresponds to the limit of ε → 0.5 in the second one. Therefore, both
were studied regarding the Hubble and S8 tension, especially in recent years.
Usually, these are done with Monte Carlo Markov Chain (MCMC) algorithms
that are applied to different datasets but are mostly including CMB and BAO
data.

Work regarding the sole decay into DR started a bit earlier than the more com-
plicated 2-body decay scenarios. General discussions about the lifetime of DM
were for example done in [24]. They focus on the gravitational implications and
compute the change in the background evolution. They then apply an MCMC
algorithm to CMB and BAO data to arrive at a lower bound of τ > 160 Gyrs.
A similar study using additional weak lensing data and also considering non-
linearities in their analysis, derives a weaker bound of τ ≥ 97Gyrs [27]. Only for
solely CMB data their value is competitive with τ ≥ 140Gyrs. Regarding the σ8

tension, they actually find a substantial alleviation which seemed promising but
is challenged by later papers. These often study a variation of this model which
allows for an additional parameter f describing the ratio of DM that undergoes
the decay. This allows for more freedom and can describe either a 2-body decay,
if one daughter is cold again, or DM composed of multiple particles that are
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partly unstable. Studied e.g. in [28, 29], it was found that they don’t seem to
solve the Hubble or σ8 tension. The latest work for this model [30] confirms
this even more while also providing tight contraints. For short lifetimes, they
find f < 2.16% and for f → 1 the lower bound of τ > 250Gyrs. For specifically
f = 1, the unresolving of the Hubble tension was also validated in [31]. Over-
all, the decay into purely DR will most likely not be able to solve cosmological
tensions and requires minimum lifetimes of around ∼ 200Gyrs.

Regarding now our model with a 2-body decay into WDM and DR, the results
are similar for the Hubble tension, meaning it is probably not to be resolved
with DCDM [32, 33, 34]. Regarding the σ8 tension, it is however not so clear.
While [34] suggests that this tension can also not be addressed, [35], which in-
cludes a better treatment of perturbations, finds that it actually can be solved
for τ ∼ 55Gyrs and ε ∼ 0.7%. In two follow-up papers the authors of [35] make
use of a newly developed code for much faster computation of the DCDM power
spectra. This allows for a more in depth analysis, like in [16], where they also
find a mild preference for DCDM which depends on the used measurements
for S8. The latest paper [30] which was only published last month, then also
includes a treatment of non-linear effects. They find again that DCDM can
explain lower S8 values but is still not preferred over ΛCDM. In the best fit
model they also find the stronger estimatinos of τ ∼ 120Gyrs when including
their non-linear treatment compared to τ ∼ 43Gyrs without.

While these constraints are all derived using MCMC methods with CMB, BAO
and further datasets, there is also the possibility to study DCDM via galaxy
and halo properties with more regards towards the small scale problems. For
a decay into pure DR, [36] argues for example that a decay for half of the DM
particles can result in lower inner halo densities and a lower number of visible
dwarf galaxies. For DCDM with 2 daughter particles, [37] tries to connect the
model to the observed population of the Milky Way satellites. More precisely,
they look at three different properties that are affected by DCDM and use them
for constraining the parameters. These properties are M300 – the mass inside
of a 300pc radius – , the maximum circular velocity of the satellites, and stel-
lar properties. Combining numerical and semi-analytic methods, they find that
the best constraints originate from the number of satellites with certain M300

and arrive at τ & 30Gyrs for 20 . vk . 200km/s. Instead of ε, they use the
so-called kick-velocity vk ∼ εc which is transferred to the daughter particles
during the decay. In [38], they build up on this work and also use Milky Way
Satellite Galaxies for deriving their constraints. They exclude τ < 18Gyrs for
vk = 20km/s which means they are extremely sensitive to the low ε regime
which still affects the halo distribution and substructure. These are overall con-
servative bounds, so future studies will tighten this range even more.

Overall, a lot of studies of decaying DM models have been published in only
recent years, so a final statement regarding DCDM is not yet spoken. In sum-
mary, the current investigations suggests, that DCDM may not be preferred
over ΛCDM and can’t account for the Hubble tension. The σ8 tension however,
seems to be improved. Additionally, it is compatible for sufficient lifetimes.
Thus, it is not ruled out yet and is maybe not a strongly preferred, but still a
viable option. Since this model is still under investigation, further studies will
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hopefully be able to more strongly prefer or reject the model.
A large role will probably be played by future surveys providing more accu-
rate weak lensing, BAO and galaxy clustering measurements [39]. Examples
are the upcoming survey by the Rubin Observatory/LSST, scheduled to go into
operation in 2023 [40, 41], the Dark Energy Spectroscopic Instrument (DESI)
studying growth of structure via redshift-space distortions as well as BAOs [42],
and the Euclid satellite focusing on weak lensing and also BAO measurements
[43]. They will constrain observables like the growth function with more accu-
racy and thus be helpful for studying DCDM among other models.

We want to contribute to all these studies by following a slightly different ap-
proach which is based on BOSS data from the Lyman-α forest at z = 3.0− 4.2
in the mildly non-linear regime. This method, which includes non-linear correc-
tions, will be explained in the next section.
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3 | Fitting Model

3.1 BOSS Data

For inferring matter distributions in our universe, the Lyman-α forest is a pow-
erful tool for precise cosmological measurements in a relatively high redshift
regime [44, 45]. The name refers to a series of close absorption lines that are
visible when measuring a spectra from quasistellar objects (QSOs), e.g from a
quasar, which resembles a forest. These lines are a product of photons from
the QSO passing through hydrogen clouds in the IGM. If the photons exite the
famous Lyman-α transition, a typical absorption line is produced. Since there
are several clouds in the line of sight and they are spatially separated, the ab-
sorption lines will also exhibit a shift depending on the redshift of the original
transition. A typical flux spectrum can be seen in Picture 3.1 which was taken
from [46]. They, in turn, use data from the Baryon Oscillation Spectroscopic
Survey (BOSS) and the first extended-BOSS (eBOSS) quasars which are in-
cluded in fourteenth data release of the Sloan Digital Sky Survey (SDSS) [47].
The forest shape is clearly visible between the Ly-α and Ly-β peaks.

Measurements of the Ly-α forest can be useful for two points. At first, it

Figure 3.1: A typical flux spectrum when measuring a bright quasar taken from
[46]. Between he larger Ly-α and Ly-β peaks, a series of absorption lines makes
up the Ly-α forest. The grey side bands are used in the computation of the 1D
flux power spectrum.

can help studying the photo-ionized warm intergalactic medium (IGM) which
is quite complex and can only be studied by few observations or numerical sim-
ulations. This is usually done with high-resolution data for small-scales like the
one by e.g. HIRES (High Resolution Echelle Spectograph) from the KECK ob-

11



servatory [48] and offers constraints for the thermal state of the IGM. Secondly,
the forest is used to study the cosmological large-scale structure. Mid-resolution
data, which includes larger k modes, is better suited in this case. Such data is
provided by the SDSS in the form of BOSS and eBOSS data. We are overall
interested in the small-scales but we also have to deal with the non-linearities in
order to get reliable results. The advantage of the BOSS data we will use, is that
they lie in the only weakly non-linear regime for its redshifts z = 2.2, 2.4, ..., 4.6.
Higher strongly non-linear k modes are still having an influence on the integra-
tion of the line of sight but for the relevant scales of k ∼ 0.001− 0.02 s/km this
effect should be manageable with additional parameters. Thus, the scales of the
BOSS data are better suited for our model.
Extracting the actual 1D flux power spectrum from the data is studied well as
in [49, 50, 46, 51] and we use the spectrum from [52] based on the ninth release
of the BOSS data [53]. The dimensionless spectrum for all relevant redshifts
we want to fit to, can be seen in Figure 3.2. We constricted ourselves to only
redshifts from z = 3.0 − 4.2 following the approach in [54], which argues that
lower redshifts are more sensitive to non-linearities and higher redshifts to the
reionization process which increases the error. [55, 56].

Figure 3.2: 1D flux power spectrum based on BOSS data [52] for all redshifts
and with errorbars.

3.2 Modeling the one-dimensional Flux Power
Spectrum

Our end goal is to model the one-dimensional flux power spectrum from the
three-dimensional matter power spectrum. For this we follow the model de-
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scribed in [54, 57] and summarize here their approach.

The flux is determined by the transmission F which is depending on the optical
depth τ via the typical exponential law F = e−τ . In particular we are interested
in the fluctuations in the transmission spectrum, so

δF =
F

F
− 1, (3.1)

where F is the average transmission. Since the hydrogen clouds usually don’t
have large pressure gradients compared to the gravitational forces, the underly-
ing matter over- or under-densities are traced pretty well. Therefore the optical
depth and hence the transmission depend largely on the matter fluctuations δ.
Additionally, we have to account for gravitational collapse, by looking at the
peculiar velocity vp and its gradient along the line of sight. This is described
by a dependency on the dimensionless quantity

η = − 1

aH

∂vp
∂xp

(3.2)

with the co-moving coordinate xp. Dividing by aH sets the gradient in reference
to the Hubble acceleration and cancels the units. Now, we can at first rewrite
the optical depth contrast at linear order to

δτ =
τ(δ, η)

τ
− 1 =

τ + ∂τ
∂δ δ + ∂τ

∂η η

τ
− 1 = bτδδ + bτηδ, (3.3)

where we introduced the proportionality parameters bτδ and bτη. Applied to
the transmission, we then get

δF =
e−τ (1 + δτ )

e−τ
− 1

=
∂δF
∂δτ

δτ = −τδτ = log
(
F
)
δτ

= bFδδ + bFηδ (3.4)

with the new parameters bF� = log
(
F
)
bτ�.

Now we can compute the three-dimensional flux power spectrum as

(2π)3PF (k)δ3(~k + ~k′) =〈δF (~k), δF (~k′)〉

=

∫
d3k(b2Fδδ(

~k)δ(~k′)+

bFδbFη(δ(~k)η(~k′) + η(~k)δ(~k′)) + b2Fηη(~k)η(~k′))

At linear order the velocity gradient is proportional to the density contrast via

η = fµ2δ, where the µ2 =
k‖
k factor arises from only taking the contribution

along the line of sight k‖. In this case the above expression can be rewritten as

(2π)3PF (k)δ3(~k + ~k′) = b2fδ

∫
d3k

{
δ(~k)δ(~k′)(1 + 2

bFη
bFδ

fµ2 +
b2Fη
b2Fδ

f2µ4)

}

= b2fδ(1 +
bFη
bFδ

fµ2)2(2π)3Pδδ(k)δ3(~k + ~k′).
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Introducing the parameter β =
bFη
bFδ

f , we succeeded in expressing the flux power
spectrum in terms of the linear matter power spectrum

PF (k) = b2fδ(1 + βµ2)2Plin(k). (3.5)

At non-linear order, η actually depends on the velocity divergence θ = 1
aHf∇~v

via η = fµ2θ. Using this relationship we arrive at the similar result

PF (k) = b2fδ
(
Pδδ(k) + 2βµ2Pδθ(k) + β2µ4Pθθ(k)

)
(3.6)

with the additional dependence on the velocity divergence power spectrum Pθθ
as well as the cross-correlation spectrum Pδθ.
The parameter β can be estimated with the Zel’dovich approximation [58], where
it only depends on the adiabatic index γ that in turn is related to the reioniza-
tion history [59]. Since we don’t want to impose lots of parameters regarding the
IGM, we rather model it with two parameters αbias and βbias determined by fit-

ting to the data and allow a redshift dependence with β(z) = αbias(
a(zpivot)
a(z) )βbias .

Our pivot redshift is here zpivot = 3.0. This treatment allows for lots of freedom
to model the IGM suitably without making restrictive assumptions.

There are also a few other physical effects we need to account for.
First of all, the collapse of baryonic matter is not only determined by gravita-
tional forces but is also tied to their innate pressure. Unlike for dark matter, a
collapse cannot happen below the Jeans scale kJ = aH

cs
, which is related to the

sound velocity cs = γT
µpmp

with temperature T , adiabatic index γ and the mean

particle mass µp of the IGM. More precisely, we have to look at the filtering
scale kF which is the redshift space average of the Jeans scale kJ [60]:

kF =
1

D(t)

∫ t

0

dt′
a2(t′)

k2
J(t′)

[
d

dt′

(
a2(t′)

d

dt′
D(t′)

)]∫ t

t′

dt′′

a2(t′′)
. (3.7)

For larger k than this scale, a suppression is modeled by an exponential factor

exp

(
−
(
k
kF

)2
)

. Following [54], we fix it in our analysis to kF = 18h/Mp but

we also check that our results don’t really depend on its exact value later on.
Secondly, the IGM is not cold and the spectral lines are therefore subjected
to thermal broadening. This broadening is also amplified by other effects like
redshift distortions due to peculiar velocities as well as finite resolutions of
measurements [57, 61]. To account for this, we include an overall exponential

suppression factor of exp

(
−
(
k‖
ks

)2
)

with the suppression scale ks being mainly

determined by the thermal broadening, so ks ≈
√

mp
T . With an approximated

temperature for the IGM of T ≈ 104K, we can derive ks ≈ 0.11s km−1 and fix
this value accordingly like in [54]. Again, we perform a short study later on, to
confirm that our results aren’t sensitive to this parameter.
The last additional effect we need to account for, are absorption features im-
printed by other transitions than Lyman-α on the measured spectrum. The
most dominant effect stems from the SiIII absorption, that causes a factor of
oscillatory nature with wavelength ∆V = 2π/0.0028 due to interference effects
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[52]. These effects are well studied by simulation data and as a result, it can be
described by

κSiIII = 1 + 2

(
fSiIII

1− F

)
cos
(
∆V k‖

)
+

(
fSiIII

1− F

)2

, (3.8)

where we also include the oscillation strength fSi111 = 10−6. The underlying
transmission function can be modeled by log

(
F̄
)
(z) = −0.0025(1+z)3.7 [54, 52].

This description was found to be sufficient and, again, doesn’t produce relevant
fit implications [54, 57].
To finally arrive at the one-dimensional spectrum, we now need to integrate
along the two k-directions k2, k3 that are not along the line of sight k‖:

PF,1D(k‖, z) =
1

(2π)2

∫
dk2dk3PF (k, z)

=
1

(2π)2

∫ 2π

0

dϕ

∫ ∞
0

mdmPF (
√
k‖ +m2, z)

=
1

2π

∫ ∞
k‖

kdkPF (k, z) (3.9)

This can be applied to each of the power spectra in 3.5 or 3.6 which leads in
turn to the three integrals

I0(k‖, z) =

∫
k‖

dkk exp

(
−
(
k

kF

)2
)
Pδδ(k, z), (3.10)

I2(k‖, z) =

∫
k‖

dk
k2
‖

k
exp

(
−
(
k

kF

)2
)
Pδθ(k, z) and (3.11)

I4(k‖, z) =

∫
k‖

dk
k4
‖

k3
exp

(
−
(
k

kF

)2
)
Pθθ(k, z). (3.12)

In the linear case, all power spectra are replaced by the linear spectrum. We
observe, that the powers of k are changing with the powers of µ ∝ k−0.5 and we
also have already included the Jeans suppression that also depends on k.
As one can see, the integrals are theoretically uncapped which would leave us to
solve integrals in extremely non-linear scales. For I2 and I4 these scales aren’t
really contributing much after a certain point since the k-dependency leads to
smaller and smaller corrections. For I0 however, it takes longer until the filter-
ing scale can suppress the integrand enough and hence we have a contribution
from UV-scales. To account for this problem, we solve all integrals up to a
cutoff scale and include an extra counterterm Ict for I0, which captures these
problematic scales, like done in [57, 54]. Again, we allow a redshift dependence

with Ict = αct

(
a(z)

a(zpivot)

)βct
and add thus two new free parameters.

Lastly, we add an overall amplitude A in which part of b2Fδ can be absorbed
so we are only left with the log2(F (z)) and the thermal broadening as remain-
ing factors. For the background transmission, we use the ansatz log

(
F
)
(z) =

αF

(
a(zpivot)
a(z)

)βF
. The transmission amplitude αF can then also be absorbed
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into the overall amplitude A. Finally, with all the additional factors and the
integrals, we arrive at the final model

PF,1D(k‖, z) =AκSiIII(k‖, z) log2(F (z)) exp

(
−(

k‖

ks(z)
)2

)
(I0 + Ict + 2β(z)I2 + β(z)2I4). (3.13)

This relation allows for the overall six free parameters

{A, βF , αbias, βbias, αct, βct} . (3.14)

The IGM properties are then determined by mainly the bias parameters (short-
ened now to αb and βb), while the non-linearities we can’t sufficiently describe,
are captured by our counterterm parameters. The only other more general pa-
rameters A and βF then complete the picture. The advantage of this model is,
that we don’t need to determine the complex IGM physics beforehand but can
leave them open which will thus lead to robust results. However, this means
that the model is per design more conservative.

3.3 The 1-loop Power Spectrum

To apply the model we have derived, we need the δδ, δθ and θθ 1-loop auto
or cross-correlation spectra. For our studied cosmology models, we can always
generate the linear spectrum and thus need some kind of formalism to derive the
higher order corrections from there. We make use of cosmological perturbation
theory which is a commonly used approach to describe ΛCDM and beyond
ΛCDM models. Here, we give a short summary of the formalism as described
in more detail in [62, 63, 64, 65, 66]. All formulas can basically be found in each
of these sources.
The overall goal is to get an expression for the power spectrum in a perturbative
expansion incorporating coupling between different modes. For this, we have to
start at a general gravitational instability. With an assumption of an irrotational
velocity field, the only relevant quantities are the density contrast δ and the
peculiar velocity divergence θ. They are subjected to their respective equations
of motion in Fourier space corresponding to the continuity and Euler equation

∂δ(~k, τ)

∂τ
+ θ(~k, τ) =

= −
∫

d3k1d3k2δD(~k − ~k1 − ~k2)α( ~k1, ~k2)θ( ~k1, τ)δ( ~k2, τ) and

∂θ(~k, τ)

∂τ
+H(τ)θ(~k, τ) +

3

2
Ωm(τ)H2(τ)δ(~k, τ) =

= −
∫

d3k1d3k2δD(~k − ~k1 − ~k2)β( ~k1, ~k2)θ( ~k1, τ)δ( ~k2, τ) (3.15)

with the conformal time τ and conformal Hubble rate H. The factors α( ~k1, ~k2)

and β( ~k1, ~k2) induce a coupling between different k modes which is a solely
non-linear effect. To solve these equations, we make use of the perturbative
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expansions

δ(~k, τ) =

∞∑
n=1

an(τ)δn(k) and

θ(~k, τ) = −H(τ)

∞∑
n=1

an(τ)θn(k). (3.16)

This is only valid for Einstein-de-Sitter standard perturbation theory (EdS-
SPT) with Ωm = 1 and ΩΛ = 0. This simpler case has the advantage of leading
to a factorization in time with a(τ) representing the linear growth factor D.
Only the fastest growing modes are considered, meaning modes proportional to
D. Less fast growing or even decaying modes which can occur due to scattering
are subdominant and can be neglected.
Now, the equations of motion can be solved and lead to

δn(~k) =

∫
d3 ~q1...

∫
d3 ~qnδD(~k − ~q1...n)Fn( ~q1, ..., qn)...δ0( ~qn) and

θn(~k) =

∫
d3 ~q1...

∫
d3 ~qnδD(~k − ~q1...n)Gn( ~q1, ..., qn)...δ0( ~qn). (3.17)

The recursive functions Fn and Gn are constructed with the coupling functions
and also depend on each other. The detailed formula isn’t really needed to
understand the concept so we omit it here, but it can be looked up in e.g.
[66, 64]. The initial fluctuations fulfill δ0(~k) = δ1(~k) = θ1(~k). For an even
compacter expression we can introduce the tuple (δ, −θ/H). In this case, the

coupling functions are replaced by γ(~k, ~k1, ~k2) and we are left to solve

∂ψ(~k, η)

∂η
+ Ωabψb(~k, η) =

= −
∫

d3k1d3k2δD(~k − ~k1 − ~k2)γ(~k, ~k1, ~k2)ψb( ~k1, η)ψc( ~k2, η) (3.18)

where we have switched to the time coordinate η = ln(a(τ)) and
Ωab = ((0,−1), (−3/2, 1/2)) in the case of EdS-SPT. In a general universe, this
matrix would be time-dependent and the time-factorization would not be a given
anymore. With a series expansion of ψ, the solution now takes the similar form

ψa(~k, η) =

∞∑
n=1

∫
d3 ~q1...

∫
d3 ~qnδD(~k − ~q1...n)F (n)

a (~q1, ..., ~qn, η)δ0(~q1)...δ0( ~qn),

(3.19)

where the initial fluctuations δ0 can be assumed to be a Gaussian random field
determining our initial linear power spectrum P0. F (n) is again recursively de-
fined and contains the time propagation and the interaction term. For EdS-SPT,
F (n) = an(Fn, Gn), and a factorized time dependence holds. This principle can
be well represented with ”Feynman diagrams” which help greatly in visualizing
the concept. In Figure 3.3 the series expansion of ψ can be seen. On the left is
the linear spectrum ψ1 which is simply the primordial spectrum propagated in
time. Next to it is the next higher order ψ2, where two modes couple with each
other via γ and are then again propagated in time. For the third diagram on
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the right, two modes couple first with each other and then to a new k mode to
produce ψ3. The higher the order, the more couplings are considered.

η

k

η

k γ k

η

γ

γ

ψ1(k, η) ψ2(k, η) ψ3(k, η)

Figure 3.3: Diagrams for the first orders of the ψ(~k, η) expansion.

We are interested in the auto- or cross-correlations 〈ψa(~k, η), ψb(~k′, η)〉 = δD(~k+
~k′)Pab(k, η). Using this with expression 3.19, we arrive at the series for the power
spectrum [64]

Pab(k, η) =P linab (k, η) + P 1loop
ab (k, η) + P 2loop

ab (k, η) + ...

with

P linab (k, η) =F (1)
a (k, η)P0(k)F

(1)
b (k, η),

P 1loop
ab (k, η) =

∫
d3~qP0(q)[3F (1)

a (k, η)P0(k)F
(3)
b (~k, ~q,−~q, η)+

3F (3)
a (~k, ~q,−~q, η)P0(k)F

(1)
b (k, η)+

2F (2)
a (~k − ~q, ~q, η)P0

(∣∣∣~k − ~q∣∣∣)F (2)
b (~k − ~q, ~q, η)]. (3.20)

where Wick’s theorem lets us write the higher order correlations as a sum of the
different pairings.
The new diagrams we are getting from this expression, are simply the old ones
glued together since we are looking at the correlation of two ψ. The linear and
1-loop diagrams can be seen in Picture 3.4. For P0 on the left, two ψ1 diagrams
are glued together at their initial spectra (represented by the cross) giving us
something quadratic. For the three possible P1 diagrams we have either the
pair ψ2 and ψ2 or one of the two ψ1 and ψ3 pairs giving us something quartic.
The same concept would be applied to higher orders resulting in more and more
contributing diagrams.

k

η

−k
η

k

η

−k
η

k

η

−k
η

k

η

−k
η

P0(k, η) P1(k, η)

Figure 3.4: Linear and 1-loop diagrams for Pab(k, η).

With this formalism, we have finally arrived at our goal of getting a method
able to compute higher order spectra. The not so simple implementation of this
concept is luckily already done and we can use existing code in this work [65,
64].
In principle, this approach can be used to consider higher orders than the 1-loop
corrections as well. Of course, this would make the treatment of non-linearities
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even more accurate, however, the main difference towards the linear spectrum
should still be captured which we will also see later on. With our additional
counterterm treatment of the smaller scales, we thus should be able to describe
the non-linearities sufficiently.
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4 | ΛCDM Model

4.1 Power Spectra

At first, we want to test our fit with a standard ΛCDM Model. To generate
the linear power spectrum we made use of the freely available CLASS (Cosmic
Linear Anisotropy Solving System) [67, 68] which is a Boltzmann code comput-
ing the evolution of linear perturbations and large scale structure observables
in our universe. To match the BOSS data, we need the spectrum for redshifts
z = 3.0, 3.2, ..., 4.2. Our cosmological parameters are fixed according to the 2018
Planck data [3] which are listed in Table 4.1. ΩΛ is left free and determined by
fulfilling the Friedmann equation. Apart from these typical parameters, we also
choose massless neutrinos.

h 0.6781
ωb 0.0224
ωcdm 0.1201

log
(
1010As

)
3.0448

ns 0.9666

Table 4.1: Cosmological parameters used in generating the ΛCDM spectra.

The computation of the 1-loop spectra is based on the scheme explained in 3.3.
With the linear spectrum as input, we can use the code described in [64] and
[65] to determine the δδ, δθ and θθ corrections.
The resulting linear matter power spectrum as well as Pδδ, Pδθ and Pθθ are
plotted in Figure 4.1. The top plot shows the absolute spectra, the bottom one
the relative spectra for the respective linear spectrum. In general, since we are
including higher order contributions to the power spectrum, the 1-loop spectra
all cause a correction upwards for mid to high k-values. These corrections are
already starting in the pink region which marks the k-values encompassed by
the BOSS data, and are at around 100% for the lowest redshift. Therefore, they
are pretty significant and should definitely be considered in our model. For
higher redshifts, these deviations are smaller since there was less time to build
the small scale structure.
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Figure 4.1: The linear and 1-loop power spectra Pδδ, Pδθ and Pθθ for a ΛCDM
model at z = 3.0 at the top and normalized to the linear spectrum and zoomed
in towards the relevant scales at the bottom. The pink region highlights the
range of k-values that are contained in the BOSS data. In the 1-loop case, there
are upwards corrections in this region starting at around k = 0.2h/Mpc. This
effect is the most dominant for Pδδ.

4.2 Integrals

With the generated power spectra, we can now compute the integrals which is
the only way the different linear and 1-loop models enter the fit. In Figure 4.2
all integrals in the 1-loop (solid line) and linear (dashed line) case are plotted
for all redshifts.
The overall shape of the integrals and their differences are determined by an
interplay of a few factors:
At first, our integration range decreases for higher k‖ which causes also a de-
crease in the integral.
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(a) I0 for all redshifts with a cutoff of 20h/Mpc.

(b) I2 for all redshifts with a cutoff of 20h/Mpc.

(c) I4 for all redshifts with a cutoff of 20h/Mpc.

Figure 4.2: The integrals I0, I2 and I4 for our ΛCDM model and redshifts
z = 3.0 to z = 4.2. The dashed lines refer to the linear integrals and are
generally smaller compared to the 1-loop case, especially for small scales. The
used cutoff scale is 20h/Mpc.
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Secondly, there are different powers of k in the integrals namely k, k−1 and
k−3 which lead to a stronger suppression for higher integrals in the latter cases.
Additionally, we have also different powers of k‖ namely k0

‖, k
2
‖ and k4

‖. This
makes it possible for the integral to actually increase despite the suppression
factors like in the case of I2. At last, the input spectra have of course an effect
which is solely responsible for the difference in shape between linear and 1-loop
integrals. The increase in the 1-loop case for small scales, ensures that its inte-
grals are also larger than the linear ones and have a different scale dependency.
To investigate the validity of our cutoff approach, we tested the dependency of
the integrals - as well as the fits later on - on their cutoff scale. Due to the
exponential suppression factor the integrands itself will converge to 0 for high
k. For I2 and I4, this suppression is even stronger because of the additional
k−1 and k−3 factor. Therefore, the only question left is which cutoff scale is
sufficient. Like in [54] and [57] we choose to make the cut at 20h/Mpc.
In Figure 4.3 the integrals with a cutoff of 10h/Mpc are shown normalized to
the respective ones with a cutoff scale of 20h/Mpc. The deviations for I0 are
visibly the largest which is expected since I0 is the most sensitive to smaller
scales. However, due to our introduced counterterm that absorbs the effect of
these scales, this should not be a problem. For the higher integrals, the devi-
ations are . 2% and also not worrying. In general, one can also see a larger
dependency for the 1-loop case due to their larger spectra.

Figure 4.3: The linear and 1-loop I0, I2 and I4 integrals with a cutoff of 10
h/Mpc normalized to their respective integrals with a cutoff of 20 h/Mpc. The
deviations are only large for I0 which is balanced by our introduced counterterm.

4.3 Fits

To compute the fits we used Mathematica. After the integrals were calculated,
the difference of the fitting model to the BOSS data points squared divided by
the error squared was minimized. This minimized quantity represents our χ2

helping us to compare and value our fits. All seven redshifts are hereby fitted
at the same time, so with 35 k values per redshift bin there are 7 · 35 = 245
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fitting points.
To make sure Mathematica does not get stuck in local minima, the minimization
was done scanning different parameter range combinations. Additionally, we
added a factor of 100 to the counterterm as well as an overall factor of 1/100
to ensure that A and αct are at the order of O(1) avoiding possible precision
issues with small or large numbers in the computation. Furthermore, the fits
were often repeated with a different cutoff scale which not only tests the cutoff
dependence but is also an extra check for possible minimization errors. Together,
these measures should reassure that the computation results can be trusted.

4.3.1 Original Fit

The results of the fit in its original form is plotted in Figure 4.4. At the top, the
dimensionless spectrum is plotted for each redshift as well as the corresponding
BOSS data points with their error bars whereas the bottom shows the spec-
trum in km/s. The linear fit is indicated with the dashed line and the 1-loop fit
with the solid one. In both cases our model seems to capture the shape of the
data quite good with the 1-loop case fitting visibly better to mainly the small
scales as expected. This is reflected by the χ2 values of 206.12 and 193.74 listed
with the other parameters in table 4.2. Overall, we have an improvement of
∆χ2 = 12.4. It is difficult to consistently interpret the other parameters but we
can make a few observations.
The overall amplitude is significantly smaller in the 1-loop case, which is not
surprising regarding the larger spectra. The redshift-dependence for the aver-
age transmission is stronger in the 1-loop case whereas it is weaker for the β
parameter that also undergoes a switch in signs. The counterterm shows in
both cases a very strong redshift dependence and while generally negative, it is
approximately twice as large for the 1-loop case.
These parameters all not only capture the effects of the complex intergalactic
medium but also of the non-linear scales. While we already consider non-linear
corrections, these are still at first order and are not sufficient in the extremely
small scales influencing I0. Overall, the parameters for this baseline model while
complex can still be used to make comparisons to the other tested models later
on.

linear 1-loop

χ2 206.12 193.74
100A 1.27 0.94
βf 1.72 2.60
αb 0.80 -3.22
βb 3.91 1.48

αct/100 -0.85 -1.77
βct 47.70 35.95

Table 4.2: ΛCDM original fit results for the linear and 1-loop case.

Like explained in section 3.2, we have fixed the two parameters ks = 0.11s/km
and kf = 18h/Mpc. Since the IGM is a complex topic, we explicitly checked that
the fit is not very sensitive to these two parameters and the complex nature can
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actually be sufficiently captured by our remaining free parameters. In Figure
4.5 we plot the linear χ2 value for a range of ks and kf values normalized to the
χ2 of the actual chosen values. In both cases the deviations are at the most 1%.
Additionally, the fixed values also lie in a minimum and represent the best fit.
Therefore, the choice of the two parameters seems to be good and not overly
important.

Figure 4.4: The linear (dashed) and 1-loop (solid) fit for all redshifts z = 3.0−4.2
to the BOSS data with its errorbars.

4.3.2 Fits with βb and βct Restrictions

The βx parameters all describe a certain z-dependency we modeled with a poly-
nomial law which is only physically plausible for small variations across the
redshifts. Whereas βf is always at a suitable value, this isn’t always true for
the two other ones. βct is already extremely large in the original ΛCDM fit and
βb displays jumps to high values from time to time - at least for the later tested
models. Therefore, it makes sense to restrict them with a prior ranging from
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(a) Dependency of fit on the value of ks
given in s/km. The chosen value of 0.11
s/km is the minimum.

(b) Dependency of fit on the value of kf
given in h/Mpc. The chosen value of 18
h/Mpc is the minimum.

Figure 4.5: χ2 for different values of ks and kf normalized to the χ2 with
the chosen values. The chosen values produce in both cases the best fit with
deviations around or under 1%.

−10 to 10. While still allowing for a generous range of parameters, this prior
filters the really high and all together quite unphysical values of βb and βct.
The result of this fit with the restrictions −10 ≤ βb ≤ 10 and −10 ≤ βct ≤ 10
can be seen on the right in table 4.3. Since βct was larger before, it is now
fitted to the largest possible value of 10. The other parameters are only slightly
varied to before while the fit worsens to 211.11 and 203.77 for linear and 1-loop
respectively.
Another restriction we can impose, is to fix the βb parameter completely. We
already mentioned before, that the famous Zel’dovich approximation describing
gravitational collapse predicts a β parameter with no z-dependence [59]. In ac-
cordance to this, we can also try to describe β by only a constant and hence set
βb = 0. The result of such a fit is seen on the left in table 4.3. Due to the five
instead of six free parameters, the fit worsens of course again with a χ2 of 223.91
and 243.45 for linear and 1-loop. Notably, the 1-loop fit is now for the first time
worse than the linear one and not only slightly. It seems much better to only
restrict βb to reasonable values instead of imposing this strong requirements.

βb = 0 βb and βct priors
linear 1-loop linear 1-loop

χ2 223.91 243.45 211.11 203.77
100A 1.23 0.89 1.23 0.92
βf 2.61 3.17 1.75 2.62
αb 0.75 −2.94 0.93 −3.55
βb 0.00 0.00 3.37 1.09

αct/100 0.47 0.89 −1.43 −2.73
βct −7.55 −5.65 10.00 10.00

Table 4.3: ΛCDM βb and βct restriction fit results for the linear and 1-loop case.
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4.3.3 Fits with counterterm Restrictions

Another way to modify our fit further is by altering our counterterm. In princi-
ple, this counterterm is proportional to the used spectrum squared. The spec-
trum itself is in linear order proportional to the scale factor a = 1

1+z and in

second order proportional to a2. In return, this would result in a linear countert-
erm proportional to a2 and a 1-loop counterterm proportional to a4. According
to this approximation, our first alteration ’CT1’ is made up of

Ict1,linear = αct1 ·
(

1 + zpivot
1 + z

)2

and Ict1,1−loop = Ict1,linear + αct1 ·
(

1 + zpivot
1 + z

)4

, (4.1)

so only αct1 and αct2 are fitted in each case respectively.
For our second alteration ’CT2’, we allow for more freedom with a quartic term
in the linear and 1-loop case and a completely independent 1-loop counterterm:

Ict2,linear = αct1 ·
(

1 + zpivot
1 + z

)2

+ αct2 ·
(

1 + zpivot
1 + z

)4

Ict2,1−loop = αct1 ·
(

1 + zpivot
1 + z

)2

+ αct2 ·
(

1 + zpivot
1 + z

)4

(4.2)

Here, αct1 and αct2 are fitted for each case, so we have 6 instead of 5 free
parameters.
The results of these variations are listed in table 4.4. For CT1, the counterterm

CT1 CT2
linear 1-loop linear 1-loop

χ2 222.11 212.22 211.38 205.44
100A 1.18 0.89 1.25 0.95
βf 1.95 2.64 1.80 2.70
αb 1.00 −4.11 0.87 −2.95
βb 2.99 0.80 3.29 1.14

αct1/100 −1.19 −1.19 4.23 13.17
βct1 2.00 2.00 2.00 2.00

αct2/100 −4.12 −5.33 −14.23
βct2 4.00 4.00 4.00

Table 4.4: ΛCDM ct restriction fit results for the linear and 1-loop case.

is always negative with an increase due to the extra term in the 1-loop case. For
CT2, the counterterm is also always negative but only due to the larger quartic
terms resulting in a more nuanced redshift-dependence. Due to the additional
free parameter CT2 gives overall a better χ2. The fact that the higher order
term is larger, hints to a counterterm that doesn’t really behave according to
such an expansion approach. Therefore, these counterterm alterations are to be
taken with a grain of salt. While CT2 provides a similar freedom which results
in not too bad χ2 values, it also behaves not as intended, so this alteration
doesn’t provide really new perspectives compared to the original fit.
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4.3.4 Summary

Here, we give a quick overview over all the ΛCDM fit variations as listed in table
4.5. The original fit leaves all 6 parameters completely free, whereas ”βb prior”

linear χ2 1-loop χ2

original 206.12 193.74
βb prior 206.12 193.74

βb and βct prior 211.11 203.77
βb = 0 223.91 243.45

βb = 0 and βct prior 223.91 243.45
CT1 222.11 212.22
CT2 211.38 205.44

Table 4.5: Summary of all the χ2 values of the different fit variations in the
linear and 1-loop case for ΛCDM.

and ”βb and βct prior” set the additional requirement of −10 ≤ βx ≤ 10 to limit
the z-dependency to reasonable values. The ”βb prior” is a bit redundant since
its restrictions are already fulfilled by the original fit, but it was included for
better comparisons with the following dark matter model.
Leaving 5 parameters free, we have the ”βb = 0” as well as the ”βb = 0 and βct
prior” fit where the latter is again redundant and only included for completion.
This change was motivated by the Zel’dovich approximation and its prediction
for the β parameter. However, they don’t seem very helpful for now.
The last two fits each alter the counterterm in a different way. The first one,
CT1, fits a quadratic term in the linear case and the same quadratic term plus
a fitted quartic term for the 1-loop case - so overall 5 parameters. In the second
one, CT2, a quadratic plus quartic term is fitted in the linear and 1-loop case,
leaving 6 parameters free again. They also don’t seem too useful but are again
discussed for WDM.
Overall, the priors seem like the best choice for a fit variation. While the
fit worsens of course, it only denies unphysical behavior while not imposing
lots of restrictions. With these reference results, we can now turn to the more
interesting models of first warm dark matter and then decaying cold dark matter.
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5 | Warm Dark Matter Model

5.1 Overview

Before going on towards DCDM, we first want to look at a WDM model. This
not only allows us to test our fitting method against a not too complex model, it
is also well studied and its effects well understood. Thus, it can help in uncover-
ing possible issues with the method or implementation and can be used to test
different fit variations and their impact. Additionally, it already encompasses
a feature also appearing in DCDM, namely the suppression caused by WDM.
Overall, it therefore serves well as a ”test model” and still allows us to derive
mass constraints at the end.
The difference between CDM and WDM lies in the free-streaming length which
describes the velocity dispersion. CDM has an extremely small free-streaming
length, meaning it is massive enough to always be non-relativistic. Warm dark
matter, on the other hand, is actually partly relativistic during structure for-
mation which causes it to slow down. This happens for scales smaller than the
free-streaming scale kfs, since fluctuations are washed out. The lighter the par-
ticle, the larger the free-streaming scale and the earlier clustering is inhibited.
This results in a characteristic suppression in the matter power spectrum for
k > kfs and is the reason why it is proposed as a possible solution for small-scale
problems. One is the cusp-core problem, meaning that the inner mass density
of dark matter halos is more cuspy in simulations than it is in observations [18].
The other one is the missing satellites problem, describing the larger amount
of low mass halos predicted by N-body simulations than observed [69]. Lots of
simulations have been performed on these and both problems can actually be
eased by WDM. It can lower core densities and increase the core radii as well
as also reduce the number and concentration of low-mass halos [70]. However,
while improving these issues, WDM can’t eliminate them completely [71, 71,
72, 73, 74]. Numerical simulations are however not only very complex computa-
tionally, they are also criticized for not being precise enough. One problematic
topic for example, is including baryonic processes and feedback which is chal-
lenging to simulate. Increasing computational power will make it possible to
implement more of such complexities. We can therefore look forward to more
accurate simulations and thus more insight on the impact of DM models on the
small-scale structure formation.
There are two popular theories describing WDM particles. One is thermal dark
matter that was in thermal equilibrium at some point and decouples as soon as
it falls out of equilibrium due to the decreasing temperature. Another, is sterile
neutrinos that were never in thermal equilibrium in the first place ([75], [76],

29



[77]). They are produced by active neutrinos and can be quite heavy due to the
seesaw-mechanism. The important property of WDM is hereby the distribution
function which can be described as f = χ/e(p/Tx) + 1 [78, 57]. For χ = 1 and
Tx << Tν , we have the fermionic thermal relic and for χ << 1 and Tx = Tν
the sterile neutrino. The free-streaming scale depends on the momentum and
therefore the distribution function which changes for different models [17]. How-
ever, for observables like the power spectrum, only the ratio Tx/mx is actually
important. Thus, the thermal and the sterile masses can actually be related via
[79]

mst = 4.47keV
(mth

keV

) 4
3

(
0.12

ωx

) 1
3

. (5.1)

Additionally, the temperature is given by the relation

ωx = χ

(
Tx
Tν

)3
mx

94eV
. (5.2)

This allows us to only set one mass and then convert them into each other. In

our case, we set sterile masses with a temperature of Tν = 4
11

1/3
Tγ where tγ is

the photon temperature.

mst in keV mth in keV Tth in Tν
0.05 0.034 0.61
0.1 0.058 0.48
0.2 0.097 0.38
0.3 0.132 0.34
0.4 0.164 0.3
0.5 0.193 0.28
0.6 0.222 0.27
0.7 0.249 0.25
0.8 0.275 0.24
0.9 0.301 0.23
1.0 0.325 0.22
1.5 0.441 0.20
2.0 0.547 0.18
2.5 0.647 0.17
3.0 0.741 0.16
3.5 0.832 0.15
4.0 0.92 0.14
4.5 1.005 0.14
5.0 1.008 0.13
5.5 1.168 0.13
10.0 1.829 0.1
15.0 2.479 0.09
20.0 3.076 0.08

Table 5.1: Chosen sterile masses with corresponding thermal masses and tem-
peratures.
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5.2 Power Spectra and Integrals

To generate the power spectra, we use again CLASS with the same parameters
as in Table 4.1. The cold dark matter is then replaced with non-cold dark mat-
ter and its mass is varied. The sterile masses we choose, encompass the range
mst = 0.05− 20 keV and the corresponding thermal ones mth = 0.03− 3.1 keV.
All masses are listed in Table 5.1 with the additional temperature in the thermal
case. We can see nicely, how it decreases for larger masses since the WDM gets
gradually less warm and converges towards CDM.

Figure 5.1: The linear and 1-loop power spectra Pδδ, Pδθ and Pθθ for a WDM
model at z = 3.0 at the top and normalized to the linear spectrum and zoomed
in towards the relevant scales at the bottom. The pink region highlights the
range of k-values that are contained in the BOSS data. The suppression visibly
sets in much earlier for lower masses.

The power spectra for a few selected masses are shown in Figure 5.1. At the
top, the linear spectra for the whole k range can be seen at z = 3.0. At the
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bottom, we also show the 1-loop corrections Pδδ, Pδθ and Pθθ, that are always
normalized to their respective non-linear ΛCDM spectrum, and zoom in to only
the relevant k regimes. Like always, the pink region indicates the BOSS region.
For the largest mass of m = 20keV, we see in both plots, how the spectrum con-
verges towards ΛCDM. The suppression sets in well after our region of interest
and is only slightly present for very small scales. For the non-linear spectra,
this suppression is even more lessened. On the other end of the mass range,
m = 0.05keV has a much smaller free-streaming scale kfs, washing out the
matter fluctuations even before the BOSS region where it converges quickly to
0. Due to its features being located at larger k values, its non-linear spectra
don’t deviate much from the linear one. Starting from m ∼ 0.3keV, the sup-
pression is now located inside the BOSS region with larger masses shifting the
cutoff to smaller and smaller scales. The ΛCDM spectrum is traced until the
free-streaming scale is reached and the matter fluctuations drop to basically 0.
The 1-loop spectra get more important towards the smaller and more non-linear
scales. Interestingly, we also see that spectra including the velocity divergence
receive the most corrections compared to ΛCDM. Also, the non-linearities affect
the start of the suppression which is now delayed.
Overall we see, that our masses encompass three regimes with the cutoff setting

(a) I0.

(b) I2. (c) I4.

Figure 5.2: I0, I2 and I4 for WDM with three different masses m =
0.1, 1.0, 20.0keV and a redshift of z = 3.0. The ΛCDM model is also plot-
ted for better comparison. The dashed lines refer to the linear integrals, the
solid ones to the 1-loop case. The used cutoff scale is 20h/Mpc. The lower the
mass, the stronger is the suppression and thus the integral decreases.
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in before, during and after the BOSS region.
The same behavior for the masses can also be seen in the computed integrals in
5.2 where they are shown for the linear and 1-case for three different masses. The
smallest mass with m = 0.1keV quickly converges to 0 as its respective power
spectrum. For more intermediate masses, the suppression causes a constant
drop in the overall amplitude for I0. For the higher integrals, the amplitude is
affected differently. While ΛCDM is almost constant, the suppression for WDM
induces an additional scale-dependency for the linear and the 1-loop case. The
largest mass off m = 20keV experiences no cutoff in the BOSS regime and there-
fore perfectly aligns with ΛCDM for I2 and I4, and almost perfectly for I0.
When we look at the cutoff dependency, we observe that the cutoff scale for
small masses is almost irrelevant due to them being already 0 beforehand. Only
for intermediate and high masses, the integrals aren’t that small anymore and
the cutoff scale makes a visible difference. Thus, we show the cutoff dependency
for the highest mass m = 20keV in Figure 5.3. Again, only I0 is affected much
which is absorbed by our counterterm, while I2 and I4 experience deviations of
. 2%. Regarding these behaviors, we expect large masses to reproduce ΛCDM
results and small masses to cause really high amplitudes to try and lift the in-
tegrals. The intermediate values will of course be the more interesting ones. If
a slight suppression on small scales is actually supported by our data, the fit
should improve for these masses.

Figure 5.3: The linear and 1-loop I0, I2 and I4 integrals with a cutoff of 10h/Mpc
normalized to their respective integrals with a cutoff of 20h/Mpc. The devia-
tions are the largest for high masses, so the plot uses the WDM model with
m = 20keV. The behavior in this case is the same as for ΛCDM.

5.3 Fits

5.3.1 Original Fit

With these expectations, we can now turn towards our fit results. We always
show the linear and 1-loop case, allowing us to observe the non-linear effects, as
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well as the exclusion regions. The yellow and green bands show the confidence
intervals of 68 and 95%, respectively, around ΛCDM. ∆χ2 values in this band
agree with our ΛCDM fit, while values above leads to exclusion and values below
to a preference. Note, that the reference value for ΛCDM changes depending
on the fit with them being summarized in Table 4.5.
In Figure 5.4 the results of the original fit are shown. At the top, the linear
∆χ2 values are plotted for the different masses, whereas the bottom shows the
1-loop fits.
In the linear case, the fit actually fulfills our expectations from before. Towards
extremely small masses, the χ2 value diverges together with the amplitude that
tries to do everything in its power to counterbalance the too strong suppression.
This obviously still produces the wrong shape and is thus strongly excluded.
With the shifting of the suppression in the BOSS regime, the fit improves a
lot and actually leads to a preference over ΛCDM. The minimum is around
m ∼ 2.5keV which we also showed in the power spectra plots (5.1) and which
corresponds to a suppression for k & 1h/Mpc. This hits apparently the sweet
spot for the BOSS data, since an earlier and later suppression worsens the fit.
For the high-mass regime, we also reproduce ΛCDM as expected. The black
dotted line corresponds to the same fit with an integral cutoff of 10h/Mpc and
follows the fit with a cutoff of 20h/Mpc quite nicely. We also confirm, that the
deviations become larger for higher masses as explained before. These cutoff
checks are however mostly done to probe the minimization process since large
deviations in shape would be a reason for concern. Thus, we don’t require a
complete overlay of the results but only similar behavior. Since this is given
here, and the overall results are very reasonable, the implementation of the
method seems to work pretty well.
Regarding this validation of our fitting method, we can now turn towards the
more complex 1-loop case at the bottom. Here, the linear fit is also plotted with
the different ΛCDM reference value to allow for a more direct comparison. The
high and low-mass regimes of the fit show a very similar behavior compared to
the linear fit, including the compatibility for late suppressions. Additionally, the
fit for the small masses is shifted a bit to the left. This can be explained, by the
corrections causing the suppression to be a bit delayed, so a similar cutoff scale is
achieved by a lower mass. This is also responsible for the earlier deviation from
the 10h/Mpc cutoff case compared to ΛCDM. The strongest differences to the
linear case, happen however before and are thus confirmed by the other cutoff
fit. These differences occur for the intermediate mass range where at first, the fit
seems to improve similarly, but then it worsens into the excluded region instead
of the preferred one. The minimum in this range is reached at m ∼ 1.5keV, so
slightly before the linear one, as expected. In the sudden rise afterwards, the
fit actually produces worse absolute χ2 values than the linear case, which only
happens in this problematic regime. This indicates, that the data is indeed very
sensitive to the shape of the suppression which is altered by the non-linearities
and causes a stronger k dependence. The higher the mass, the more strongly
differs our shape to the linear case as the suppression occurs at smaller scales.
For high enough masses this is not a problem, since the shape can’t be fully
probed by the BOSS data. Instead, more intermediate mass values are affected,
where the shape differs already significantly but it can still be probed. That is
why, the compatible mass ranges are actually split in two. A very small mass
range at the lower end, which doesn’t yet include a strongly different shape and
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a higher mass range, which can’t probe it sufficiently anymore.
Overall, the original fit provides us with the mass constraints

Figure 5.4: The linear (top) and 1-loop (bottom) χ2 values minus the respective
χ2

ΛCDM for the original fit. The fit with a cutoff of 10h/Mpc (black, dotted) is
also shown. The green and yellow band shows the region around ΛCDM with
a confidence limit of 68% and 95% – meaning ∆χ2 = 0.989 and ∆χ2 = 3.841
respectively.

linear m ≥ 1.31 keV

1−loop 1.14 keV ≤ m ≤ 1.82 keV

m ≥ 7.34 keV

We see, that the linear case causes weaker constraints but we also know, that
this description is ultimately not valid. Thus, our final mass constraints from
the original fit, as well as the fits later on, are of course given by the 1-loop case.
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5.3.2 βb and βct Restrictions

Now, we turn to the fit variations which impair the βb and βct parameters that
were already explained for ΛCDM.
In Figure 5.5 the results of the βb prior fit can be seen at the top, and the βb and
βct fit at the bottom. Linear fits are always located on the left side and 1-loop
fits on the right side. Each plots also shows the original fit result to directly see
the differences.

(a) linear, βb prior (b) 1-loop, βb prior

(c) linear, βb and βct priors (d) 1-loop, βb and βct priors

Figure 5.5: The linear (left) and 1-loop (right) χ2 values minus the respective
χ2

ΛCDM for the βb prior at the top and the βb and βct priors at the bottom.

For the βb prior fit, we see immediately that the overall behavior doesn’t change
much for both cases. The linear fit only exhibits small deviations for the low-
mass regime, where the fit is excluded anyway. The remaining χ2 values are
reproduced perfectly, validating again our original fit. In the 1-loop case, we
also see slight differences for the intermediate mass regimes. The excluded bump
shape is much smoother and the first small compatible mass region erased. This
suggests, that this compatibility is produced artificially by unphysical high βb
values and is not a result coming from the actual power spectra. Thus, it
improves the constraints from the original fit a lot while still not imposing
strong assumptions. The derived mass constraints should still be robust while
also being more sensitive to the actual underlying physics. This provides us with
mass bounds that are similar to before, but exclude one of the compatibility
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regions for the 1-loop case, tightening the constraints:

linear m ≥ 1.31 keV

1−loop m ≥ 8.25 keV

Regarding the additional included βct prior at the bottom, we observe a higher
χ2 for the high-mass regime. The same effect was observed for the ΛCDM case.
The fit preferred a very large βct value, which resulted in a strong worsening
of the fit when constraining βct. Seeing this also occur for the WDM which
approaches CDM, shows that we also have that convergence towards ΛCDM in
the fit. In itself, these are great news, however, this also imposes a problem.
Our derived ∆χ2 values are always set in reference to a ΛCDM fit. When this
reference value worsens a lot, the resulting constraints can actually be way more
lax despite limiting the freedom. In our case, the high and low-mass regimes
are then treated somewhat unfairly, especially when considering that they also
have differing cutoff dependencies. This is responsible for the large difference in
mass bounds to the previous variation, even though they actually include each
other. The constraints from an imposed βb and βct prior are given by

linear m ≥ 1.19 keV

1−loop 0.72 keV ≤ m ≤ 3.70 keV

m ≥ 5.36 keV

Due to the reference problem, we see such constraints as very robust ones that
help in understanding the method and its problems but can’t be used to con-
strain the WDM model sensibly.

Another stronger restriction, is the setting of βb = 0 which removes the z-
dependency from the bias parameter. The case without and with an additional
βct prior are shown in Figure 5.6 at the top and bottom, respectively. Again, we
see the same problem as before. The ΛCDM reference value is strongly wors-
ened and suddenly, almost all masses are not only allowed but also preferred for
the linear and 1-loop case. Also similarly, we observe that the absolute χ2 devi-
ations are increasing going towards higher masses. Regarding the unreasonable
result, we can say that βb = 0 is simply not a very good description of ΛCDM.
This in turn produces mass constraints and preference regions for WDM, that
can probably be discarded. Nonetheless, these are the mass constraints from
purely βb = 0

linear m ≥ 0.97 keV

1−loop 0.39 keV ≤ m ≤ 0.48 keV

m ≥ 0.52 keV,

as well as from an additional βct prior

linear m ≥ 0.97 keV

1−loop m ≥ 0.52 keV.

5.3.3 Counterterm Restrictions

In another fit variation, we apply the counterterm restrictions CT1 (see 4.1)
and CT2 (see 4.2), resulting in fits shown in 5.7.

37



(a) linear, βb = 0 (b) 1-loop, βb = 0

(c) linear, βb = 0 and βct prior (d) 1-loop, βb = 0 and βct prior

Figure 5.6: The linear (left) and 1-loop (right) χ2 values minus the respective
χ2

ΛCDM for βb = 0 at the top and for βb = 0 and a βct prior at the bottom.

For the first one, the linear fit shows a large difference for the first time, as
well as the 1-loop case. This happens for both in the intermediate mass regime,
which is the most sensitive to non-linearities. For the high mass regime, we at
least still reach ΛCDM.
When we look at the completely freely fitted counterterm, it is the largest for
the intermediate to small mass regimes while converging towards small values
for high masses. Since we already saw that non-linearities play the largest role in
this first regime, this is not surprising. The quadratic counterterm which is now
fitted for the linear case, exhibits the same behavior (with of course different
absolute values) but is a bit larger in the low-mass regime while being reduced
much earlier at around 2keV. Thus, we see that these masses are considerably
worsened to before. For the 1-loop case, the freely fitted counterterm is usually
much larger than the linear one and is slightly shifted to lower masses. When we
now use the quadratic counterterm from the linear case, the quartic counterterm
doesn’t focus on increasing it, but more on getting a similar shape to its freely
fitted one. The lower counterterm is obviously not ideal for the intermediate
mass regimes which we see in the fit. Still, the quartic counterterm is mostly
slightly smaller than the quadratic one, preserving our idea of a counterterm
expansion at least somewhat. This makes this fit variation not the best one
but it also can’t be discarded completely. Due to lowering the number of free
parameters to 5, this excludes much more strongly the lower to intermediate
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mass regime with

linear m ≥ 12.56 keV

1−loop m ≥ 4.90 keV.

For the more detailed CT2, we don’t have the properties of CT1. Instead, we
get for the linear as well as the 1-loop case, two counterterm contributions that
basically try to cancel each other out to get the perfect shape and are also of
the same order. Here, our actual idea of an expansion of the counterterm is not
preserved at all. However, this case with the same amount of parameters as the
original fit then of course leads to not much worse or even slightly better χ2

values. The same behavior was already observed for ΛCDM. Overall, we shift
the freedom in the fit on the idea of an expanded counterterm. Since this is
not accomplished, the fit doesn’t really offer anything new and is of not much
importance. Its mass constraints would be

linear 1.49 keV ≤ m ≤ 4.84 keV

m ≥ 7.03 keV

1−loop 0.94 keV ≤ m ≤ 1.79 keV

m ≥ 2.12 keV.

(a) linear, CT1 (b) 1-loop, CT1

(c) linear, CT2 (d) 1-loop, CT2

Figure 5.7: The linear (left) and 1-loop (right) χ2 values minus the respective
χ2

ΛCDM for the CT1 case at the top and the CT2 case at the bottom.
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5.3.4 Amplitude Restrictions

Now we get to the only new fit variation that fixes the amplitude to the values
arising from the original LCDM fit. In the linear case this is Alin = 1.27 and
in the 1-loop case Aloop = 0.94. For this variation, the reference χ2 values
are the ones from the original LCDM fit. The idea is, that the only difference
between the power spectra is the suppression for small scales which should be
described by the counterterm and the β parameter. The amplitude shouldn’t
change much between the two models. However, especially the 1-loop case tries
to improve the fit by preferring larger amplitudes in the regimes with stronger
suppressions. When we remove this freedom, it worsens significantly in the
intermediate mass regime. For large masses, we still recover ΛCDM which
is a good sign. Ultimately, this fit variation also lowers the amount of free
parameters which results in stronger constraints. While restrictive, they still

(a) linear, fixed amplitude (b) 1-loop, fixed amplitude

Figure 5.8: The linear (left) and 1-loop (right) χ2 values minus the respective
χ2

ΛCDM for the fixed amplitude.

seem very plausible with

linear 1.98 keV ≤ m ≤ 9.66 keV

m ≥ 11.16 keV

1−loop m ≥ 8.54 keV.

and belong to the tightest constraints we can find.

5.4 Results

The results from all fit variations in the linear and 1-loop case are plotted all
together in Figure 5.9. We can see clearly, that the fit worsens for all restrictions
except CT2 which has the same amount of free parameters. This is of course
expected, since we usually impose less freedom for the fit. The visibly most
deviations for WDM are CT1 and a fixed Amplitude. The mass constraints we
can gain from all fit variations are listed in Table 5.2 for the sterile masses and
in 5.3 for the thermal ones.

One problem with these constraints are the reference values for ΛCDM
explained before, because we have to compare the same fits with each other.
Since the deviation allowed is only at χ2 = 3.841, a small shift in the reference
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Figure 5.9: The linear (top) and 1-loop (bottom) χ2 values for all fit variations.

fit can actually have a large impact. Thus, the fit with both priors has actually a
lower value compared to only a βb prior or to the original fit and the differences
can be quite large. A similar problem arises for βb = 0 which makes these results
not very interesting. Also we have excluded the CT2 restriction since it doesn’t
behave according to the original idea and are also not that convinced of CT1.
This leaves us with three fit variations, where we of course only use the valid
1-loop results. The most conservative one arises from the original fit with a
lowest bound of

mst ≥ 1.14keV mth ≥ 0.36keV. (5.3)

We can arrive at much tighter constraints using the well motivated βb prior,
which leaves us with

mst ≥ 8.25keV mth ≥ 1.58keV. (5.4)

The fixed amplitude also produces constraints around that value, making this
result quite sensible. The CT1 case results in somewhat intermediate constraints
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linear mst-bounds 1-loop mst-bounds

original m ≥ 1.31 keV 1.14 keV ≤ m ≤ 1.82 keV
m ≥ 7.34 keV

βb prior m ≥ 1.31 keV m ≥ 8.25 keV
βb and βct priors m ≥ 1.19 keV 0.72 keV ≤ m ≤ 3.70 keV

m ≥ 5.36 keV
βb = 0 m ≥ 0.97 keV 0.39 keV ≥ m ≥ 0.48 keV

m ≥ 0.52 keV
βb = 0 and βct prior m ≥ 0.97 keV m ≥ 0.52 keV

CT1 m ≥ 12.56 keV m ≥ 4.90 keV
CT2 1.49 keV ≤ m ≤ 4.84 keV

m ≥ 7.03 keV
0.94 keV ≤ m ≤ 1.79 keV
m ≥ 2.12 keV

fixed A 1.98 keV ≤ m ≤ 9.66 keV
m ≥ 11.16 keV

m ≥ 8.54 keV

Table 5.2: WDM sterile mass bounds for all fit variations.

linear mst-bounds 1-loop mst-bounds

original m ≥ 0.40 keV 0.36 keV ≤ m ≤ 0.51 keV
m ≥ 1.45 keV

βb prior m ≥ 0.40 keV m ≥ 1.58 keV
βb and βct priors m ≥ 0.37 keV 0.25 keV ≤ m ≤ 0.87 keV

m ≥ 1.15 keV
βb = 0 m ≥ 0.32 keV 0.16 keV ≥ m ≥ 0.19 keV

m ≥ 0.20 keV
βb = 0 and βct prior m ≥ 0.32 keV m ≥ 0.20 keV

CT1 m ≥ 2.17 keV m ≥ 1.07 keV
CT2 0.44 keV ≤ m ≤ 1.06 keV

m ≥ 1.40 keV
0.31 keV ≤ m ≤ 0.50 keV
m ≥ 0.57 keV

fixed A 0.54 keV ≤ m ≤ 1.78 keV
m ≥ 1.99 keV

m ≥ 1.63 keV

Table 5.3: WDM thermal mass bounds for all fit variations.

but are not interesting.
Overall, our fit variations provide us with mass bounds ranging from very con-
servative to more tighter ones. Warm dark matter is a well studied model and
therefore we have plenty of mass constraints to compare to. They are often
derived from simulations, with stronger values like mth > 4.5 [80] and others
around mth > 0.55 − 3.3 [81, 82, 78, 83]. However some concerns were raised
over the accuracy of these lower limits [84, 56, 55, 85],coming primarily from
the simulation of the complex IGM that doesn’t follow completely the under-
lying dark matter density due to a few effects. First of all, it is heated from
reionization which leads to thermal broadening that is together with the tem-
perature not precisely known. Additionally, the form of the absorbing hydrogen
”clouds” rely on the past thermal history and is generically smoothed compared
to the DM density. This is also influenced by the reionization happening be-
tween z ∼ 5.7 and z ∼ 8. This makes it difficult for simulations to predict the
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IGM behavior accurately.
With regard to this discussion, our most conservative result is of course still not
comparable, but our tightest constraints don’t deviate that much anymore. We
can also compare to the results in [57] that use the same model and arrive at
comparable mass bounds for WDM.
Overall, we see that our fitting method provides us with more conservative and
robust constraints. With this result we can now consider DCDM.
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6 | Decaying Cold Dark Mat-
ter Model

To generate the linear power spectrum for the DCDM model, we use the mod-
ified CLASS code presented in this paper [16], which is kindly freely available
online. We opted for the fluid approximation explained in appendix A to com-
pute the power spectra.
The cosmological parameters are set to almost identical values as before as seen
in Table 6.1. However, since DCDM actually has an effect on the Hubble rate,
it also affects the angular diameter distance DA(z) = 1

(1+z)H0

∫ z
0

dz′ H0

H(z′) . This

in turn shifts the angular scale of the sound horizon θs = rs
DA(zdec)

, so the posi-

tion of the first peak in the CMB angular spectrum. However, θs is a very well
known observable, so we decide to fix θs instead of H0.
ωinidcdm is fixed to the same value normal cold dark matter would have today,
if no decay is happening. The densities are also always fixed via ω and not Ω
which would depend on h and therefore change for very small τ and large ε. For
CLASS to work, we also set ωcdm to a very small value needed for the gauge.
Our reference ΛCDM model needs to build on the same parameters, so we have
a slightly different one than described before in section 4. Its results are almost
identical though. To span a decent amount of parameter space, we choose 9

100θs 1.0411
ωb 0.0224
ωcdm 0.00001
ωinidcdm 0.12

log
(
1010As

)
3.047

ns 0.965

Table 6.1: Cosmological parameters used in generating the DCDM spectra.

different lifetimes τ as well as 14 different ε values being

τ =

{
1, 3, 5, 10, 15, 20, 30, 50, 80

}
Gyrs and (6.1)

ε =

{
0.0001, 0.0003, 0.0007, 0.001, 0.002, 0.004,

0.008, 0.01, 0.02, 0.05, 0.08, 0.1, 0.3, 0.5

}
.

(6.2)
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This results in overall 126 different parameter combinations.

6.1 Background Evolution

Before we look at the power spectra and fits, we want to give a more detailed
description of the changes to the background dynamics in the DCDM model.
More precisely, we focus on the Hubble rate, the cosmic microwave background
(CMB) anisotropy spectra, the volume averaged distance DV coming from bary-
onic acoustic oscillation (BAO) data as well as the growth rate f . This not
only leads to a better understanding of the model dynamics, we can also use
PLANCK and BAO data to restrict the parameter space.

Figure 6.1: The Hubble rate depending on redshift normalized to ΛCDM for
the fixed parameter ε = 0.1 at the top and τ = 20Gyrs at the bottom. The
dotted colored lines correspond to the equality of matter and dark energy and
the pink region to the redshifts spanned by our used data.
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The Hubble rate was already shortly explained in section 2, however, here we
show the Hubble rate with fixed θs instead of H0. In Figure 6.1, it can be seen
normalized to our ΛCDM model and for ε = 0.1 at the top and τ = 20Gyrs at
the bottom. For large z, it is identical to ΛCDM as no decay has happened yet.
In both cases, the Hubble rate is then first lowered and afterwards increases
again. The first drop in the matter dominated universe is caused by the lower
mass density which was replaced partly by dark radiation. Due to the different
scaling of matter and radiation in time, radiation has a much lower contribution
to the Hubble rate here. To still fulfill our required θs, the only remaining free
parameter ΩΛ has to increase. This accounts for the overall rise when trans-
ferring into a dark-energy dominated universe. The dotted lines correspond to
the times where dark energy and matter equality is reached for the different
parameter combinations. We see, that the dark energy contribution starts to
dominate here. When we have very short lifetimes τ , the deviations to H are
the largest. The drop sets in earlier in time since the matter density decreases
faster and has to be compensated by a larger ΩΛ. For large lifetimes, the de-
viations are in turn very small. For ε, it is the other way round. Large values
produce the most radiation and therefore the largest deviations whereas small
values are almost identical to ΛCDM. In the most extreme case of τ = 1gyr and
ε = 0.5, Hubble today is almost 70% larger. All values of H0 and ΩΛ for each
combination are summarized in tables in appendix B.1.3.

The changed ΩΛ also has an impact on the angular CMB anisotropy spectrum.
The increase in dark energy leads to more a strongly time-dependent gravita-
tional potential which is responsible for the late integrated Sachs-Wolfe effect
(LISW). Photons traveling through a density fluctuation experience a slightly
different potential when moving into it compared to moving out of it. This
results in a red- or blue-shift and affects only the largest modes. In the CMB
spectrum, it manifests as a rise for low multipoles. In Figure 6.2 this effect is
clearly visible. At the top, the extreme case of ε = 0.5 can be seen compared to
ΛCDM in blue and Planck 2018 [3] data in black, where the errorbars have been
binned in steps of 10. As expected, the LISW is the largest for small lifetimes
τ and gets almost negligible for large ones. At the bottom with τ = 20Gyrs, we
see the contrary trend for ε. Large values give the most deviation, small values
the least.

Another set of measurements comes from utilizing baryonic acoustic oscil-

Measurement z DV in Mpc
6dF [86] 0.11 456±27

BOSS DR10 [87] 0.32 1262±36
0.57 2034±28

SDSS-3 DR12 [88] 0.38 1477±16
0.51 1877±19
0.61 2140±22

SDSS-4 [89] 0.85 2689±56
eBOSS DR14 [90] 2.34 4626±200

Table 6.2: BAO datapoints for 8 different redshifts.
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Figure 6.2: The CMB anisotropy spectrum for ε = 0.5 at the top and τ = 20Gyrs
at the bottom. The errorbars are from Planck 2018 [3] and are binned in steps
of 10 to increase the readability of the plot. For comparison, ΛCDM is plotted
in blue.

lations. Its scale is determined by the sound horizon rs =
∫∞
zd
cs(z)/H(z)dz

with the sound-speed cs and decoupling redshift zd. Usually, ratios of the co-
moving angular diameter distance DM to rd and Hubble to rd are measured
[91], where we have DM (z) =

∫ z
0

dz′/H(z′), when disregarding curvature. This
then effectively constrains the volume averaged distance

DV (z) =

(
zDM (z)2

H(z)

)1/3

. (6.3)

A few datapoints for redshifts between 0.1 and 2.4 are summarized in Table 6.2.
They were taken from [86, 87, 88, 89, 90], each analyzing different data sets.
This data can then be compared to DV from our models that can be seen in
Figure 6.3. A lifetime of τ = 1Gyrs is plotted at the top and ε = 0.1 at the
bottom. Due to the larger Hubble radius at small redshifts, the angular diam-
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eter distance decreases up until large enough z, where the decrease in Hubble
balances this effect out again. Thus, we see a suppression that disappears again
for larger z. Like before, small τ and large ε produce the strongest deviations
while medium values only have small differences.

For the growth factor, we have to solve the Mészáros equation describing the

Figure 6.3: The volume averaged distance DV (z) for τ = 20Gyrs at the top and
ε = 0.1 at the bottom. The deviations are only small and only really relevant
for extreme τ and ε values.

evolution of matter densities. For subhorizon scales with k � H and neglecting
radiation perturbations, it takes the form

d2δ

da2
+

(
d ln(H)

da
+

3

a

)
dδ

da
− 3

2a2

ρm
ρcrit,0

H2
0

H2
δ = 0 (6.4)

where ρm = ρdcdm + ρwdm for our DCDM model. Initially, at an a after decou-
pling but way before equality between matter and dark energy is reached, we
are in a matter dominated universe and hence expect δ = a. With this starting
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condition, we can solve equation 6.4 numerically and plot the growth function
D(a) as well as the growth rate f(a) = d ln(D)/d ln(a). The solution can be
seen for τ = 20Gyrs in Figure 6.4 with D(a) at the top and f(a) at the bottom.
We see that the growth of structure is impaired compared to pure CDM. This is
not surprising considering the lower amount of matter density that can actually
cluster. Again, deviations are the largest for small τ and large ε.

The space telescope Euclid developed by the European Space Agency and

Figure 6.4: The growth function D(a) for τ = 20Gyrs at the top and the growth
rate f at the bottom. The growth of density fluctuations is slowed for the DCDM
models due to the higher dark energy density. Therefore, the deviations also
occur for later times.

scheduled for takeoff in 2023 will focus mostly on dark energy and its effect on
cosmic structures. It will however also constrain the growth rate. Estimates
for the precision of the upcoming measurements are at around 1− 2.5% for the
growth rate depending on the redshift [43]. Their data can be used to constrain
various cosmological models including DCDM. In Figure 6.5 the deviations for
ε = 0.1 at the top and τ = 10Gyrs at the bottom to ΛCDM are plotted. We can
see that the large ε & 0.1 values and smaller τ . 10Gyrs will definitely be in
the precision range currently proposed. Depending on the actual measurements
and a more accurate analysis for the DCDM models, even more parameter space
might be testable via the growth rate.

For each of these background quantities, we already see one important property
of DCDM: The two describing parameters τ and ε are degenerate and can bal-
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Figure 6.5: The growth rate f normalized to ΛCDM for ε = 0.1 at the top and
τ = 10Gyrs at the bottom.

ance out each others effects. For either large lifetimes or very small ε we should
always generate ΛCDM regardless of the other parameter choice. In turn, the
small τ and large ε regime can be constrained the most by the background evo-
lution. For a complete analysis an MCMC approach would of course be the best
but goes a bit beyond the scope of this work. With our limited setup, we can at
least analyze our data compared to the ΛCDM one. For this, our ΛCDM model
is set as the ”best fit” and we compute the χ2 of the DCDM models as the
difference of the data points to the model divided by the error squared. This
is done for the BAO data as well as the Planck data since we have errorbars
to work with. In Figure 6.6, the computed ∆χ2 values which are compared to
the ΛCDM values, are shown for the Planck Data as well as for the BAO data.
The allowed maximum deviation can now be set admittedly a bit arbitrary. We
show both a tight (dashed line) and a more lax (solid line) constraint in the
parameter space. For Planck we allow for maximally ∆χ2 ≤ 30 while we allow
for ∆χ2 ≤ 10 for BAO which has much less data points and therefore a much
lower χ2 in the first place. The excluded parameter space is marked by the
black lines. In both cases, we see nicely that it worsens towards the upper left
corner and shows the degeneracy for τ and ε. For the BAO data, we actually
see a band spanning from the left bottom to the right top corner with a better
fit to the data than our reference model. Interestingly, it doesn’t encompass
the lower right corner including the parameters for which DCDM converges to
ΛCDM indicating it may not be the best explanation for the BAO data.
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In the end, we will still fit to all parameters later on, but this treatment of CMB
and BAO data still serves as an indicator which parameter combinations are ac-
tually compatible with other measurements and are therefore more interesting
to look at. In-depth analyses are commonly done in the literature and we will
later compare them.

Figure 6.6: The ∆χ2 values for the Planck and BAO data compared to ΛCDM.
The black line shows what parameter space would be excluded for a deviation
of 30 at the
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6.2 Power Spectra and Integrals

Figure 6.7: The DCDM power spectrum normalized to ΛCDM for ε =
0.0003, 0.004, 0.05 from top to bottom. The pink region represents as always
the BOSS data regime.
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The effects of the WDM and DR can be nicely seen in the power spectra. In Fig-
ure 6.7, three plots for all lifetimes and with the values ε = 0.0003, 0.004, 0.05 can
be seen from top to bottom. The oscillatory behavior at around k ≈ 0.005h/Mpc
stems from the switching to the fluid approximation happening far away from
our region of interest. The power spectra are normalized to ΛCDM and show
the suppression based on τ . The smaller the lifetime, the stronger is the sup-
pression while it sets in at the same time. Additionally, this parameter sequence
shows the suppression shifting more to larger scales, the higher ε gets. With our
ε parameters, we can look at three different cases. One, where the suppression
starts left of the BOSS region and it is constant in this regime for ε & 0.05.
A second one, where the suppression is happening in the region of interest for
0.05 > ε > 0.0003. And a third one, where the suppression has not happened
yet and there is almost no difference to ΛCDM for ε . 0.0003.

Figure 6.8: The DCDM power spectrum normalized to ΛCDM for τ = 20Gyrs.

In Figure 6.8, we switch to a fixed τ = 20Gyrs and show several ε values. Again
we see that ε is responsible for the position of the cutoff. This is the same as
in the WDM model where the mass determines the cutoff scale. A difference in
behavior only starts for ε ≤ 0.1 where the warm daughter isn’t warm anymore
but quite hot. This causes the free streaming scale to be larger than the Hub-
ble scale and no clustering can happen for WDM. Thus, we get two competing
effects. The density responsible for clustering is of course decreasing leading
naively to a stronger suppression. However, the smaller Hubble rate leads to
an easier clustering process, compensating for the lower density. In turn, there
is no suppression for ε = 0.5 at z = 3.0 anymore. This trend is already visible
for ε = 0.1 and 0.3. Another effect comes from the larger H0 and therefore
h today shifting the k values to the left. This includes the peak of the power
spectrum at keq which is determined by radiation and matter equality that is
unchanged in our model. Thus, the peak is shifted towards the left for large
H0 deviations and the large scales are elevated. Lastly, in Figure 6.9, we show
the z-dependency as well as the 1-loop spectra for τ = 20Gyrs and ε = 0.001.
It is normalized to the respective ΛCDM Pδδ, Pδθ and Pθθ spectra but all at
z = 3.0. Thus, we see the overall lowered amplitude for higher redshifts as well
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Figure 6.9: The Pδδ, Pδθ and Pθθ spectra for τ = 20Gyrs and ε = 0.001 and all
redshifts. The normalization is with respect to the respective ΛCDM spectra
but always at z = 3.0

as the suppression in the 1-loop spectra. Similar to WDM, the Pθθ spectrum
receives the largest deviations compared to ΛCDM. Additionally, we see again
the different shape, that arises from the 1-loop spectra. The cutoff scale is again
shifted slightly towards larger k values and the suppression is afterwards a bit
steeper.
The characteristics of the power spectrum are naturally imprinted on the in-
tegrals. The effect on I0 can be seen in Figure 6.10 on the top row, with the
linear (dotted) and 1-loop (solid) case at z = 3.0. I2 and I4 are visible at the
bottom for τ = 20Gyrs. We observe, that small τ are suppressed tremendously.
Regarding the plotted ε, we see the largest suppression for ε = 0.01. For larger
values, the shape is significantly changed and it increases again, which we have
also seen in the power spectra.
Again, we also test the cutoff dependency of the integrals and additionally
include a check for the cutoff scale of 25h/Mpc. All integrals for 10h/Mpc com-
pared to 20h/Mpc as well as 20h/Mpc compared to 25h/Mpc can be seen on the
left and right of Figure 6.11. Even for I0, the deviations are only at about 2%
for the latter case, and only around 0.1% for the higher integrals. This proves
nicely their convergence. Nonetheless, we still compute our upcoming fits for
both cutoffs to make sure, the minimization is doing its job properly.

6.3 Fits

6.3.1 Original Fit

Now, we can look at our performed fit and its variations, namely a βb and βct
prior as well as an amplitude restriction for the larger ε values. Since we have
slightly different cosmological parameters, the χ2 for ΛCDM also changes in
the decimal place. In Table 6.3, we show the new reference values for the two
cases that interest us here. As usual, the different fits are compared to their
respective reference value.
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(a) I0 for ε = 0.1 (b) I0 for τ = 20Gyrs

(c) I2 for τ = 20Gyrs (d) I4 for τ = 20Gyrs

Figure 6.10: The shape of the integrals I0, I2 and I4.

First, we start with the original fit in Figure 6.12. Here, all ∆χ2 values are

linear χ2 1-loop χ2

original 206.20 193.44
βb and βct prior 211.24 203.52

Table 6.3: The reference χ2 ΛCDM values for the DCDM fits.

plotted for each point in the parameter space. Dark colors indicate a large devi-
ation from ΛCDM and aren’t compatible, while lighter colors indicate a similar
or even better fit.
In the linear case, we can see a larger excluded region starting from the in-
termediate ε values for the smallest lifetimes and tapering towards a lifetime
around the age of the universe. The parameter space below, with smaller ε
values, is actually preferred over ΛCDM. These are values that produce a de-
cent suppression in the BOSS regime when compared to the power spectra as
seen in Figure 6.7. Higher lifetimes will produce less of a suppression but can
compensate somewhat with higher ε values due to their degeneracy. Thus, the
shape of this preferred region curves upwards. In the excluded region directly
above, the suppression sets in too early, which doesn’t fit well to the BOSS data.
Only starting at ε ' 0.05, where the suppression starts before the BOSS region
and is already a constant in the relevant k regime, the fit improves again. The
suppression can be counterbalanced by a higher amplitude in this regime, to get
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Figure 6.11: The integral ratio for the cutoff scales 10 and 20h/Mpc at the top
and 20 and 25h/Mpc at the bottom. The deviation decreases greatly and shows
the convergence of the integrals.

effectively ΛCDM again. For high lifetimes and low ε, all effects are reduced
and we also have a similar fit to ΛCDM.
In the 1-loop case, the excluded region is much broader in the ε regime. Es-
pecially the high ε regime isn’t compatible with ΛCDM anymore. This stems
from the 1-loop corrections causing the power spectrum to not be a constant
anymore in the BOSS regime but to actually experience a suppression and scale
dependency. For small τ , this effect is too strong and can’t be properly ab-
sorbed by a larger amplitude. The lower end of the ε regime is also more tightly
constrained. Overall, this suggests that the 1-loop case is much more sensitive
for the shape and strength of the suppression which is more dependent on τ .
Additionally, we don’t have a preferred region anymore as in the linear case.
The only relic is a small parameter region that performs slightly better than the
ones around. For large τ , we again converge to ΛCDM as expected.
Overall, we observe a similar effect as in WDM. While the linear case prefers a
certain parameter region depending solely on the onset of the suppression, the
1-loop case is much more sensitive to the actual shape of it and removes the
preference. Thus, it can help in reducing the degeneracy in τ and ε. Addition-
ally, it also provides tighter constraints.
In Figure 6.13, we see a similar plot but for concrete contours at ∆χ2 = ±3.841

corresponding to a 95% confidence interval around ΛCDM and at ∆χ2 = ±0.989
corresponding to 68%. These define the range where DCDM is compatible to
ΛCDM. A larger ∆χ2 leads to an exclusion and a lower one to a preference.
This visualizes better the actual constraints for which the DCDM model agrees
with the data. Dark blue is excluded, middle blue, turquoise and middle green
is compatible and the light yellow-green shows a better fit.
In the linear case, we see that the excluded region starts from ε ∼ 0.0007 and
reaches τ = 50Gyrs at ε = 0.08. The preferred region goes up to ε ∼ 0.002 at
τ ∼ 20Gyrs. In the 1-loop case, we see better how large the excluded region is
for the ε values. Starting from τ ∼ 18Gyrs all values are actually compatible
to ΛCDM. Additionally, the fit converges better towards ΛCDM for higher τ .
We can overall notice, that the linear case is more sensitive to the ε values, so
the onset of suppression, whereas the 1-loop case is more sensitive towards the
τ values, so the strength of the suppression.

In Figure 6.14, the contours around the best fit value of DCDM are plotted.
Since we are now comparing to a model with 2 free variables, the contours
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Figure 6.12: ∆χ2 plot in the 2d parameter space for τ and ε. Light colors
indicate a good fit, while darker colors indicate a worse fit.

change to ∆χ2 = 5.991 and ∆χ2 = 2.279 for 95% and 68%, respectively. These
are indicated by the solid and dashed lines, while the best fit position is marked
with a black dot.
In the linear case, we can clearly see the preference for the low τ regimes with
the best fit being actually at τbestfit = 1Gyrs, εbestfit = 0.003 with an uncor-
rected χ2 = 199.00. It is so strong, that the other compatible regimes that
converge to ΛCDM aren’t included here anymore. Since it disappears after
non-linear corrections, this stems from a different shape of the integrals due
to a false treatment of the smaller scales and shows how much impact non-
linearities can have. The 1-loop case looks much more sensible, with a best fit
value at τbestfit = 30Gyrs, εbestfit = 0.008 with χ2 = 190.02. and a general
preference for large τ values. ε = 0.0001 is also still included, since it imitates
ΛCDM. This result has of course more validity than the linear one and also
seems to be quite reasonable.
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Figure 6.13: Contours for the comparison to ΛCDM in the 2d parameter space.
Dark blue indicates the excluded region, light green the preferred one.

6.3.2 βb and βct Restrictions

Now, we get to the first fit variation, an implementation of a βb and βct prior with
again −10 < βb,ct < 10. We already discussed before, that this is physically well
motivated. In Figure 6.15, the resulting contours with comparison to ΛCDM
are shown at the top. On the left hand side, the linear plots can be seen, on the
right hand side, the 1-loop ones. The overall shape, especially of the excluded
regions, is very similar to before. Mostly, the boundaries are shifted a bit to
more conservative values. Naively, we would expect the opposite to happen.
However, this shows again the problem with the reference value we get from
ΛCDM. In the the linear as well as the 1-loop case, we get additional preferred
regions and the overall plot seems less smooth and more patchy. For a better
understanding, we also display the contours more highly resolved under the
normal plots. This shows, that the new preferred regions are relatively small
and don’t have a strong decrease in ∆χ2. Instead the values are relatively close
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Figure 6.14: Contours around the best fit DCDM value, marked by a black dot,
in the 2d parameter space. The solid and dashed black lines indicate the 95%
and 68% confidence intervals.

and these preferred regions are not very sensible.
Thus, we can mostly see, that the exclusion shape is preserved which reinforces
their robustness in the original fit.

6.3.3 Amplitude Restrictions

The last fit variation we apply, is a restriction for the amplitude. This idea
comes originally from studying massive neutrinos with Lyman α data (see [92]
and [64]) but can be partially applied here.
The argument goes as follows: Massive neutrinos lead to a suppression which
starts well before the BOSS regime and is almost scale-independent there. The
fit amplitude can now absorb this suppression almost completely by increasing.
This makes it difficult to differentiate between effects from the neutrino masses
and the normalization of the primordial power spectrum and causes a degener-
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(a) linear, βb and βct priors (b) 1-loop, βb and βct priors

(c) linear, more detailed (d) 1-loop, more detailed

Figure 6.15: Contours for the comparison to ΛCDM in the 2d parameter space
with priors for βb and βct. On the left side are the linear results, on the right
side the 1-loop results. Dark blue indicates the excluded regions, light green the
preferred ones on the top. The bottom row shows the same plot but in more
detail.

acy.
The same concept applies to the DCDM spectra under certain conditions. For
ε ≥ 0.05, the cutoff in the power spectrum has happened before the BOSS
regime and we get also an almost scale-independent suppression similar to mas-
sive neutrinos. Thus, we would also expect a degeneracy between A and the
physical properties of DCDM in this regime. To deal with this, we follow the
same approach as in [64]: We look at the linear DCDM and ΛCDM spectra for
k � kfs, so long after the drop, and compute their ratio R−1 = PΛCDM/PDCDM.
To account for the lower spectrum, the fit amplitude A should increase and com-
pensate for this. We can calculate this new amplitude by

A = A0 ·R−c, (6.5)

where A0 is the fitting amplitude for the ΛCDM in the linear or 1-loop case,
respectively. In that way, we relate A to the ΛCDM case, which already includes
the primordial normalization, and keep it the same. The parameter c allows for
more flexibility in this model and was calibrated by mock simulation data in
[64] for neutrinos. We are not doing this here however, instead we use the
simplest case with c = 1. This gives us a fixed amplitude for every set of τ and
ε parameters this method can be applied to. Since we can’t describe the cutoff,
we restrict the parameter space here to ε ≥ 0.05 and thus test 45 parameter
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points.
One issue is, that we fit several redshifts at the same time but also have a
slightly z dependent R ratio. In the most extreme case, the deviations can go
up to ∼ 50% and are still at ∼ 5% at τ = 20Gyrs. There are several ways, we
can deal with this problem. Naively, one could take the mean amplitude in the
z regime as a fixed value. This however has one certain disadvantage. The zpivot
used in our analysis is at z = 3.0, so this redshift takes a bit of a special place.
In this case, the β parameters describing the redshift dependency are irrelevant
and we effectively only have 3 instead of 6 parameters left, that actually have
an impact on the goodness of fit. Therefore, a mean amplitude is way more
problematic for z = zpivot since there are less parameters to compensate for
a deviating amplitude. Instead, this redshift is the most important one while
fitting. This is why we decided to fix the amplitude for z = 3.0. To account
for the z dependency, we instead impose priors for A around a fixed amplitude
so we allow for more variance. Overall, we study three different cases. A fixed
amplitude at z = 3.0 as the strongest restriction, an allowed 5% and 10%
deviation around the fixed value as an intermediate limitation and of course the
free amplitude case as the most conservative one. This should give us a good
range to investigate the role of the amplitude.
In Figure 6.16, the different amplitudes for τ = 20Gyrs are plotted. The green

Figure 6.16: The deviation to the ΛCDM amplitude for the different A restric-
tions at τ = 20Gyrs and 1-loop. The yellow band indicates the 10% region
around the fixed amplitude. A with imposed prior traces the free amplitude as
long as it is allowed.

line corresponds to the fixed one and we indicate the 10% range around it. The
dashed line also shows the mean amplitude we checked. It is visibly smaller
than the fixed one, while the fit prefers larger values as seen with the free case.
Thus, we discarded it. The A with prior strives as far as it is allowed towards
the free one and stops when it reaches it.
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(a) linear, free amplitude (b) 1-loop, free amplitude

(c) linear, A prior at 10% (d) 1-loop, A prior at 10%

(e) linear, A prior at 5% (f) 1-loop, A prior at 5%

(g) linear, fixed amplitude (h) 1-loop, fixed amplitude

Figure 6.17: Contours for the comparison to ΛCDM in the 2d parameter space
with different levels of amplitude restriction. The left side shows the linear
plots, the right one the 1-loop plots. Dark blue indicates the excluded region,
light green the preferred one.
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We also see an overall decline for higher ε. This comes from the same effect
we have already seen for the power spectra, where the radiation balances the
suppression more and more due to the lower Hubble friction.
The contours compared to ΛCDM for these discussed cases can be seen in Figure
6.17. On the left side, we have the series of linear fits going from the free
amplitude to the completely fixed one. On the right side, the same is plotted
for the 1-loop fits. In both cases, we can nicely see how the parameter space gets
more and more restrained. For the linear case, the amplitude mainly restricts
the upper ε area whereas in the 1-loop case, it is pretty insensitive to the ε value
and is also more restrictive in general. This confirms, what we have already
seen before. The non-linear corrections lead to a scale dependency that can
exclude more from the parameter space. For the fixed A, almost everything
is excluded and only the highest lifetimes with τ ≥ 80Gyrs are compatible
again. The 5% and 10% priors give intermediate results at τ ≥ 30Gyrs and
τ ≥ 20Gyrs, respectively. They give probably the most sensible constraints.
The most conservative result comes from the free amplitude with τ ≥ 10Gyrs.
The best fit values with its contours are shown in the appendix, since they are
not that interesting compared to the more robust excluded regions. They show
a similar behavior though.
Overall, these cases show nicely the convergence of the exclusion regions towards
larger τ values. The strong suppression for small τ values can’t be at least
partially artificially absorbed anymore and is therefore excluded.

6.4 Results

The final result of our analysis can be seen in Figure 6.20. This shows first
of all, the ∆χ2 values with the exclusion bounds for a confidence interval of
68% and 95% marked by a solid black line and dashed black line, respectively.
Also, we use of course the 1-loop case since this is needed to account for the
non-linearities. Mind, that we switched the x axis from τ to log10(Γ/Gyrs−1)
to better compare to other results in a moment. Secondly, we see the excluded
region for an amplitude restriction in gray. We chose the 10% prior here, mean-
ing a stronger value than for the original case but still not the most restrictive
one. Thus, it is still on the conservative side and pretty stable. We see, that we
successfully can exclude more of the high ε region, which is still allowed in the
original fit. All ε values with approximately ε & 0.001 are then excluded for a
lifetime of τ . 18Gyrs. For larger lifetimes, our fit doesn’t restrain the ε value
anymore, whereas for lower lifetimes only ε < 0.001 values are still allowed. This
is expected, as the model converges towards ΛCDM at this point.
Additionally, we plotted our strongest approximated exclusion from PLANCK

(dashed) and BAO (dotted) data in red. Since these are not exclusions relying
on an in-depth analysis, they should mostly serve as an indicator of what pa-
rameter space is expected to be further constrained.
We can compare this however to an in-depth analysis – namely the PLANCK
likelihood analysis, they have done in reference [16] which we show in Figure
6.19 on the left. Here, they compare the full (red) and lite (blue) likelihood
MCMC analysis of PLANCK data. Mind, that they are going towards even
larger lifetimes and also a bit smaller lifetimes, so we can only compare the plot
for 0 ≥ log10(Γ/Gyrs−1) & −2. In this regime, even at τ = 80Gyrs, almost all
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Figure 6.18: Results for the 1-loop original fit and the indicated exclusion region
from a restricted amplitude with 10% prior. The excluded regions we get from
PLANCK and BAO data when using the strongest approximation are shown in
red, indicating their general behavior.

ε & 10−2 are excluded. Even with the strongest bounds from our background
analysis, we don’t reach these values which is not surprising because we are
only considering the TT -CMB spectrum. Still, we preserve a similar shape of
the exclusion bound validating our general approach.

(a) Planck-likelihood analysis taken
from [16]. The full one is described in
red, the lite one in blue

(b) The posterior distributions from
imposing three different S8 priors from
weak lensing measurements, taken
from [16].

Figure 6.19: Results of the in-depth analysis in [16] which we use here only for
comparison.

Other studies of DCDM usually all do an MCMC with CMB and BAO data.
Therefore, it is not surprising, that we have less constraints on the small τ and
large ε regimes compared to other results. Combining a full analysis with our
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fit should hence result in much stronger bounds.
In Figure 6.20, we show the same plot but with indicated σ8 values replacing
the PLANCK and BAO exclusion. They were computed by CLASS with our
linear spectra. The dashed line corresponds here to the PLANCK result of
σ8 = 0.8111 ± 0.0060 [3]. Our computed values are slightly larger when con-
verging towards ΛCDM with σ8 = 0.82, so the dashed line divides the lower
ε regime. The dash-dotted and dotted line belong to a value of σ8 = 0.7 and
σ8 = 0.6, respectively. Small lifetimes and larger ε values lead again to the
largest decrease, since their suppression is very strong in the 0.1− 1h/Mpc re-
gion. Disallowing too large deviations of σ8 would hereby constrain a similar
region compared to Planck data. We also note, that our model itself would
allow a lot of σ8 deviations towards lower values.
When using the exclusion contours from the Planck likelihood, a small regime
with lowered σ8 data is still allowed. It is located at around τ = 50 − 80Gyrs
and 0.004 . ε . 0.01 which fits relatively well to the best fit parameters of [35]
at τ = 55Gyrs and ε = 0.007. While this is of course good news, we still have
to admit that our model doesn’t really provide much for this value, because it
is mainly constructed by the σ8 lines and the transferred Planck exclusion. It
is not in contradiction though either, so BOSS data allows for such lower σ8

values at regions that are preferred in other analyses.

Figure 6.20: Results for the 1-loop original fit with the indicated exclusion region
from a restricted amplitude with 10% prior. A few values of σ8 are marked by
red lines, with the dashed line corresponding to the PLANCK result.

We can also compare our result directly to the ones from [16] on the right. Here,
they apply different S8 priors that rely on different weak lensing datasets with
the lowest one in black and the largest one in blue. The biggest difference is
that their results allow for approximated ε values in the 0.001−0.005 regime up
to the lowest lifetimes, while ours actually exclude them. This effect can prob-
ably be accounted to our 1-loop corrections. In the latest paper from the same
authors as before [30], they also include a treatment of the non-linear scales.
They observe that due to this, lower lifetimes are more strongly excluded and
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the degeneracy between τ and ε is decreasing. This is exactly, what we observe
when comparing our linear and 1-loop case, which confirms further the impor-
tant effects of non-linearities.

Overall, we can observe several properties of our method: First of all, it pro-
duces bounds that rely on a conservative modeling of the flux power spectra
and should thus be very robust.
Secondly, our method is not really suited for finding sensible best fit values.
When doing fit variations, their position can change significantly and are not
really stable. Thus, the preserved exclusion bounds are here of the most impor-
tance.
Thirdly, the inclusion of the 1-loop corrections changes the final result heavily
and we are able to filter more of the smaller lifetimes almost independently of
the ε parameter. This is a similar observation to the one in [30], where they
experience likewise effects when including non-linearities even though they look
at different data sets. This strengthens the importance of going beyond linear
effects.
Fourthly, regarding the fact that our model uses only one kind of data set, our
results are still promising. When including CMB data in a more professional
manner, we would expect to get similar exclusion bounds as in other works,
while being even slightly more constrictive in the lower τ regime.
Last but not least, we want to add, that our model tests data on larger red-
shifts compared to most other works with z . 1. Thus, it not only probes a
different data set, it also provides an independent result to other studies. The
fact, that no contradictions but even similarities are found, gives our approach
even more validation. The additional ability to more strongly constrain part of
the parameter space for smaller τ , also shows our models success.
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7 | Summary and Conclusion

In this work, we have studied a decaying dark matter model, where cold dark
matter decays into dark radiation and warm dark matter, by comparing to
Lyman-α BOSS data at z = 3.0 − 4.2. We modeled the observed flux power
spectrum with overall 6 free parameters. This method is overall more on the
conservative side since it doesn’t use much assumptions, especially on the IGM.
We adjusted for non-linearities in our power spectra via cosmological pertur-
bation theory by considering 1-loop corrections. We find, that their inclusion
already leads to a large difference in the fits compared to a linear treatment.
Higher loops can of course be applied for an even better description, but the
main effect is already captured for the first order. We therefore wouldn’t expect
strong changes in the fit behavior even for higher loops. The fitting model was
then first applied to ΛCDM and found that 1-loop corrections improve the fit
significantly. We then applied it to at first a WDM model to test our method.
We found mass constraints ranging from more conservative to tighter values and
are not too far away from constraints derived by simulations when comparing
our strongest bound.

Then, we finally turned towards DCDM. We first looked at its background
evolution and find that it can already strongly exclude the small τ and large
ε regimes when applying an in-depth analysis. Applying the fit, we find an
exclusion region around τ & 18Gyrs, and smaller lifetimes only allowed for the
lowest ε values, where it converges towards ΛCDM. Large ε values are also less
tightly constrained. However, we found that when dealing with degeneracies
in the amplitude, they can be excluded much better and we arrive at sensible
values between 20 and 30 Gyrs.
When looking at σ8, we see that our result still allows for smaller values that
were preferred in other works, which is promising regarding the σ8 tension.
Comparing our overall constraints, we derive much weaker bounds for the small
τ and large ε regime. This is expected, since we are not applying a full MCMC
analysis with Planck data. However, our method is able to provide stronger
constraints for the lifetime in the ε ∼ 0.001− 0.005 regime when comparing to
e.g. [16]. This can be mostly attributed to our treatment of non-linearities.
Overall, our approach seems quite successful.

Currently, it seems that DCDM can still provide an explanation for the σ8

tension. However, it is at the moment not preferred over ΛCDM. Upcoming
high precision surveys like Euclid, DESI and Rubin/LSST will probably help in
further constraining or preferring the model. If DCDM will not be able to solve
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the σ8 tension but is not excluded, more complex models that introduce new
aspects like e.g interactions to it could be interesting to study. In conclusion,
we can only be curios for the next years and the future of DCDM.
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A | The Fluid Approximation
and modified CLASS Code

To generate our DCDM spectra, we make use of the very helpful modified
CLASS code that was developed in [16] which we want to summarize here
shortly. They give us two possibilities for the computation, namely an hier-
archical method or their new fluid approximation.
Generally, the phase-space distribution is split into its background part and the
perturbation part, so f = f̄ + ∆f . The perturbation is then normally expanded
in Legendre Polynomials with

∆f =

∞∑
l=0

(−i)l(2l + 1)∆flPl (A.1)

and applied to the Boltzmann equations. This results in an hierarchical series of
differential equations for the different moments fl. In the case of dark radiation,
we have E = q which enables one to simplify these expressions by integrating
over the momentum with Fdr,l ∝

∫∞
0

dq4πq2q∆fdr,l. The new series of equa-
tions for Fdrl is then not q dependent anymore and is much easier to solve.
For the warm dark matter, this simplification doesn’t apply since its energy
differs to its momentum. Its momentum dependence requires in turn a compu-
tation of the full phase space distribution which is computationally very expen-
sive. Therefore, [16] removes this q dependency for WDM by treating it as a
viscous fluid. In that case, they introduce a sound speed cs for WDM and can
describe it with the new continuity and Euler equations

δ̇wdm =− 3H(c2s − ω)δwdm − (1 + ω)

(
θwdm +

ḣ

2

)
(A.2)

+ (1− ε)aΓ
ρ̄dcdm
ρ̄wdm

(δdcdm − δwdm) and (A.3)

θ̇wdm =−H(1− 3c2g)θwdm +
c2s

1 + ω
k2δwdm − k2σwdm (A.4)

− (1− ε)aΓ
1 + c2g
1 + ω

ρ̄dcdm
ρ̄wdm

θwdm, (A.5)

where we have cs = δPwdm/δρwdm and the adiabatic soundspeed cg = ˙̄Pwdm/ ˙̄ρwdm.
This makes it possible to only consider the first two multipoles which is of course
much faster. For this to be valid, the high and low l mulitpoles need to be ef-
fectively decoupled which is the case for scales deeply inside the Hubble radius.
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Ultimately, we decided to use the fluid approximation based on its behavior com-
pared to the hierarchical method. In Figure A.1 both are plotted normalized to
the ΛCDM spectrum and for ε = 0.1 and τ = 10Gyrs. The short oscillations on
the left, indicate where the fluid approximation is switched on. The hierarchical
spectrum is very shaky which could be problematic for the fit while not adding
new physical attributes to it. The fluid approximation however, is perfectly
smooth and describes the hierarchical method well.

Figure A.1: Comparison between the normalized hierarchical and the fluid spec-
trum for ε = 0.1 and τ = 10Gyrs for the relevant scales.

Figure A.2: Dependency of the hierarchical spectrum on the precision parame-
ters for ε = 0.1 and τ = 10Gyrs.

Additionally, the hierarchical method relies strongly on the precision parameters
lmax describing the highest multipole taken into account and the number of qbins
used. The default values used, are the same ones as recommended in [16] with
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lmax = 17 and Nqbins = 1000. In Figure A.2, we compare the hierarchical
spectrum with the default values to the one with larger precision parameters.
It is normalized to the default spectrum.
The spectrum exhibits large deviations for the relevant scales and is dependent
on the used parameters. Thus, we decided that the fluid approximation is overall
better suited for our work. Not only does it run much faster and therefore allows
for more parameters in ε and τ , it also provides a smoother spectrum being less
error-prone when dealing with it.
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B | Some Details for DCDM

B.1 Background Dynamics

B.1.1 Boltzmann Equations for DCDM

Here, we give the detailed derivation for equations 2.9. We start with DCDM
and its Boltzmann equation in 2.5. Multiplying by

∫∞
0

dq 1
a4 4πq2 and using

Edcdm = mdcdma as well as relations 2.6, the left-hand-side can be written as:∫ ∞
0

dq
1

a4
4πq2mdcdma

˙̄fdcdm =∫ ∞
0

dq4πq2 d

dτ

(mdcdma

a4
f̄dcdm

)
−
(

d

dτ

mdcdma

a4

)
f̄dcdm =

d

dτ

∫ ∞
0

dq4πq2mdcdma

a4
f̄dcdm + 3

ȧ

a

∫ ∞
0

dq4πq2mdcdma

a4
f̄dcdm =

˙̄ρdcdm + 3Hρ̄dcdm
In turn, the right-hand-side takes the form

−
∫ ∞

0

dq
aΓ

a4
4πq2mdcdma

˙̄fdcdm = −aΓρ̄dcdm

resulting in the first equation in 2.9.
For DR, where Edr = q, the left-hand-side takes the form∫ ∞

0

dq
1

a4
4πq2q ˙̄fdr =∫ ∞

0

dq4πq2 d

dτ

( q
a4
f̄dr

)
−
(

d

dτ

q

a4

)
f̄dr =

˙̄ρdr + 4Hρ̄dr.

For the right-hand-side we make use of the relation for N̄ and get∫ ∞
0

dq
1

a4
4πq2 aΓ

4πq2

ρ̄dcdma
3

mdcdm
qδ(q − apmax) =

aΓ
ρ̄dcdm
mdcdma

aεmdcdm = εaΓρ̄dcdm.

Similarly, for WDM with Ewdm =
√
m2
wdma

2 + q2, the right-hand-side ends

with
√
m2
wdma

2 + a2p2
max = amdcdm

√
m2
wdm/mdcdm2 + ε2 = amdcdm(1 − ε).
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Thus, we have (1− ε)aΓρ̄dcdm. The left-hand-side is given by∫ ∞
0

dq
1

a4
4πq2

√
m2
wdma

2 + q2 ˙̄fwdm =∫ ∞
0

dq4πq2 d

dτ

(√
m2
wdma

2 + q2

a4
f̄wdm

)
−
(

d

dτ

√
m2
wdma

2 + q2

a4

)
f̄wdm =

˙̄ρwdm −
∫ ∞

0

dq4πq2

(
−4

√
m2
wdma

2 + q2

a4
H+

m2
wdma

2

a4
√
m2
wdma

2 + q2
H
)
f̄wdm =

˙̄ρwdm + 4Hρ̄wdm −
∫ ∞

0

dq4π
q2

a4

(√
m2
wdma

2 + q2 − q2√
m2
wdma

2 + q2

)
Hf̄wdm =

˙̄ρwdm + 4Hρ̄wdm −Hρ̄wdm + 3HP̄wdm.

With the equation-of-state parameter ω = P̄wdm/ρ̄wdm the final equation is
derived.

B.1.2 Own Implementation of Background Evolution

Solving the background evolution isn’t completely straight forward since the
densities depend on each other and can’t be decoupled in time. To battle this
problem, we first choose some starting values and then solve the system of equa-
tions in time steps.
The fixed parameters we will need are H0 = 67.7km/sMpc and ρcrit,0 =
3H2

0 c
2/8πG. Additionally, Ωb for baryons, Ωγ for photons and Ων for neu-

trinos are fixed to typical ΛCDM values. At last, we choose ωinidcdm = 0.12,
which describes the density DCDM would have today when not undergoing the
decay. The only open parameter is ΩΛ which runs through several possible val-
ues. The one that actually preserves our fixed H0 is then chosen.
Now, we create a logarithmic range for the redshift with 10−4 ≤ z ≤ 104. The
starting point is at the largest redshifts, where the decay hasn’t really set in.
Thus, we choose as starting conditions ωwdm = ωdr = 0 and omit the expo-
nential decay factor for DCDM. Our background quantities H, t and ρcrit are
computed with the same starting values.
Then we are going through a number of steps in z. At first, we fix the new time
parameter which is given by the old one plus the spent time between zold and
znew which depends on the old densities. The new H is also computed with
the old densities. Then, the densities are computed with the new background
quantities. This method is of course not accurate, so we do this step a few times
for each z-step to make sure we get the best possible approximation of the ac-
tual values. Afterwards the critical density is computed, so we can actually plot
Ω(z).
So overall, the code returns a list of z, t, H, ρcrit, all individual densities and
the total density parameter. Since we know the supposed value for the latter
as well as H and thus ρcrit, these quantities are checked to adjust ΩΛ. In our
case, there are 300 timesteps with 3 iterations each to get a sufficiently accurate
result. Still, this code is certainly not efficient and precise enough to use for de-
tailed analyses. However, we can still reproduce the background evolution quite
well and it helped to gain a deeper understanding of the underlying dynamics.
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B.1.3 Detailed Tables for H0 and ΩΛ

ε \τ 1.00 3.00 5.00 10.00 15.00 20.00 30.00 50.00 80.00
0.0001 67.71 67.70 67.69 67.69 67.69 67.69 67.69 67.69 67.70
0.0003 67.71 67.70 67.70 67.69 67.69 67.69 67.69 67.69 67.70
0.0007 67.73 67.71 67.70 67.69 67.69 67.69 67.69 67.69 67.70
0.001 67.74 67.72 67.71 67.69 67.69 67.69 67.69 67.69 67.70
0.002 67.78 67.74 67.72 67.70 67.70 67.69 67.69 67.70 67.70
0.004 67.86 67.78 67.75 67.72 67.71 67.70 67.70 67.70 67.70
0.008 68.02 67.87 67.81 67.75 67.73 67.72 67.71 67.71 67.70
0.01 68.10 67.91 67.83 67.76 67.74 67.73 67.72 67.71 67.71
0.02 68.50 68.12 67.98 67.84 67.79 67.77 67.74 67.73 67.72
0.05 69.75 68.78 68.42 68.09 67.96 67.89 67.83 67.78 67.75
0.08 71.07 69.47 68.89 68.34 68.14 68.03 67.92 67.83 67.78
0.1 71.99 69.96 69.21 68.51 68.25 68.11 67.97 67.86 67.80
0.3 83.92 76.07 73.33 70.76 69.79 69.28 68.76 68.34 68.10
0.5 114.10 89.92 82.37 75.57 73.06 71.75 70.42 69.34 68.73

Table B.1: H0 in km/sMpc for all parameter combinations ε and τ in Gyrs.

ε \τ 1.00 3.00 5.00 10.00 15.00 20.00 30.00 50.00 80.00
0.0001 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.0003 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.0007 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.001 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.002 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.004 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.008 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.01 0.70 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
0.02 0.70 0.70 0.70 0.69 0.69 0.69 0.69 0.69 0.69
0.05 0.72 0.71 0.71 0.70 0.70 0.70 0.69 0.69 0.69
0.08 0.74 0.72 0.71 0.71 0.70 0.70 0.70 0.69 0.69
0.1 0.75 0.73 0.72 0.71 0.70 0.70 0.70 0.69 0.69
0.3 0.85 0.81 0.79 0.75 0.74 0.73 0.72 0.71 0.70
0.5 0.97 0.93 0.90 0.84 0.80 0.78 0.76 0.73 0.72

Table B.2: ΩΛ for all parameter combinations ε and τ in Gyrs.
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B.2 Fits

B.2.1 Best Fit Values for βb and βct priors

Figure B.1: Contours around the best fit DCDM value, marked by a black dot,
in the 2d parameter space and with priors for βb and βct. The solid and dashed
black lines indicate the 95% and 68% confidence intervals. The linear fit is on
the left, the 1-loop fit on the right.

Here, we show the best fit contours for the βb and βct prior in Figure B.1. The
best fit values are at τbestfit = 1Gyrs, εbestfit = 0.0003 with χ2 = 199.00 in the
linear case, and at τbestfit = 3Gyrs, εbestfit = 0.002 with χ2 = 194.60 in the 1-
loop case. The linear case doesn’t really differentiate from the original fit. The 1-
loop case though, only encompasses the patches we have seen before. Therefore,
the best fit values are not of much use and are mostly added for completion.
The important attribute is the exclusion shape which is still preserved.

B.2.2 Best Fit Values for the restricted Amplitude

Here, we show the best fit values for the restricted amplitude cases in Figure
B.2. The parameter space is smaller and only includes ε ≥ 0.05 In the linear
case, the best fit values are at τbestfit = 10Gyrs, εbestfit = 0.3 with χ2 = 205.89
for the 5% prior, at τbestfit = 10Gyrs, εbestfit = 0.3 with χ2 = 205.94 for the
10% prior and at τbestfit = 50Gyrs, εbestfit = 0.08 with χ2 = 206.15 for the fixed
amplitude.
In the 1-loop case, we have values of τbestfit = 50Gyrs, εbestfit = 0.05 for the 5%
prior with χ2 = 192.23, τbestfit = 30Gyrs, εbestfit = 0.05 with χ2 = 191.77 for
the 10% prior and τbestfit = 80Gyrs, εbestfit = 0.5 with χ2 = 195.37 for the fixed
amplitude.
Since the differences in the allowed regions are relatively small, these values
aren’t of that much importance and are again only shown here for completion.
The excluded parameter space shows the same behavior as before and is there-
fore very robust.
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(a) linear, A prior at 10% (b) 1-loop, A prior at 10%

(c) linear, A prior at 5% (d) 1-loop, A prior at 5%

(e) linear, fixed amplitude (f) 1-loop, fixed amplitude

Figure B.2: Contours around the best fit DCDM value, marked by a black dot,
in the 2d parameter space and with different levels of amplitude restriction. The
left side shows the linear plots, the right one the 1-loop plots. The solid and
dashed black lines indicate the 95% and 68% confidence intervals.
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[30] Théo Simon et al. “Constraining decaying dark matter with BOSS data
and the effective field theory of large-scale structures”. In: (Mar. 2022).
arXiv: 2203.07440 [astro-ph.CO].

[31] Luis A. Anchordoqui et al. “Decay of multiple dark matter particles to
dark radiation in different epochs does not alleviate the Hubble tension”.
In: (Mar. 2022). arXiv: 2203.04818 [astro-ph.CO].

[32] Balakrishna S. Haridasu and Matteo Viel. “Late-time decaying dark mat-
ter: constraints and implications for the H0-tension”. In: Mon. Not. Roy.
Astron. Soc. 497.2 (2020), pp. 1757–1764. doi: 10.1093/mnras/staa1991.
arXiv: 2004.07709 [astro-ph.CO].

[33] Steven J. Clark, Kyriakos Vattis, and Savvas M. Koushiappas. “Cosmo-
logical constraints on late-universe decaying dark matter as a solution to
the H0 tension”. In: Phys. Rev. D 103.4 (2021), p. 043014. doi: 10.1103/
PhysRevD.103.043014. arXiv: 2006.03678 [astro-ph.CO].

[34] Zahra Davari and Nima Khosravi. “Can decaying dark matter scenarios
alleviate both H0 and σ8 tensions?” In: (Mar. 2022). arXiv: 2203.09439
[astro-ph.CO].

[35] Guillermo Franco Abellán et al. “Implications of the S8 tension for de-
caying dark matter with warm decay products”. In: Phys. Rev. D 105.6
(2022), p. 063525. doi: 10.1103/PhysRevD.105.063525. arXiv: 2008.
09615 [astro-ph.CO].

79

https://doi.org/10.1086/171833
https://doi.org/10.1088/1475-7516/2014/12/028
https://doi.org/10.1088/1475-7516/2014/12/028
https://arxiv.org/abs/1407.2418
https://doi.org/10.1088/1475-7516/2014/07/021
https://doi.org/10.1088/1475-7516/2014/07/021
https://arxiv.org/abs/1402.2972
https://doi.org/10.1103/PhysRevD.90.103527
https://arxiv.org/abs/1410.0683
https://arxiv.org/abs/1410.0683
https://doi.org/10.1088/1475-7516/2015/09/067
https://arxiv.org/abs/1505.05511
https://doi.org/10.1088/1475-7516/2016/08/036
https://arxiv.org/abs/1606.02073
https://doi.org/10.1088/1475-7516/2021/05/017
https://arxiv.org/abs/2011.01632
https://arxiv.org/abs/2203.07440
https://arxiv.org/abs/2203.04818
https://doi.org/10.1093/mnras/staa1991
https://arxiv.org/abs/2004.07709
https://doi.org/10.1103/PhysRevD.103.043014
https://doi.org/10.1103/PhysRevD.103.043014
https://arxiv.org/abs/2006.03678
https://arxiv.org/abs/2203.09439
https://arxiv.org/abs/2203.09439
https://doi.org/10.1103/PhysRevD.105.063525
https://arxiv.org/abs/2008.09615
https://arxiv.org/abs/2008.09615


[36] Renyue Cen. “Decaying cold dark matter model and small-scale power”.
In: Astrophys. J. Lett. 546 (2001), pp. L77–L80. doi: 10.1086/318861.
arXiv: astro-ph/0005206.

[37] Annika H. G. Peter and Andrew J. Benson. “Dark-matter decays and
Milky Way satellite galaxies”. In: Phys. Rev. D 82 (2010), p. 123521. doi:
10.1103/PhysRevD.82.123521. arXiv: 1009.1912 [astro-ph.GA].

[38] S. Mau et al. “Milky Way Satellite Census. IV. Constraints on Decaying
Dark Matter from Observations of Milky Way Satellite Galaxies”. In: (Jan.
2022). arXiv: 2201.11740 [astro-ph.CO].

[39] Mei-Yu Wang and Andrew R. Zentner. “Effects of Unstable Dark Matter
on Large-Scale Structure and Constraints from Future Surveys”. In: Phys.
Rev. D 85 (2012), p. 043514. doi: 10.1103/PhysRevD.85.043514. arXiv:
1201.2426 [astro-ph.CO].

[40] Rachel Mandelbaum et al. “The LSST Dark Energy Science Collaboration
(DESC) Science Requirements Document”. In: (Sept. 2018). arXiv: 1809.
01669 [astro-ph.CO].

[41] LSST Science Collaboration et al. LSST Science Book, Version 2.0. 2009.
doi: 10.48550/ARXIV.0912.0201. url: https://arxiv.org/abs/0912.
0201.

[42] Amir Aghamousa et al. “The DESI Experiment Part I: Science,Targeting,
and Survey Design”. In: (Oct. 2016). arXiv: 1611.00036 [astro-ph.IM].

[43] Luca Amendola et al. “Cosmology and fundamental physics with the Eu-
clid satellite”. In: Living Reviews in Relativity 21.1, 2 (Apr. 2018), p. 2.
doi: 10.1007/s41114-017-0010-3. arXiv: 1606.00180 [astro-ph.CO].

[44] David H. Weinberg et al. “The Lyman - alpha forest as a cosmologi-
cal tool”. In: AIP Conf. Proc. 666.1 (2003). Ed. by Jacques Dumarchez,
Yannick Giraud-Heraud, and Jean Tran Thanh Van, pp. 157–169. doi:
10.1063/1.1581786. arXiv: astro-ph/0301186.

[45] Michael Rauch. “The lyman alpha forest in the spectra of quasistellar
objects”. In: Ann. Rev. Astron. Astrophys. 36 (1998), pp. 267–316. doi:
10.1146/annurev.astro.36.1.267. arXiv: astro-ph/9806286.

[46] Solène Chabanier et al. “The one-dimensional power spectrum from the
SDSS DR14 Lyα forests”. In: JCAP 07 (2019), p. 017. doi: 10.1088/
1475-7516/2019/07/017. arXiv: 1812.03554 [astro-ph.CO].
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