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Abstract

We have astonishingly strong evidence for the existence of dark matter. The fact that
there is a matter-antimatter asymmetry in the universe is also very well known. This,
together with the fact that the measured energy densities of dark matter and baryons are
of the same order of magnitude (ΩDM /Ωb ' 5), suggest that dark matter might also be
asymmetric, and a possible connection between the asymmetries in the two sectors. We
propose a scenario where an asymmetry originally located in the dark sector is transferred
to the baryons via the leptonic sector. We develop the necessary computational tools and
perform a systematic analysis to find the minimal set of conditions for the transmission of
this asymmetry. We find that there must be interactions that simultaneously violate dark
number D and lepton number L. Finally, we analyse the parameters of our scenario and
their effect on the observed baryon asymmetry, dark matter density and baryon density,
setting constraints on their values.
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Chapter 1

Introduction

The Standard Model of Particle Physics (SM) in combination with Quantum Field Theory
(QFT) provide a theoretical framework that has been proven to work to a very good
accuracy as a low-energy effective model. So far, all laboratory tests have agreed with its
predictions with astonishing precision. It has been tested up to TeV energies at the LHC,
with no evidence for new particles. The SM has also succeeded in providing experimental
predictions such as the existence of the electroweak gauge bosons, the third generation
of quarks needed to explain CP-violation in the quark sector, and the Higgs boson which
provides a formalism to account for the masses of most particles.

But even though the SM works very well in describing a myriad of observations, we are
certain that it is incomplete. The most notable weakness of the model is the fact that
it does not provide a description of gravity, only of the three other forces of nature. A
complete QFT description of general relativity has not yet been achieved, the formalism
breaking down at very high scales. Therefore, the SM does not provide a good description
of the very early universe. For a detailed review on quantum gravity the reader is pointed
to [1].

Another unsatisfactory aspect of the SM is the so-called hierarchy problem. The Higgs
mass, mH ' 125 GeV [2], which sets what we call ‘the weak scale’, is much smaller than
the Planck scale (∼ 1019 GeV). The corrections that mH receives at loop level diverge
quadratically with the cutoff scale instead of being proportional to the mass itself, as
happens with fermions and gauge bosons. In order to cancel these contributions and give
the small measured value of mH , there could be some new physics at the TeV scale. The
most popular proposal to solve this problem is supersymmetry. To read an extensive
review on the hierarchy problem and its possible implications see Ref. [3].

Additionally, there are a number of phenomenological observations that are not ex-
plained by the SM, some of which will be more extensively addressed in this work.

• Dark Matter. Measurements from the Cosmic Microwave Background (CMB) in
combination with the standard cosmological model (ΛCDM), tell us that ∼ 85 % of
the matter content of the universe is dark matter (DM). There is strong observational
evidence that proves the presence of some sort of invisible matter in the universe, as
will be further reviewed in section 2.1.1. The most likely solution to this puzzle is the
existence of a new fundamental and stable particle (or set of particles) which interacts
gravitationally with ordinary matter but that otherwise couples very weakly to it.
There are numerous candidates for dark matter, see section 2.1.2, but up to date the
searches have yielded inconclusive results. The aim is to find a particle model together
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with a production mechanism which results in the observed relic density, as we will
detail in section 2.1.3.

• Neutrino Masses. Neutrinos are neutral fermionic particles which are completely
left-handed as described by the SM. As they do not have a right-handed companion,
there is no Yukawa term in the SM lagrangian that would give rise to a neutrino mass.
Nevertheless, the phenomenon of neutrino flavour oscillations has been observed in
the context of solar, atmospheric and reactor neutrino experiments. These oscillations
can only be explained by the fact that the different neutrino flavour eigenstates are
a mixture of the mass eigenstates, therefore pointing towards at least two of the SM
neutrinos being massive. The nature of these masses is still an open question. See the
Particle Data Group section on this topic for a comprehensive review [2].

• Baryon Asymmetry of the Universe. Another great puzzle in physics is the
origin of the matter-antimatter asymmetry. It is clear that everything we see around
us is almost exclusively composed of particles and not antiparticles. There is also
evidence against the existence of sizeable amounts of antimatter in the universe. This
asymmetry has in fact been measured, and the SM does not provide an explanation
for it. The most plausible explanation is that somehow in the early universe, some
excess of baryons over antibaryons was generated (baryogenesis). We know that any
asymmetric initial condition would have been exponentially diluted away by inflation.
For a general overview on baryogenesis see the correspondent chapter in Ref. [4]. We
will discuss this issue in detail in section 2.2.

• Strong CP Problem. There is no reason for Charge-Parity (CP) to be conserved in
the strong sector of the SM. However, strong CP-violation is not seen in experiments,
and some really restrictive bounds have been set on the CP violating parameter, |θ̄| .
10−10 [2]. The smallness of this parameter requires drastic fine-tuning, which is what
we call the strong CP problem. One of the most popular mechanisms to solve this
puzzle is called the Peccei-Quinn mechanism [5]. For a detailed discussion of this topic
see Ref. [6].

• Dark Energy. The fact that the expansion of the universe is accelerating [7] indicates
the presence in the universe of some unknown kind of energy with negative pressure,
dark energy. Dark energy is encoded in the Friedman equations as a cosmological
constant Λ. Measurements from the CMB show that dark energy constitutes ∼ 68%
of the total energy content of the universe [2], and yet its nature is unknown to us. See
Ref. [8] for a compact review on the topic.

A great collection of mechanisms have been proposed to address each of the above
fundamental open problems. These mechanisms usually focus on answering each question
individually, with the presence of a wide variety of energy scales. Nonetheless, it is
conceivable (and appealing) that some of these open questions could be simultaneously
addressed in a single framework. In our work we focus on relating dark matter to the
baryon asymmetry in the universe, which are both cosmological observational problems.

Motivated by the fact that the measured energy densities of dark matter and baryons
are of the same order of magnitude (ΩDM /Ωb ' 5), we suggest that dark matter might be
asymmetric, and that an excess of dark particles over antiparticles in the early universe
could have been transmitted to the visible sector by processes relating both types of
particles. We propose a scenario where an asymmetry originally located in the dark
sector is transferred to the baryons via the leptonic sector.
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First of all, in Chapter 2 we give an introductory motivation for the existence of a dark
sector, an asymmetric visible sector, and consequently the possibility of an asymmetric
dark sector. Then, in Chapter 3, we review some basic concepts and methodological tools
to study the physics of the early Universe. After that, in Chapter 4 we introduce our
proposal: a mechanism capable of transmitting a dark asymmetry to the visible sector.
We perform a systematic analysis to find the minimal set of conditions needed to transmit
an asymmetry from dark matter to the leptons. Then, we study the transmission from
the leptons to the baryons by electroweak sphalerons and obtain results consistent with
the CMB measurements. Finally, in Chapter 5 we show the conclusions from this work
and in Chapter 6 we present the outlook and future prospects.
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Chapter 2

Theoretical Framework and
Motivation

In this chapter we review the theoretical framework and motivation for this thesis. In
section 2.1, we consider the dark sector: the observational evidence for dark matter and
the main candidates and mechanisms proposed to account for it. Then, in section 2.2 we
discuss the asymmetry in the visible sector. We review evidence for a baryon asymmetry
and some of the most popular mechanisms proposed to explain it. We also present the
current bounds on lepton asymmetries. Finally, in section 2.3 we entertain the possibility
of the dark sector being asymmetric, and motivate the work done in this thesis, where we
aim to connect the asymmetries in the dark and visible sectors.

2.1 The Dark Sector
Dark matter is a fundamental open problem in modern physics and yet an integral part of
the standard cosmological model. The Standard Model of Particle Physics does not have
a suitable dark matter candidate, so dark matter provides evidence for physics beyond the
SM. The most plausible explanation is the existence of a new particle or set of particles
which are weakly coupled to visible matter, and stable on cosmological timescales (at
least one of them). It is also required that they have the correct properties to seed the
large scale structures we see today in the universe, which originate from small density
fluctuations in the early times and which are dominated by dark matter.

2.1.1 Observational evidence for dark matter
There is strong evidence for the existence of dark matter in the universe. This evidence
comes from a variety of sources, phenomena and scales, all of which show the presence
some sort of non-luminous matter spread throughout the universe, and which makes ∼ 85
% of the matter content of the universe. Some of the observations that demonstrate the
existence of dark matter are briefly reviewed next. For more extensive discussions, we
refer the reader to Refs. [9, 10].

• Dynamics of galaxy clusters. In 1933, applying the virial theorem to the Coma
Cluster, F. Zwicky found that the density of the system was at least 400 times higher
than would be expected from the amount of visible matter [11]. This could only be
explained by an additional non-luminous component that dominated the dynamics of
the cluster. It was the first evidence for the existence of dark matter, and it has been
verified in many other systems since then.
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(a) (b)

Fig. 2.1: (a) Galactic rotation curve of NGC 6503, from Ref. [13]. The different contributions
from the gas and disk are plotted as dotted and dashed lines and the dark matter halo contribu-
tion needed to match the data is plotted as a dash-dotted line. (b) Optical image of NGC 6503,
taken from the Subaru Telescope (NAOJ) and the Hubble Legacy Archive. The visible radius
of the galaxy is 5.35 kpc [14] and the coloured squared markers are placed in both figures for
size comparison purposes. We can see that the rotation curve is still flat at radii where there is
no longer visible matter.

• Spiral galaxy rotation curves. In the 1970s, V. Rubin and K. Ford measured and
analysed the fact that rotation curves of spiral galaxies are flatter after certain radius
[12]. Rotation curves represent the circular velocities of stars as a function of their
distance to the center of the galaxy. The observed rotation curves, as the one shown in
Fig. 2.1, exhibit a plateau at distances beyond their visible disks. When the integrated
visible mass M(r) stops increasing with r, the circular velocity v(r) =

√
GM(r)/r

should decay as v ∝ 1/
√
r. In reality, the fact that v(r) remains constant indicates the

presence of a halo with M(r) ∝ r. This is perhaps the most direct evidence for dark
matter on galactic scales.

• Gravitational lensing. According to Einstein’s theory of General Relativity, the
propagation of light can deviate from straight lines when passing near intense gravita-
tional fields, which act as lenses. This distortion depends on the mass distribution of
matter within the lens and is independent of its nature. The light from bright distant
objects is bent by gravitational lenses and there might be multiple images of the same
object, or an increment on its brightness. Lensing measurements confirm the existence
of large amounts of dark matter in galaxies and clusters of galaxies. For a review on
weak gravitational lensing see Ref. [15].

Collisions of galaxy clusters also give relevant information about dark matter. A re-
construction of the gravitational potential map of the clusters after the collision, like
the one in Fig. 2.2, can be performed using gravitational lensing. This analysis shows
that most of the total matter density remains where the individual clusters were before
colliding, while the visible matter is focused in the collision region. The fact that dark
matter is unaffected by the collision implies that it should be weakly interacting with
visible matter and with itself.
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(a) (b)

Fig. 2.2: (a) Color image from the Magellan images of the colliding Bullet cluster, 1E0657-558
[16]. The green contours show the lensing density reconstructions and the color gradient shows
the X-ray emission map, which does not match the centers of the gravitational potential. (b)
Composite image of the Bullet cluster. The pink region conforms the hot baryonic gas in the
X-ray spectrum [17] and the blue region corresponds to the dark matter distribution obtained
from the lensing maps [16]. The fact that dark matter is unaffected by the collision implies that
it should be weakly interacting with visible matter and with itself.

• Cosmic Microwave Background. Moving to cosmological scales, perhaps the most
powerful evidence for the existence of dark matter are the small CMB anisotropies.
The position and shape of the peaks of the CMB power spectrum probe the photon-
baryon oscillations just before the decoupling of light and matter (recombination), at
the time of 3.8×105 years after the Big Bang. They could not be explained without the
presence of dark matter. The density anisotropies, which were of order ∼ 10−5 at the
time of recombination, could not have grown enough to give rise to the galaxies that we
see today without a cold dark matter component which does not significantly couple
to photons. While the galaxy dynamics, rotation curves and gravitational lensing
give no information about the total amount of dark matter in the universe, CMB
measurements are very precise probes of the dark matter energy density. Global fits to
the precise CMB data from the Plank collaboration [18], within the framework of the
standard cosmological model ΛCDM, tell us that ∼ 26% of the total energy density of
the universe is dark matter [2]

ΩDM = ρDM

ρcrit
= 0.265(7). (2.1.1)

• Structure formation. Finally, evidence for dark matter can also be found in the
study of structure formation in the universe. In the ΛCDM paradigm, primordial
density fluctuations originated by inflation are the seeds of the large scale structure
that we see today. Cosmological simulations show that dark matter is needed for these
primordial anisotropies to develop into the observed present galaxy distribution. For
detailed discussions on this topic the reader is referred to Ref. [19].

? Primordial nucleosynthesis. Big Bang nucleosynthesis (BBN) is not an evidence
for dark matter on its own, but together with the CMB measurements provides relevant
information about its nature. BBN is the formation of light nuclei (D, 3He, 4He, and
7Li), which takes place around 3 min after the Big Bang. BBN offers a deep reliable
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Fig. 2.3: The primordial abundances of 4He, D, 3He, and 7Li as predicted by BBN. The bands
show the 95% CL range. The yellow boxes indicate the measured abundances. The vertical
blue band corresponds to the CMB measure of the baryon density, while the vertical pink band
corresponds to the BBN D+4He concordance range at 95% CL. Figure taken from [2].

probe of the early universe, as there is a remarkable concordance between most of its
predictions and the observed element abundances. The abundances of these elements
depend on the baryon density at the time, as we can see in Fig. 2.3. Particularly, the
Deuterium and Helium abundances have been measured up to a precision of 1% and
the high sensitivity of the deuterium abundance to the baryon energy density allows
us to strongly constrain it [2]

0.021 ≤ Ωbh
2 ≤ 0.024 (95% CL), (2.1.2)

where h ≡ H0/100 km s−1 Mpc−1. For a value of h ∼ 0.7, this results in 0.043 . Ωb .
0.049. The comparison of these constraints with the measurements of the total density
provided by the CMB (Ωm ' 0.3), prove that most matter in the universe is not only
dark, but also takes a non-nucleonic form. See the review on [2] for a broader analysis
on the topic.
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2.1.2 Main dark matter candidates
There is a large number of candidates for dark matter. As we have seen in the previ-
ous section, the evidence for its existence is convincing at an array of astrophysical and
cosmological scales. The allowed range for dark matter masses is also extremely wide,
ranging from ∼ 10−30 to ∼ 1057 GeV [2]. The most motivated dark matter candidates
have been linked to other problems in particle physics, such as the electroweak hierarchy
problem, the strong CP problem, or the neutrino masses.

As already mentioned, most likely the nature of dark matter is some fundamental par-
ticle. Many particle candidates have been proposed, such as WIMPs, axions and sterile
neutrinos, which are described below. Further examples of the numerous particle can-
didates for dark matter are FIMPs [20], SIMPs [21], dark photons [22] and gravitinos
[23]. Other possibilities that have been proposed include primordial black holes [24]. Fur-
thermore, modification of gravity at galactic scales has been also proposed to explain the
spiral galaxy rotation curves [25], but fails to explain the CMB [26]. Here we review some
of the leading particle candidates for dark matter. For a wider review see [9, 27].

WIMPs

Weakly Interacting Massive Particles are hypothetical particles in the MeV-TeV mass
range, which interact with visible matter as weakly or more weakly than the weak nuclear
force in the SM. These particles would annihilate with one another into light thermal
particles via 2 ↔ 2 interactions in the early universe. At early times when the rates
are high, WIMPs are in thermal equilibrium with the rest of the cosmic plasma. Later,
as the universe expands and the interaction rates decrease, WIMPs decouple from the
thermal plasma and its comoving density remains constant until today, setting the relic
abundance.

The relic abundance is determined by the annihilation cross-section, 〈σv〉ann, and the
value which gives the correct abundance is 〈σv〉 ' 2.6× 10−9 GeV−2, which is very close
to the characteristic cross-section of the weak interactions. This coincidence is known as
‘the WIMP miracle’, and the required cross section stays almost constant for a wide range
of dark matter masses [28]. This hints for a connection between weak-scale physics and
dark matter, which is one of the properties that has made WIMPs popular candidates for
dark matter. Another reason for their popularity is their theoretical motivation. They
emerge in a variety of SM extensions, and particularly they are a natural prediction of the
Minimal Supersymmetric Standard Model with R parity conservation, where they appear
as the lightest neutralino. For comprehensive reviews on WIMPs see Refs. [9, 29].

Weak processes are difficult to detect, but not impossible. This constitutes another
motivation for WIMPs, as it is an scenario that could be experimentally tested. There
are three main ways to search for WIMP-like particles:

1. Direct detection. Consists in looking for the signatures of DM-nucleus or DM-
electron scatterings inside underground detectors.

2. Indirect detection. Consists in detecting the product particles resulting from the
annihilation or decays of WIMPs in astrophysical environments such as the Sun,
the center of the Milky Way, or its satellite galaxies.

3. Collider searches. They consist in finding the correspondent missing energy in a
collider event.
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At the present moment no strong evidence for a dark matter signal compatible with all
complementary constraints has been found. For the current status and future prospects
of WIMP dark matter we refer the reader to Ref. [30].

Axions

Axion particles arise as a natural consequence of the Peccei-Quinn mechanism, which is
the most popular attempt to solve the strong CP problem of the SM [5]. In addition,
axions can be good dark matter candidates. They are pseudo-Goldstone bosons arising
from the breaking of a new global symmetry, the U(1)PQ. Dynamically, the vacuum of
the theory is CP-conserving, therefore solving the strong CP problem. See Refs. [6, 31]
for extensive reviews on this topic.

The mass and the relic abundance of axions is not predicted directly by the Peccei-Quinn
mechanism, but it depends on the assumptions made regarding their production and the
energy scale at which the U(1)PQ symmetry breaks. However, laboratory searches, stellar
cooling and the dynamics of supernova 1987A together with the CMB could be used to
constrain the mass of axions to be very small, ma . 0.1 eV [32, 2]. The coupling of axions
to ordinary matter is also model dependent, but they are expected to be extremely weak.
In the KSVZ model [33, 34], the axion to photon coupling is expected to range from
∼ 10−10 to ∼ 10−18 GeV−1 depending on the axion mass [35]. It is possible to find an
adequate range of parameters which are in agreement with the observational constraints
for dark matter and hence represent a good dark matter candidate. For a review on the
ongoing axion searches see Ref. [36].

Sterile neutrinos

As already described in Chapter 1, there is evidence for neutrino flavour oscillations,
firstly consider by Bruno Pontecorvo [37]. This points to the fact that at least two of the
SM neutrinos have a mass, requiring physics beyond the SM. One of the natural ways to
account for neutrino masses is the addition of a right-handed companion NR for the left-
handed SM neutrino νL. NR is called a sterile neutrino because it would carry no quantum
numbers under the SM symmetry groups. The most popular mechanism for neutrino mass
generation is the seesaw mechanism [38], which consists in including a Majorana mass term
for NR in addition to the Yukawa couplings with νL in the Lagrangian. This mechanism
associates the light masses of active neutrinos with high scales for the masses of NR.

It has been shown that sterile neutrinos of masses around the keV could account for
dark matter [39]. Such dark matter particles would originate in the early universe via
oscillations with light active neutrinos. This scenario is theoretically very appealing,
but most of the parameter space for it has been already ruled out by a combination of
cosmological considerations and X-ray searches. For a review on the current status of
sterile neutrino dark matter see Ref. [40].

2.1.3 Main mechanisms for dark matter production
The landscape of mechanisms which attempt to explain the generation of dark matter is
quite wide. Each mechanism has very different features depending on the model they are
framed into. Here we briefly comment on three of the most popular mechanisms.
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• Freeze-out mechanism. This scenario usually accounts for WIMP-like particles.
The dark matter is initially in equilibrium with the thermal bath of particles from the
visible sector through its coupling to lighter particles in the plasma. At some point,
the rate for interactions involving dark matter and SM particles becomes smaller than
the rate at which the universe is expanding. Then, the dark matter decouples from the
thermal plasma ‘freezing out’. From this moment on, the comoving number density
of dark matter particles remains constant. This mechanism will be detailed in section
3.3.

• Freeze-in mechanism. Maybe dark matter was never in thermal equilibrium with
the plasma. In this context the freeze-in mechanism emerges [20]. It involves a Feebly
Interacting Massive Particle (FIMP), which is decoupled from the thermal bath. It
is assumed that the abundance of dark matter is initially negligible. The interactions
with the bath lead to some production of dark matter until it freezes in, remaining
constant afterwards. As opposed to the freeze-out case, the abundance at the moment
of freeze-in increases with the strength of the interactions. Another difference with
freeze-out is that here the relic abundance is dependent on the initial conditions.

• Misalignment mechanism. This is the mechanism through which axion-like dark
matter would be generated. It consists in the production of axions in the early universe
as a result of coherent oscillations of the axion field, which result in zero-momentum
bosonic condensates behaving as cold dark matter. For a quantitative and comprehen-
sive description of the phenomena see Ref. [6].

2.2 An Asymmetric Visible Sector
Our universe is predominantly made of matter, and the fact that there is much more
matter than antimatter is known as the baryon asymmetry. This does not seem to agree
with the fact that CP is almost a perfect symmetry as we measure it at colliders. The
baryon asymmetry is one of the most relevant open problems in physics today, and finding
a baryogenesis mechanism is not at all a trivial task.

2.2.1 Evidence for a baryon asymmetry
Even though antimatter is rare around us, we have observed it in small quantities on
Earth: it is produced in the decay of some radioactive nuclei and it has been produced
and stored in particle physics laboratories. We also know that the solar system is made of
matter, as the space exploration probes that visited the planets would not have survived
otherwise. Moving to galactic scales, we can probe material from all the galaxy and
beyond by cosmic rays. Tiny amounts of antiprotons are seen here, at the level of ∼ 10−4

compared to the amount of protons [4]. But these antiprotons are believed to come from
reactions of said rays with the interstellar material1, and they evidence that there is a
galactic asymmetry between baryons and antibaryons.

The nucleon-antinucleon annihilation cross section is rather large, keeping them in ther-
mal equilibrium with the cosmic plasma until very low temperatures (T ∼ 22 MeV).
This implies that if the universe was locally baryon symmetric, the nucleon-antinucleon
annihilation would have been going on for such a long time during its thermal his-
tory, that now the relic abundance of nucleons (and antinucleons) would be around

1They might also come from dark matter annihilation [41]
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nb/s = nb̄/s ≈ 7 × 10−20 [4]. This number is nine orders of magnitude smaller than
the measured value. One could argue that maybe the universe is baryon symmetric, but
distributed in different matter or antimatter separated bubbles, us living inside a huge
matter region. This is also ruled out as it has been shown that annihilation near regional
boundaries would produce a signal exceeding observational limits [42]. The conclusion is,
therefore, that the universe is not baryon symmetric.

The easiest explanation is that in the early universe there was already some excess of
baryons over antibaryons. The baryon-antibaryon annihilation then took place leaving
only baryons in the universe. It is unlikely that the asymmetry was an initial condition,
as it would have been erased by inflation. We assume then that some mechanism must
have existed in the very early universe to generate the excess of baryons, and this still
unknown mechanism we call baryogenesis.

The ratio of the number density of baryons to photons in the universe, ηB, is most
precisely measured from the height of the power spectrum peaks of the CMB [18]

ηB ≡
nb

nγ
= (6.12± 0.04)× 10−10. (2.2.1)

Since the existence of significant amounts of antimatter in the universe is excluded, ηB is
also a measure of the matter-antimatter asymmetry,

ηB ≡
nb

nγ
= nb − nb̄

nγ
. (2.2.2)

The measured value shown in Eq. (2.2.1) is a very small number, and it corresponds to
a very tiny quark-antiquark asymmetry in the early universe: one extra quark for every
30 million.

2.2.2 Theoretical considerations for baryogenesis

Sakharov conditions

Sakharov wrote his famous paper on baryogenesis in 1967 [43], shortly after the discov-
ery of CP-violation in K0 decays. There he presented a model where three necessary
conditions for the generation of a baryon asymmetry in the Universe were outlined.

1. Baryon number violation. We must need B-violation in order to generate a net
baryon number B 6= 0. We know that the inflationary conditions do not allow an
initial baryon number, and so if all the interactions in the universe preserve B, it
seems impossible to depart from B = 0.

2. C and CP violation. The conservation of charge conjugation (C), and the product
of charge conjugation and parity (CP), imply that the reaction rate for two processes
related by the exchange of particles and antiparticles would be the same. Even
in the presence of B non-conserving interactions, without C or CP violation, the
rate of processes involving baryons would be as large as that of processes involving
antibaryons. Without this necessary mismatch, a net baryon number cannot be
generated.
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3. Departure from thermal equilibrium. In thermal equilibrium the phase space
density of baryons and antibaryons is effectively the same, implying that no asym-
metry can be generated. We can also think of it in terms of rates. In thermal
equilibrium the interaction rates are very fast compared to the expansion of the
universe, so we effectively have that the interaction rate of a process equals that
that of the inverse process. This produces a generation and a washing-out of the
baryon number at the same speed, with a zero net effect. We therefore need depar-
ture from thermal equilibrium for an asymmetry generation.

These three conditions are crucial if we want to generate a baryon asymmetry from
scratch, but as we will see in chapter 4, not all of them are necessary if we generate
the baryon asymmetry by transmitting it from another sector. The C and CP violating
interactions could be exempted if we start from a CP non-conserving medium (asymmetric
initial conditions) and the B-violating interactions would not be necessary if dark matter
also carried baryon number. The only compulsory condition for the purpose of symmetry
generation is the departure from thermal equilibrium.

Electroweak Sphalerons

In the Standard Model, baryon number B and lepton number L are global symmetries
U(1)B and U(1)L. These symmetries are said to be ‘accidental’, meaning that there is no
fundamental principle for them to be conserved. They are conserved at tree level

∂µJ
µ
B = ∂µJ

µ
L = 0. (2.2.3)

But it was discovered by ’t Hooft in 1976 [44] that quantum effects give rise to the chiral
anomaly and induce B and L violation by non-perturbative effects

∂µJ
µ
B = ∂µJ

µ
L = NF

32π2

(
g2W a

µνW̃
aµν − g′2BµνB̃

µν
)
, (2.2.4)

whereNF is the number of families,Wµν andBµν are the SU(2)L and U(1)Y field strengths,
g and g′ their coupling constants. The notation Ãµν is defined as Ãµν ≡ (1/2)εµνσρAσρ.
It is easy to see that B − L is conserved in the SM, even at quantum level

∂µ
(
JµB − J

µ
L

)
= ∂µJ

µ
B − ∂µJ

µ
L = 0. (2.2.5)

while the orthogonal combination B + L does not,

∂µ
(
JµB + JµL

)
6= 0. (2.2.6)

The change in B and L is related to the change in the topological charge or the Chern-
Simons number NCS as [45]

B(t)−B(0) = NF
[
NCS(t)−NCS(0)

]
. (2.2.7)

There is an infinite number of degenerate vacuum states with a different Chern-Simons
integer number as illustrated in Fig. 2.4, where the minima are the vacuum states. To
change NCS by one unit, the system needs to go over an energy barrier, which are the
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Fig. 2.4: Minimal field energy for given value of the Chern-Simons number NCS, from Ref.
[46]. The energy barriers are the so-called electroweak sphalerons.

Le
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Q1(B)

Q1(R)

Q2(G)

Q2(B)

Q2(R)

Q3(G)
Q3(B)

Q3(R)

Fig. 2.5: Electroweak sphaleron interactions, involving 12 left-handed fermions: 9 quarks and
3 leptons.

static solutions to the equations of motion, called sphalerons. The transition from one
vacuum to a different one is associated with a change in baryon and lepton numbers
by a multiple of NF = 3, as can be seen from Eq. (2.2.7). At low energies, the NCS-
changing transitions can only occur via tunneling, while at high temperatures thermal
fluctuations can take the system over the sphaleron barriers. The number of transitions
per unit time and unit volume is known as the Chern-Simons diffusion rate or sphaleron
rate, Γsph. Sphaleron transitions are associated to interactions that involve 12 left-handed
fermions: 9 quarks and 3 leptons, as shown in the diagram in Fig. 2.5. For more extensive
discussions on the topic of electroweak sphalerons, we refer the reader to Refs. [4, 45].
The electroweak sphaleron processes will be relevant later in this thesis as they will be
in charge of transmitting the asymmetry from the leptonic to the baryonic sector, see
section 4.2.

2.2.3 Main mechanisms for baryogenesis
There is a number of mechanisms attempting to explain the generation of the baryon
asymmetry of the universe, where the main action happens at many different energy scales
ranging from 102 to 1016 GeV. Here we give a short review on two of the most popular
and best motivated: electroweak baryogenesis and leptogenesis. Some other important
proposals are GUT baryogenesis, provided by Grand Unified Theories, which were the
earliest well-motivated scenarios for implementing Sakharov’s ideas. In these theories,
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Fig. 2.6: First-order electroweak phase transition. Expanding bubbles from the broken phase
with 〈Φ〉 6= 0 within the surrounding plasma in the symmetric phase with 〈Φ〉 = 0.

quarks and leptons appear as members of a common irreducible representation of the
gauge group, and B and L violation comes naturally. SU(5) GUT models were excluded
as the sphaleron processes would completely wash-out the generated asymmetry, see Refs.
[4, 47]. Another worth-mentioning mechanism is Affleck-Dine baryogenesis [48], which can
be highly efficient and presupposes low energy supersymmetry. Here, the ordinary quarks
and leptons are accompanied by scalar quarks and leptons also carrying L and B numbers.
Their decay into fermions in the early universe can change the net baryon number. For
an in-depth review on this mechanism see Ref. [47].

Electroweak baryogenesis

Electroweak baryogenesis (EWBG) refers to any mechanism in which the baryon asymme-
try is generated during the electroweak phase transition (EWPT). There have been many
different proposed realizations for EWBG, but all of them share some common features
[49]. The initial conditions for all the EWBG scenarios consist of a net zero baryon charge
in a radiation-dominated universe which is symmetric under the electroweak symmetry
group SU(2)L × U(1)Y .

For EWBG to be successful, the EWPT must be first-order [50]. These kind of phase
transitions proceed via bubble nucleation: bubbles with non-zero Higgs vacuum expecta-
tion value (VEV), 〈Φ〉 6= 0, expand within the symmetric phase space with 〈Φ〉 = 0 to
eventually collide and fill all space, as illustrated in Fig. 2.6. The sphaleron rate is highly
effective outside the bubbles (symmetric phase), but exponentially suppressed inside them
(broken phase). The asymmetry generation takes place near the bubble walls in 3 steps.

1. The particles in the plasma scatter with the bubble walls. CP-violation in these walls
leads to different amounts of reflection/absorption for right- and left-handed quarks
and antiquarks, leading to a chiral asymmetry in the vicinity of the wall. This is
schematically shown in Fig. 2.7. The net effect is that outside the bubbles, the number
of (q̄L + qR) is higher than the number of (q̄R + qL).
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Fig. 2.7: Schematic baryon asymmetry production near the bubble walls. CP-violation in these
walls leads to different amounts of reflection/absorption for right- and left-handed quarks and
antiquarks.

2. Electroweak sphalerons, which are effective outside the bubbles, generate the baryon
asymmetry as they are biased to produce more baryons than antibaryons. Sphalerons
only affect the left-handed quarks, and due to the chiral asymmetry generated in step 1,
the interaction rate Γ(q̄L → 8qL+3lL) with ∆B = +3 is higher than Γ(qL → 8q̄L+3l̄L)
with ∆B = −3. A net B asymmetry is generated.

3. Finally, the generated net baryon number diffuses into the bubbles as they expand.
Because the sphaleron rate is strongly suppressed in the broken phase, the asymmetry
is not washed out. We have now a net B in a broken-phase universe.

These three steps satisfy the Sakharov’s conditions. Although all ingredients involved
are present in the SM, we need physics beyond the SM to explain the observed baryon
asymmetry. In the first place, in order for EWPT to be first-order, the mass of the Higgs
boson should bemH . 70 GeV [51], much smaller than the value measured in experiments,
mH = (125.10± 0.14) GeV [2]. In addition, the CP-violation induced by the CKM phase
in the quark sector of the SM is not enough to generate a sufficient chiral asymmetry [52].
It would result in a baryon asymmetry of order ∼ 10−20, which is tiny compared with the
observed value in Eq. (2.2.1). For extensive reviews on EWBG, the reader is referred to
Refs. [53, 45].

Leptogenesis

The main idea behind thermal leptogenesis is the generation of a baryon asymmetry
through the generation of a lepton asymmetry, which is then transmitted by the elec-
troweak sphaleron processes.

As already mentioned in section 2.1.2, the introduction of right-handed sterile neutrinos,
NR, is a usual procedure to account for the problem of neutrino masses. The seesaw
mechanism [38] could explain the smallness of the observed light neutrino mass scale
when the Majorana mass is much larger than the electroweak scale. The key feature of
the sterile neutrino for leptogenesis is that it can participate in L-violating interactions.
Its decay and inverse decay through the Dirac mass term into the lepton doublet LL and
the Higgs H has a change of ∆L = 1:
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Some scattering processes also have ∆L = 1 or ∆L = 2. These interactions generate a
net B − L number that will be partially transmitted from L to B by sphalerons.

The condition of CP-violation is also fulfilled in NR decays and inverse decays at one-
loop level, when there are two or more generations of sterile neutrinos. However, it is not
guaranteed that the C and CP violation would be large enough for leptogenesis. Departure
from thermal equilibrium is also guaranteed due to the expansion of the universe, for
Majorana masses of order 1010 − 1016 GeV. For a more extensive review on leptogenesis
see Ref. [45].

2.2.4 Bounds for lepton asymmetries
We are able to measure the baryon asymmetry of the universe very accurately from the
CMB power spectrum. However, we have very loose bounds for the lepton asymmetry.
Because of the global charge neutrality of the universe, we know the lepton asymmetry
associated to the charged leptons. Now, the asymmetry related to the neutrinos could be
a priori much larger. This means that the lepton asymmetry is effectively encoded in the
neutrino-antineutrino asymmetry, ην . Therefore, it is quite hard to observe.

Luckily, the light element abundances produced in primordial nucleosynthesis are quite
sensitive to the lepton asymmetry, see Ref. [54]. The reason for this is that these abun-
dances depend sensitively on the neutron-to-proton ratio at the time where the weak
interactions among them freeze out. The excess of electron neutrinos over antineutrinos
shift the equilibrium between neutrons and protons via reactions of the type

p+ + e− ↔ n+ νe,

making the neutron fraction sensitive to the lepton asymmetry. Moreover, the energy
density of neutrinos, increased by the neutrino asymmetry, affects the cosmic expansion.
This provides another way of constraining the lepton asymmetry, by constraining the
effective number of neutrinos Neff .

We expect neutrinos to quickly oscillate before BBN, which equilibrates the asymmetry
among the different flavours [55]. A detailed BBN analysis shows that [56]

ξν ≡ µν/Tν = 0.001± 0.016, (2.2.8)

with

ην ≡
nν − nν̄
nγ

≈ 1
12ζ(3)

(
Tν
T

)3 (
π2ξν + ξ3

ν

)
. (2.2.9)
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This translates into the following bounds for lepton-to-photon ratio, ηL, and lepton asym-
metry, YL ≡ (nl − nl̄) / s, today:

|ηL| . 4× 10−3,

|YL| . 6× 10−4.
(2.2.10)

The constraints on the lepton asymmetry are ∼ 107 orders of magnitude more relaxed
than those on the baryon asymmetry, see Eq. (2.2.1). These bounds will be relevant
later in this thesis as we will be generating a lepton asymmetry together with the baryon
asymmetry.

2.3 An Asymmetric Dark Sector?
In section 2.1.2 we reviewed some of the candidates for symmetric dark matter. As we
saw on section 2.2.1, the visible sector is asymmetric. It is natural therefore to consider
a dark sector for which the abundances of particles and antiparticles are not identical:
Asymmetric Dark Matter (ADM). We will give a technical review on ADM freeze-out in
section 3.3.2.

2.3.1 Ratio of dark matter and baryon densities

Another strong motivation for considering an asymmetric dark sector comes from the fact
that the dark matter and baryon abundances are observationally very similar [18]

ΩDM ' 5 Ωb, (2.3.1)

suggesting a possible common mechanism relating both sectors.

These two quantities are a priori unrelated. On the one side we have the WIMP freeze-
out paradigm for dark matter, where the relic density is fixed by the time at which the
interaction rate drops below the Hubble expansion. On the other side, in baryogenesis
the relic density of baryons is given by the CP-violation parameters and by the out-of-
equilibrium dynamics related to the B non-conserving processes. Since these conditions
are not related to each other, it seems surprising that the energy densities of dark and
visible matter are of the same order of magnitude.

One way of relating both sectors is by considering an asymmetry in the dark sector
which is related to the baryon asymmetry. Both asymmetries might have a common
origin, generated simultaneously by the same mechanism. Alternatively, an asymmetry
could arise in one of the two sectors and then be transmitted to the other one. At some
point, the processes which communicate the two sectors (or at least the processes which
communicate their asymmetries) would decouple, isolating the asymmetry in each sector.
Eventually, if the dark matter was thermalized, the symmetric part of its abundance must
annihilate away as happens with the baryons and antibaryons.
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In this thesis we will focus on the situation in which an asymmetry was first originated
in the dark sector and then it is transmitted to the visible sector via interactions among
dark matter and leptons. The transmission from the leptonic to the baryonic sector
is then carried out by the electroweak sphalerons. The reason for choosing an initial
dark asymmetry is that it is easier to generate it in the dark sector than in the visible
one. We know much less about the dark sector, which translates into fewer constraints.
Finding a model and a mechanism to generate an asymmetry in the dark sector would
be much simpler. Most of the mechanisms proposed for this purpose are analogous to
those introduced for baryogenesis, see section 2.2.3. For complete reviews on the ADM
see Refs. [57, 58].
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Chapter 3

Thermal Universe

The purpose of this chapter is giving a review on some of the theoretical elements to
analyse the physics in the early universe. In section 3.1 we briefly discuss some aspects of
equilibrium thermodynamics. Then, in section 3.2 we introduce the Boltzmann equation
for a generic interaction. Finally, we review the physics of the freeze-out mechanism in
section 3.3, for symmetric and asymmetric dark matter. The reader is referred to Refs.
[4, 59] for extensive reviews on these topics.

3.1 Equilibrium Thermodynamics
In the early universe, the particles were forming a hot dense plasma which was in thermal
equilibrium. At temperatures over a few GeVs, all standard model particles have energies
well above their rest mass

E ≈
√
m2 + |~p|2 ≈ |~p|,

so they can be considered as relativistic (they behave as radiation). In this context,
the only relevant parameter is the temperature of the plasma. For species in kinetic
equilibrium, their phase space distributions are given by the Fermi-Dirac distribution for
fermions or Bose-Einstein distribution for bosons

f± = 1
e(E−µ)/T ± 1 , (3.1.1)

where the + sign corresponds to fermions and the − sign to bosons. µ is the chemical
potential of the particle species. Sometimes we can approximate the chemical potential of
the SM particles in the early universe to be zero, µ = 0, as it is negligible compared to the
temperature. However, this would imply that the number of particles and antiparticles is
the same, which is not exactly true. Moreover, if the species are in chemical equilibrium,
we can set a relation between the chemical potential of the particles involved in certain
interactions. For an interaction a+b→ i+j, the relation between the chemical potentials
would be µa + µb = µi + µj.

In order to obtain the number density n and the energy density ρ of a particle species
with g internal degrees of freedom, we perform the integrals

n = g

(2π)3

∫
f(E) d3p, (3.1.2)
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and

ρ = g

(2π)3

∫
Ef(E) d3p, (3.1.3)

where E2 = |~p|2 +m2. The dependence of the number density n with the temperature is
explicitly shown on appendix A.

3.2 Boltzmann Equation
We now know how to describe the evolution of a particle species when it is in equilibrium
with the thermal plasma of the universe. The evolution of the abundance around the
epoch of decoupling is nevertheless more challenging.

To understand the evolution of the particle species we focus on the evolution of its phase
space distribution, which evolves according to the Boltzmann equation. The Boltzmann
equation can be written generically in the form

L̂[f ] = Ĉ[f ], (3.2.1)

where Ĉ is the collision operator and L̂ is the Liouville operator. For the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, the Liouville operator takes the form

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|~p|2 ∂f

∂E
. (3.2.2)

Recalling the definition of the number density in terms of the phase space density (3.1.2),
dividing by E and integrating Eq. (3.2.2) by parts, one arrives to

ṅ+ 3Hn = g

(2π)3

∫ d3p

E
Ĉ[f ], (3.2.3)

where H is the Hubble parameter. To see this step explicitly, see appendix B.1.

Now, developing the collision term on the right-hand side of the equation for a generic
interaction (ψ + a+ b+ ...↔ i+ j + ...) where we are focusing on particle ψ,

gψ
(2π)3

∫
Ĉ[f ]d

3pψ
Eψ

= −gψ
∫
dΠψdΠadΠb...dΠidΠj...

×(2π)4δ4 (pψ + pa + pb + ...− pi − pj...)
×
[
|M |2ψ+a+b...→i+j...fψfafb...(1± fi)(1± fj)...

−|M |2i+j...→ψ+a+b...fifj...(1± fψ)(1± fa)(1± fb)...
]

(3.2.4)

with fψ, fa, etc. the phase space distributions for each particle, given by (3.1.1). Here,
+ applies to bosons and − to fermions. The delta function ensures energy-momentum
conservation. The matrix element squared |M |2ψ+a+b...→i+j... is averaged over the initial
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and the final spins, and takes into account the proper factors for identical particles. The
Lorentz invariant phase space factors dΠ are defined as

dΠ ≡ 1
(2π)3

d3p

2E . (3.2.5)

We can make some assumptions to simplify greatly this equation:

1. Time reversal T-invariance (or equivalently CP invariance), which implies that

|M |2ψ+a+b...→i+j... = |M |2i+j...→ψ+a+b... ≡ |M |2.

Even if CP is broken, the form of equilibrium distribution functions remains the
same and this relation can effectively be considered [60].

2. We are interested in temperatures smaller than E − µ, which happens for high
temperatures. In this limit, the exponential in the Bose-Einstein or Fermi-Dirac
distribution is large and dwarves the ∓1 in the denominator,

f = 1
e(E−µ)/T ∓ 1 ≈ e−(E−µ)/T −→ 1± f ≈ 1, (3.2.6)

regardless of the nature of the particle (fermionic or bosonic). Even if we are not in
the high temperature regime, this will translate into a correction of less than ∼ 20
% in the rate.

With this two assumptions, and putting together Eqs. (3.2.3) and (3.2.4), the Boltzmann
equation can be rewritten as

ṅψ + 3Hnψ =− gψ
∫
dΠψdΠadΠb...dΠidΠj...(2π)4|M |2×

× δ4 (pψ + pa + pb + ...− pi − pj...)
[
fψfafb...− fifj...

]
,

(3.2.7)

where the term 3Hnψ accounts for the dilution of the number density due to the expansion
of the universe, and the right-hand side encompasses the change in particle number due
to the interactions with other particles. It is usual to write the Boltzmann equation in
terms of the comoving number density, removing in this way the expansion term. For
these purposes a new variable called yield is defined, as

Yψ ≡
nψ
s
, (3.2.8)

with s the entropy density, given by

s = 2π2

45 g?ST
3, (3.2.9)

where g?S are the effective number of relativistic degrees of freedom at temperature of the
thermal plasma T . The entropy density scales as s ∝ T 3 with the temperature, as opposed
to the scale factor a ∝ T−1. In absence of particle creation or annihilation, the number
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density also scales like n ∝ T 3 and the yield remains constant. Using the conservation of
entropy S, which tranlates into the condition sa3 = constant, we can relate the left-hand
side of Eq. (3.2.7) to the Yield as

ṅψ + 3Hnψ = sẎ . (3.2.10)

The explicit derivation of this relation can be found in appendix B.2. Introducing the
variable x ≡ mψ/T , with dx

dt
= xH(x) and H(x) = H(x = 1)x−2 we get to

ṅ+ 3Hn = sxH(x)dY
dx

= sH(x = 1)
x

dY

dx
. (3.2.11)

We remember that the Hubble parameter in the radiation dominated epoch, the epoch
in which we are interested, is given by

H = π

√
g?
90

T 2

MPl
, (3.2.12)

where MPl = 2.435× 108 GeV is the reduced Planck mass. Using relation (3.2.11) we can
turn our Eq. (3.2.7) into

dYψ
dx

= − xgψ
H(1)s

∫
dΠψdΠadΠb...dΠidΠj...(2π)4|M |2×

× δ4 (pψ + pa + pb + ...− pi − pj...)
[
fψfafb...− fifj...

]
,

(3.2.13)

which is the Boltzmann equation for a generic interaction.

3.3 Freeze-out
When the temperature of the thermal plasma drops below the mass of a certain parti-
cle species, this species stops behaving relativistically. The annihilation of the particle-
antiparticle pairs to lighter species is favoured in comparison to the inverse reaction: the
production of particle-antiparticle pairs from lighter ones. In this instant, the equilibrium
comoving number density of the particle, which previously was constant, starts decreasing
exponentially, as we can see from Eq. (A.2) in appendix A. Because of this exponential
suppression, if the particle species remained in thermal equilibrium until today, its num-
ber density would be totally negligible. This is what would happen in a non-expanding
universe. In reality, the expansion of the universe dictates when a particle species departs
from thermal equilibrium, and therefore, the evolution of its number density.

The criteria that defines whether some particle species is in thermal equilibrium or not,
is the ratio between the interaction rate, Γ, with other particles in the thermal plasma,
and the rate at which the universe is expanding, H. If the particles interact much more
rapidly that the universe is expanding

Γ� H, (3.3.1)
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Fig. 3.1: Freeze-out of a massive particle species χ for different annihilation cross-sections and
for mχ = 100 GeV. The dashed black line is the equilibrium abundance while the solid lines
are the actual abundances for each annihilation strength given by the interaction cross-section
〈σv〉. On the right side of the plot, the correspondence to the relic density of the species today is
shown. We can see that the stronger the annihilation rate, the later the particle species freezes
out and the smaller the relic abundance is. Here, and from now on, we are considering only
s-wave annihilation for which 〈σv〉 does not have a dependence with the velocity.

then they do not feel the expansion and they remain in equilibrium with the thermal
plasma. On the contrary, the rate of interaction drops below the expansion rate

Γ < H, (3.3.2)

then particles and anti-particles cannot find each other any more and the annihilation
stops. When this happens, the species departs equilibrium with the rest of the particles
and freezes-out. The comoving number density remains then constant. The stronger the
interactions are, the later the particle species will freeze-out. This behaviour is shown in
Fig. 3.1. When a particle species freezes out, its energy is deposited in the rest of the
particle species, increasing the temperature of the plasma and therefore slowing down the
cool-down of the universe.

3.3.1 Dark matter freeze-out
Let us now study more carefully the evolution of the dark matter abundance along the
thermal history of the universe. Considering dark matter particles χ that are stable, mas-
sive and weakly interacting with SM particles, we have the following particle-antiparticle
annihilation/production process

χ χ̄←→ ψ ψ̄, (3.3.3)

where ψ denotes all the species into which χ can annihilate. The number of dark matter
particles is changed by two units in this interaction.
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We can assume that the SM particles will be in thermal equilibrium with the plasma at
the temperatures relevant to the dark matter freeze-out. This assumption is based on the
fact that they will have additional interactions with other particles, which will be stronger
than the one in Eq. (3.3.3). Therefore, ψ and ψ̄ will have thermal distributions with zero
chemical potentials.

The Boltzmann equation for the particles χ can be specified from Eq. (3.2.13) as

dYχ
dx

= − xgχ
H(1)s

∫
dΠχdΠχ̄dΠψdΠψ̄(2π)4|M |2×

× δ4
(
pχ + pχ̄ − pψ − pψ̄

) [
fχfχ̄ − fψfψ̄

]
.

(3.3.4)

As the product particles have thermal equilibrium distributions with vanishing chemical
potentials, their phase space distributions become

fψ = f eq
ψ = exp

(
− Eψ / T

)
fψ̄ = f eq

ψ̄
= exp

(
− Eψ̄ / T

)
.

(3.3.5)

Also, the energy part of the δ-function in the Boltzmann equation enforces Eχ + Eχ̄ =
Eψ + Eψ̄, so that

f eq
ψ f

eq
ψ̄

= exp
(
−
Eψ + Eψ̄

T

)
= exp

(
− Eχ + Eχ̄

T

)
= f eq

χ f
eq
χ̄ . (3.3.6)

This trick is called ‘detailed balance’, and allows us to make the substitution[
fχfχ̄ − fψfψ̄

]
−→

[
fχfχ̄ − f eq

χ f
eq
χ̄

]

in Eq. (3.3.4). Now we can develop the interaction term of the Boltzmann equation
arriving to an expression in terms of the abundances of χ,

ṅχ + 3Hnχ = −〈σv〉ann
[
n2
χ − n2

χ,eq

]
, (3.3.7)

or alternatively in terms of the yields, using the relation on Eq. (3.2.11)

dYχ
dx

= −xs〈σv〉ann

H(1)
[
Y 2
χ − Y 2

χ,eq

]
. (3.3.8)

Here we have assumed that there is not an asymmetry between the abundances of χ and
χ̄, setting nχ = nχ̄. In these expressions, 〈σv〉ann is the thermally averaged annihilation
cross section times velocity, summed over all possible final states, given by

〈σv〉ann =
∑
ψψ̄

〈σv〉χχ̄→ψψ̄,

〈σv〉χχ̄→ψψ̄ = gχ
n2
χ,eq

∫
dΠχdΠχ̄dΠψdΠψ̄(2π)4δ4

(
pχ + pχ̄ − pψ − pψ̄

)
|M |2fχfχ̄.

(3.3.9)
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The calculations necessary to arrive to Eqs. (3.3.7) and (3.3.8) are not trivial. In appendix
B.3 the thermal average is solved analytically for the simpler case of a decay into two
massless particles.

One can now numerically calculate the evolution of the number density of the particle
χ as it was done for Fig. 3.1. After the freeze-out of the particle, the yield Y f

χ remains
constant. This is because there are no more number-changing interactions, so it will be
the same until today

Y f
χ =

nf
χ

s(xf)
' Y 0

χ =
n0
χ

s(x0) . (3.3.10)

where f means freeze-out and 0 means today. We therefore can obtain the present relic
density of dark matter in the universe, which can be then compared with the measured
value in Eq. (2.1.1). In this way we can constrain the unknown parameters which are the
dark matter mass and the annihilation cross section, 〈σv〉ann. One can also approximately
calculate the relic density today assuming an instantaneous freeze-out.

3.3.2 Asymmetric dark matter freeze-out
As we already mentioned, symmetric WIMPs have been one of the leading dark matter
candidates for many years. Another popular proposal Asymmetric Dark Matter (ADM).
This candidate particle is different from its antiparticle, and therefore it is possible to
have different abundances for particles and antiparticles. The assumption is that this
asymmetry is generated well before the dark matter annihilation reactions freeze out. As
we introduced in section 2.3.1, this scenario is motivated by the similarity of the dark
matter and baryon densities in the universe, which suggest that a common mechanism
might have given rise to both the baryon and the hypothetical dark matter asymmetries.

Let us consider a dark matter particle χ and its antiparticle χ̄. Assuming that only
χχ̄ pairs can annihilate into SM particles and following Eq. (3.3.8), we can write the
following Boltzmann equations for their number densities

dYχ
dx

= −λ〈σv〉ann

x2

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYχ̄
dx

= −λ〈σv〉ann

x2

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

(3.3.11)

where

λ ≡ 4π√
90

mχMPl
√
g?S . (3.3.12)

The yield of equilibrium comes from the number density in Maxwell-Boltzmann approxi-
mation given in Eq. (A.3) divided by the entropy density s defined in Eq. (3.2.9),

Y eq
χ , χ̄ = 45

4π4
gχ
g?s

x2K2(x)e±ξ. (3.3.13)
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Fig. 3.2: Evolution of the χ and χ̄ abundances for mχ = 100 GeV, 〈σv〉ann = 5× 10−9 GeV−2

and C = 10−11. The dashed black line is the equilibrium abundance for the case where there is
no asymmetry (C = 0), the red and blue dashed lines are are the χ and χ̄ equilibrium abundances
for C = 10−11, and the solid lines are the actual abundances. Our results in this plot agree with
those of Ref. [61].

We take gχ = 2 for fermionic dark matter. In this expression, ξ is defined as ξ ≡ µ/T ,
but the dependence with the chemical potential will be cancelled in Eqs. (3.3.11) as it
only appears in the form Y eq

χ Y eq
χ̄ .

Notice that the Eqs. (3.3.11) are identical, which means that if we subtract them,

dYχ
dx
− dYχ̄

dx
= 0 ,

which implies

Yχ − Yχ̄ = C , (3.3.14)

where C is a constant. The difference between the comoving number densities of par-
ticles and antiparticles is conserved, as we would anticipate by the fact that they can
only annihilate in χχ̄ pairs. This could be due to the conservation of some dark matter
charge. Taking this into consideration, we can rewrite the two Boltzmann equations into
a decoupled form

dYχ
dx

= −λ〈σv〉ann

x2

(
Y 2
χ − CYχ − Y eq

χ Y eq
χ̄

)
,

dYχ̄
dx

= −λ〈σv〉ann

x2

(
Y 2
χ̄ + CYχ̄ − Y eq

χ Y eq
χ̄

)
.

(3.3.15)

26



10−11 10−10 10−9 10−8 10−7

〈σv〉 / GeV−2

10−3

10−2

10−1

100

101

Ω
h

2

Ωχh
2, C = 10−11

Ωχ̄h
2, C = 10−11

Ωχh
2, C = 3× 10−12

Ωχ̄h
2, C = 3× 10−12

Fig. 3.3: Relic densities Ωh2 for χ and χ̄ with mχ = 100 GeV, for increasing 〈σv〉ann and two
different values of the asymmetry: C = 10−11 and C = 3 × 10−12. Only s-wave annihilation is
taken into account. Our results in this plot agree with those of Ref. [61].

We can solve these equations numerically to obtain the evolution of the χ and χ̄ number
densities, as shown in Fig. 3.2. The parameters to be chosen are the initial asymmetry C,
which will remain constant as shown in (3.3.14), and the annihilation cross-section 〈σv〉ann,
which we will assume to be in s-wave and therefore, constant. This case is different than
theWIMP or symmetric freeze-out, shown in Fig. 3.1. As now the equilibrium abundances
depend on the chemical potential, they are different for χ and χ̄. The yield Yχ (solid red
line in Fig. 3.2) is bounded from below by Y eq

χ (dashed red line) to the value of the
asymmetry C, as this is the excess of χ particles that cannot find χ̄ partners to annihilate
with.

Another feature of this case is that, due to this lower bound for the χ particles, we still
have a considerable number of them after freeze-out. This affects the population of χ̄
in the sense that they will find a non-negligible number of χ particles to annihilate with
even after the decoupling temperature and they will keep decreasing for big x, as we can
see in Fig. 3.2.

We can also study the dependence of the final relic abundance on the annihilation cross-
section. In Fig. 3.3 we plot the value of Ωh2 as a function of 〈σv〉ann, taken to be constant
(s-wave annihilation). The two different colors correspond to two different asymmetries.
As expected, the lower the annihilation cross section, the bigger the impact on the relic
density. For small values of 〈σv〉ann, the value of the asymmetry C does not play a big
role, as Yχ and Yχ̄ do not decrease fast enough to notice the lower bound imposed by the
asymmetry. For large values of 〈σv〉ann, the value of C does affect the relic abundance and
we see that when we go above certain value of the cross-section, the relic abundance of
χ does not vary any more as it adopts the lowest possible value given by the asymmetry.
We can also notice that for larger values of asymmetry C, the larger the difference in the
relic abundance of χ and χ̄ is.
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We note that for ADM, both χ and χ̄ contribute to the relic density, and their contri-
butions have to be added,

ΩDM = Ωχ + Ωχ̄. (3.3.16)

This results in the required annihilation cross-section to be approximately twice as large
as that for the WIMP case (Majorana dark matter), where there is only the contribution
of Ωχ to the relic density. The larger cross-section in the case of ADM reduces the relic
density of each χ and χ̄, compensating the fact that we have two species contributing the
observed relic abundance.
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Chapter 4

Connections between Dark and
Visible Asymmetries

In this Chapter we will introduce our proposed scenario: a mechanism capable of trans-
mitting an initial dark asymmetry to the visible sector. First, in section 4.1, we perform a
systematic analysis to find the minimal set of conditions needed to transmit an asymme-
try from dark matter to the leptons. Then, in section 4.2, we study the transmission from
the leptonic to the baryonic sector by electroweak sphalerons. Finally we obtain results
consistent with the CMB measurements, and set constraints on our parameters.

4.1 Transmission from Dark to Lepton Asymmetries
In this section, we will explore how an asymmetry in the dark sector can be transferred into
the leptonic one. For this purpose we assume an asymmetric dark matter sector consisting
on a particle χ and its antiparticle χ̄. In general, the dark sector may consist of a variety
of dark particles fulfilling some symmetry group, but for our purposes we will focus only
on this particle species that couples weakly with some SM particles. We will consider
that dark matter is coupled to leptons, which we denote by l, and lc its antiparticle.
These leptons will be coupled to the SM thermal bath by interactions stronger than their
coupling to dark matter, therefore remaining in thermal equilibrium with the plasma in
the range of temperatures taken into consideration. For now we will treat them as generic
leptons, and later on we will define their nature.

The SM is invariant under a global symmetry U(1)L associated to the so called lepton
number L. As this is an accidental symmetry, we can write interaction terms that break
it in the Lagrangian. We also want to define a similar global symmetry U(1)D with a
quantum number D carried by our dark matter particles χ and χ̄.

We consider an initial asymmetry C0 between dark matter particles and antiparticles,
that we will try to convert into an asymmetry in the leptonic abundances, initially taken
to be symmetric. The reason for choosing an initial dark asymmetry is that the dark
sector is less constrained than the visible one, and therefore it is easier to create a model
where this asymmetry arises. For the purpose of asymmetry transmission, we can already
anticipate that the breaking of some global symmetry will be needed. This is hinted by
the Sakharov conditions listed in section 2.2.2, which also suggest that we might need
some kind of CP-violation.
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Case Broken symmetries Asymmetry transfer
L D CP

1 No
2 No
3 No
4 No
5 No
6 No
7 Yes
8 Yes

Table 4.1: List of cases we will take into account in our analysis. The crosses mark the
corresponding broken symmetries for each case. L and D are the quantum numbers associated
to the global symmetries U(1)L and U(1)D. CP stands for charge-parity. In the right column
we state whether the asymmetry will be successfully transferred for that case or not.

The approach I will follow is to systematically review the different breaking possibilities
to find the minimal set of conditions needed for the transmission of the asymmetry.
The list of cases that will be considered is shown in Table 4.1, where we specify which
symmetries are broken in each case. This table can be considered as an index for this
chapter. In Table 4.2 we list the cross-sections for the different processes that will appear
along our analysis, and the notations used for them. We will refer to this table repeatedly
during this section.

All conserving 〈σv〉(χχ̄→ l lc) ≡ 〈σv〉ann

L-violating 〈σv〉(χχ̄→ l l) ≡ 〈σv〉L1, 〈σv〉(χχ̄→ lc lc) ≡ 〈σv〉L2

D-violating 〈σv〉(χχ→ l lc) ≡ 〈σv〉D1, 〈σv〉(χ̄χ̄→ l lc) ≡ 〈σv〉D2

L- and D-violating but
D + L preserving 〈σv〉(χχ→ l l) = 〈σv〉(χ̄χ̄→ lc lc) ≡ 〈σv〉DL1

L- and D-violating but
D − L preserving 〈σv〉(χχ→ lc lc) = 〈σv〉(χ̄χ̄→ l l) ≡ 〈σv〉DL2

Table 4.2: List of cross-sections that will be considered in this section, the notations used for
them and the quantum numbers broken by their interactions.
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4.1.1 Systematic analysis

Case 1: All symmetries conserved

Let us start briefly reviewing the all-conserving annihilation from the standard ADM
scenario, but also showing the equations and the evolution of the SM particles coupled
to the dark matter. We can already foresee that no asymmetry will be transmitted in
this scenario, but it is a good exercise to understand better the physics of the later more
complex scenarios.

As we already mentioned, the generic leptons to which dark matter couples interact
strongly with the the SM thermal bath of particles, which keeps them in thermal equi-
librium with the plasma. For exemplifying purposes, in what follows we will consider the
dark matter mass to be mχ = 100 GeV. The complete set of equations, considering only
the process (χχ̄↔ l lc) and the decay of the leptons to lighter SM particles (l lc ↔ SM),
will be

dYχ
dx

= − λ

x2 〈σv〉ann
(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYχ̄
dx

= − λ

x2 〈σv〉ann
(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYl
dx

= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.1)

As in section 3.3.2, we notice that

dYχ
dx
− dYχ̄

dx
= 0, (4.1.2)

and

dYl
dx
− dYlc

dx
= 0, (4.1.3)

which means that the initial asymmetries will remain constant during the evolution of the
number densities. This allows us to relate Yχ̄(x) = Yχ(x) − C and Yl(x) = Ylc(x) as we
consider that the leptons do not have an initial asymmetry. The asymmetry will not be
transmitted in this case as we anticipated.

Solving numerically Eqs. (4.1.1) we get the evolution of the involved particle abun-
dances. In Fig. 4.1 these abundances are shown for two different values of annihilation
cross section and dark matter asymmetries. In the two upper plots, the asymmetry be-
tween the abundance of χ and χ̄ is C = 10−11, smaller than in the two lower plots, where
C = 10−9. We can see that for the same value of 〈σv〉ann, left or right, the different value
of C influences the evolution of the abundance because it sets a lower bound for Yχ, as
explained in section 3.3.2. Comparing horizontally we can also see clearly how lowering
the annihilation cross section gives a higher relic abundance. The cross-section 〈σv〉llc→SM
takes values of ∼ 10−6 GeV−2, which keeps the leptons effectively in thermal equilibrium.
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Fig. 4.1: Evolution of the comoving abundances of χ, χ̄, l and lc in Case 1 and assuming
mχ = 100 GeV. The system is solved for different values of 〈σv〉ann and the asymmetry C
indicated above each plot.

Case 2: Breaking CP

The case where D and L are preserved but CP is violated cannot be considered in this
analysis, as the only process allowed, the annihilation (χχ̄↔ l lc), is its own conjugate.

Case 3: Breaking lepton number L
In our attempt to transmit the asymmetry from the dark sector to the leptonic one we
might expect the need to break the lepton number L. The yield quantifying lepton number
is YL ≡ Yl − Ylc . As we defined at the beginning of this section, the quantum number
D corresponding to the global symmetry U(1)D is carried by our dark matter particles χ
and χ̄. The yield quantifying this dark quantum number is YD ≡ Yχ− Yχ̄, which we have
been calling C when it is constant. In this section we will still only consider interactions
that preserve D.

In addition to the process (χχ̄ ↔ l lc), we also have (χχ̄ ↔ l l) and (χχ̄ ↔ lc lc) which
break L. First we try the case where CP is conserved. Conservation of CP means that the
two reactions that break lepton number have the same cross section, 〈σv〉L1 = 〈σv〉L2 ≡
〈σv〉L.

In order for the L violating interactions to take place without violating electromagnetic
charge we need to impose our leptons to be electromagnetically neutral. We will still
address them as generic leptons, which could be the SM left-handed neutrinos, some kind
of light sterile neutrinos, or other type of particle. We will go back to this matter in
section 4.2.
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The Boltzmann equations for this case are

dYχ
dx

= − λ

x2

(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYχ̄
dx

= − λ

x2

(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYl
dx

= + λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.4)

We notice that again

dYD
dx
≡ dYχ

dx
− dYχ̄

dx
= 0

dYL
dx
≡ dYl

dx
− dYlc

dx
= 0

(4.1.5)

which means that the asymmetries of each sector do not evolve with time. Therefore, we
move on to the next case where we will try breaking CP.

Case 4: Breaking lepton number L and CP

Here we consider the same annihilation processes as in Case 3, but now we have 〈σv〉L1 6=
〈σv〉L2 due to CP-violation. See Table 4.2 for the cross-section to process correspondence.
The Boltzmann equation for this case take the form

dYχ
dx

= − λ

x2

(
〈σv〉ann + 〈σv〉L1 + 〈σv〉L2

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYχ̄
dx

= − λ

x2

(
〈σv〉ann + 〈σv〉L1 + 〈σv〉L2

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
,

dYl
dx

= + λ

x2

[(
〈σv〉ann + 2〈σv〉L1

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[(
〈σv〉ann + 2〈σv〉L2

)(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.6)
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Fig. 4.2: Evolution of the dark matter asymmetry YD(≡ D) and the lepton asymmetry YL(≡ L)
in Case 4, assuming mχ = 100 GeV. The system is solved for cross-sections 〈σv〉ann = 10−10

GeV−2, 〈σv〉L1 = 2 × 10−18 GeV−2 and 〈σv〉L2 = 10−18 GeV−2, and initial asymmetries Y in
D =

10−11 and Y in
L = 0. The vertical axis on the left plot and both axes on the right plot are scaled

by a factor of 10−11. Here the notation D and L is used for the asymmetry yields. The left plot
shows the asymmetries as a function of the evolution of the universe x = mχ / T . On the right
plot a more schematic view of the asymmetries is shown, as a DL plane. The horizontal axis of
this right plot corresponds to the change in L, and the vertical one to the change in D, which
in this case stays constant. The red and green dashed lines mark the directions of preserved
number D+L and D−L respectively, and all the directions parallel to these lines have the same
conserved quantities. The purple solid line describes the evolution of the asymmetries for the
chosen parameters. Finally, the markers shown in both plots mark some specific points along
the evolution of the universe to help identify the correspondence between the two plots. Here
the markers correspond to x = 0.1, 2, 4 and 100.

Now, as the equations for the lepton and antilepton abundances are different, the evolution
of the asymmetries is

dYD
dx

= 0,

dYL
dx

= 2 λ
x2

(
〈σv〉L1 − 〈σv〉L2

) (
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
.

(4.1.7)

These equations tell us that the asymmetry in the dark sector will not evolve but the
one in the leptonic sector will. We therefore cannot say that the asymmetry will be
transmitted, but rather directly generated in the visible sector. We can see this graphically
in Fig. 4.2. There, we numerically solved the evolution of Eqs. (4.1.7) for cross-sections
〈σv〉ann = 10−10 GeV−2, 〈σv〉L1 = 2×10−18 GeV−2 and 〈σv〉L2 = 10−18 GeV−2 1, and initial
asymmmetries Y in

D = 10−11 and Y in
L = 0. As we predicted by looking at the evolution

equations, the yield of the asymmetry in dark matter (YD ≡ D) remains constant while
the leptonic one (YL ≡ L) evolves from zero to a non-negligible value. We notice that YL
grows towards positive values because we have chosen 〈σv〉L1 > 〈σv〉L2. In the opposite

1 The reason for using such small values for some cross-sections is that we encountered numerical
problems for larger values. These are Riccati equations, which are numerically very unstable. Taking
small values for the parameters does not affect the physics of the asymmetry transfer and so it allows us
to qualitatively understand the behaviour of the system. For these reasons, from here on, we will take
small values for the cross-sections.
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case 〈σv〉L1 < 〈σv〉L2, the asymmetry would go towards negative values, corresponding to
a larger number of antileptons than leptons.

It should be pointed out that even though the magnitude of the symmetry-conserving
annihilation cross-section 〈σv〉ann does not appear in the equations of the asymmetries
(4.1.7), it indirectly affects the size of the generated asymmetry. This is due to the fact
that 〈σv〉ann plays an important part on how close will Yχ and Yχ̄ get to the equilibrium
distributions Y eq

χ and Y eq
χ̄ , as the first two equations in Eqs. (4.1.6) show. This affects

the term
(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
in Eqs. (4.1.7). In the same way, also the values of the

cross-sections 〈σv〉L1 and 〈σv〉L2 matter, and not only their difference.

We then conclude that the breaking of L and CP creates a lepton asymmetry, but it is
not a sufficient condition to allow the transmission of the asymmetry from one sector to
the other. In the next case we will try breaking the dark matter number D.

Case 5: Breaking dark number D

In this case, in addition to the process (χχ̄ ↔ l lc), we also consider (χχ ↔ l lc) and
(χ̄χ̄ ↔ l lc), which break D by two units. First we analyse the case in which there is no
CP violation. This implies that 〈σv〉D1 = 〈σv〉D2 ≡ 〈σv〉D are of the same magnitude.
See Table 4.2 for the cross-section to process correspondence. The Boltzmann equations
are in this case

dYχ
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 2〈σv〉D

(
Y 2
χ − Y 2

χ, eq

) ]
,

dYχ̄
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 2〈σv〉D

(
Y 2
χ̄ − Y 2

χ̄, eq

) ]
,

dYl
dx

= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 〈σv〉D

(
Y 2
χ + Y 2

χ̄ − Y 2
χ, eq − Y 2

χ̄, eq

)
−〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 〈σv〉D

(
Y 2
χ + Y 2

χ̄ − Y 2
χ, eq − Y 2

χ̄, eq

)
−〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.8)

The evolution of the asymmetries is

dYD
dx

= −2λ
x2 〈σv〉D

(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
,

dYL
dx

= 0.
(4.1.9)

In this case, we have the opposite situation to the one in Case 4. The lepton asymmetry
does not not change, while the dark matter asymmetry will evolve.
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Fig. 4.3: Evolution of the comoving abundances of χ, χ̄, l and lc in Case 5, assuming mχ = 100
GeV, 〈σv〉ann = 2 × 10−11 GeV−2, 〈σv〉D = 2 × 10−12 GeV−2, and Y in

D = 10−10. The dashed
lines correspond to the equilibrium distributions and the solid ones to the actual yields. In this
particular case the blue solid line corresponding to Yχ̄ is hidden behind the red solid line.

Now that the yield of the dark matter asymmetry YD(≡ Yχ − Yχ̄) is not a constant
any more, we need to inspect carefully how this will affect the equilibrium distributions
Y eq
χ,χ̄. The equilibrium yields depend on the chemical potential of the χ and χ̄ particles as

seen in Eq. (3.3.13), where the parameter ξ ≡ µ/T is related to the asymmetry of such
particles as

2 sinh ξ(x) = YD(x)
Y eq
χ,0

, (4.1.10)

where Y eq
χ,0 is the equilibrium distribution in the symmetric case, namely when Yχ−Yχ̄ = 0.

Solving numerically the system of differential equations (4.1.8) for 〈σv〉ann = 2 × 10−11

GeV−2, 〈σv〉D = 2× 10−12 GeV−2, and Y in
D = 10−10, and taking into account the chemical

potential dependence on the asymmetry, we obtain the evolution of the comoving abun-
dances shown in Fig. 4.3. Here we notice how the equilibrium yield Y eq

χ (dashed red line)
does not stabilize at the value Y in

D = 10−10, but decreases down to ∼ 5× 10−12 due to the
asymmetry wash-out that takes place.

Let us now see graphically the evolution of the asymmetries. As we said earlier, we
expect from Eqs. (4.1.9) that only the dark asymmetry will evolve. This is shown in
Fig. 4.4, where we numerically solved the system for cross-sections 〈σv〉ann = 4 × 10−19

GeV−2 and 〈σv〉D = 2× 10−19 GeV−2, and initial asymmetries Y in
D = 10−11 and Y in

L = 0.
Here the choice of parameters is different than in Fig. 4.3 for illustrative purposes, but
the behaviour will be analogous. The asymmetry between the χ and χ̄ abundances is
washed-out. The magnitude of the wash-out depends on the value of 〈σv〉D and the
relative strength of 〈σv〉ann compared to 〈σv〉D. In a case where 〈σv〉D is larger, we can
have almost a complete wash-out of YD
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Fig. 4.4: Evolution of the dark matter asymmetry YD(≡ D) and the lepton asymmetry YL(≡ L)
in Case 5, assuming mχ = 100 GeV. The system is solved for cross-sections 〈σv〉ann = 4× 10−19

GeV−2 and 〈σv〉D = 2 × 10−19 GeV−2, and initial asymmetries Y in
D = 10−11 and Y in
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vertical axis on the left plot and both axes on the right plot are scaled by a factor of 10−11. The
markers correspond to x = 0.1, 2, 5 and 100. The notations are the same as in Fig. 4.2.

We have therefore shown that breaking the dark number D on its own can wash-out
the initial asymmetry in this sector, but will not be able transmit the asymmetry to the
visible sector. Next, we will try the case where in addition to D, CP is also broken.

Case 6: Breaking dark number D and CP

In this case one might foresee from symmetry arguments that the dark matter asymmetry
also cannot be transmitted to the visible sector. Nevertheless, let us corroborate this
expectation using the Boltzmann equations. Making use of the notation described in
Table 4.2, the processes corresponding to 〈σv〉ann, 〈σv〉D1 and 〈σv〉D2 are active. We
write the Boltzmann equations, which take the form

dYχ
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 2〈σv〉D1

(
Y 2
χ − Y 2

χ, eq

)]
,

dYχ̄
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 2〈σv〉D2

(
Y 2
χ̄ − Y 2

χ̄, eq

) ]
,

dYl
dx

= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 〈σv〉D1

(
Y 2
χ − Y 2

χ, eq

)
+〈σv〉D2

(
Y 2
χ̄ − Y 2

χ̄, eq

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Y eq

χ Y eq
χ̄

)
+ 〈σv〉D1

(
Y 2
χ − Y 2

χ, eq

)
+〈σv〉D2

(
Y 2
χ̄ − Y 2

χ̄, eq

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.11)
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The evolution of the asymmetries reads

dYD
dx

= −2λ
x2

[
〈σv〉D1

(
Y 2
χ − Y 2

χ, eq

)
− 〈σv〉D2

(
Y 2
χ̄ − Y 2

χ̄, eq

) ]
,

dYL
dx

= 0.
(4.1.12)

Again only the asymmetry in the dark sector will evolve, as in case Case 5. As we are
interested in the transmission, we then understand that the minimal case for transmitting
the asymmetry will necessarily have to simultaneously break both D and L.

Case 7: Breaking dark number D and lepton number L
Finally we got to the conclusion that we need at least the simultaneous breaking of both
L and D. In this scenario we have all the processes described in the previous sections, in
addition to the four processes which break both global symmetries at once, labelled by
the cross-sections 〈σv〉DL1 and 〈σv〉DL2 (see Table 4.2). In this case, we preserve CP, so
〈σv〉L1 = 〈σv〉L2 ≡ 〈σv〉L and 〈σv〉D1 = 〈σv〉D2 ≡ 〈σv〉D. The set of Boltzmann equations
for this case have the following form

dYχ
dx

= − λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+2
(
〈σv〉D + 〈σv〉DL1 + 〈σv〉DL2

)(
Y 2
χ − Y 2

χ, eq

)]
,

dYχ̄
dx

= − λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+2
(
〈σv〉D + 〈σv〉DL1 + 〈σv〉DL2

) (
Y 2
χ̄ − Y 2

χ̄, eq

) ]
,

dYl
dx

= + λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+
(
〈σv〉D + 2〈σv〉DL1

) (
Y 2
χ − Y 2

χ, eq

)
+
(
〈σv〉D + 2〈σv〉DL2

)(
Y 2
χ̄ − Y 2

χ̄, eq

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
,

dYlc

dx
= + λ

x2

[(
〈σv〉ann + 2〈σv〉L

)(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+
(
〈σv〉D + 2〈σv〉DL2

)(
Y 2
χ − Y 2

χ, eq

)
+
(
〈σv〉D + 2〈σv〉DL1

)(
Y 2
χ̄ − Y 2

χ̄, eq

)
− 〈σv〉llc→SM

(
Yl Ylc − Y eq

l Y eq
lc

)]
.

(4.1.13)

and the evolution of the asymmetries reads

dYD
dx

= −2λ
x2

(
〈σv〉D + 〈σv〉DL1 + 〈σv〉DL2

)(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
,

dYL
dx

= +2λ
x2

(
〈σv〉DL1 − 〈σv〉DL2

)(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
.

(4.1.14)

38



Both YD and YL evolve in this scenario, which is what allows for the transmission of
the asymmetry from one sector to the other. The fact that both equations in (4.1.14)
contain the cross-sections 〈σv〉DL1 and 〈σv〉DL2 is pointing to the fact that the asymmetry
is indeed transmitted and that the interactions associated to them: (χχ ↔ l l), (χ̄χ̄ ↔
lc lc), (χχ ↔ lc lc) and (χ̄χ̄ ↔ l l) are the ones which accomplish the transmission. The
interactions associated to 〈σv〉D indirectly affect the magnitude of the transmission, but
they are not actually transmitting the asymmetry. In this particular case, we moreover
see that both Eqs. (4.1.14) are proportional to each other, showing that the evolution of
both asymmetries can be related as

YD = −
(
〈σv〉D + 〈σv〉DL1 + 〈σv〉DL2

〈σv〉DL1 − 〈σv〉DL2

)
YL + Y in

D . (4.1.15)

We can conclude that the minimal scenario to transmit the asymmetry from the dark
sector to the leptonic sector is to simultaneously break D and L. However, there is no
need to violate C or CP in the interactions involving dark matter and leptons because
we are already starting from a CP non-conserving medium: an asymmetric sector. As
long as one of the cross-sections 〈σv〉DL1 or 〈σv〉DL2 is non-zero, we are successful in the
transmission.

Notice that the interactions (χχ↔ l l) and (χ̄χ̄↔ lc lc), associated to 〈σv〉DL1, preserve
D + L, while (χχ ↔ lc lc) and (χ̄χ̄ ↔ l l), associated to 〈σv〉DL2, preserve D − L. We
could build a model in which one of these combinations is anomaly free (or a similar
combination including baryon number B), allowing their interactions to take place.

In Fig. 4.5 four different examples are shown with different choices of cross-sections
〈σv〉ann, 〈σv〉DL1 and 〈σv〉DL2. We set 〈σv〉L = 〈σv〉D = 0 to simplify the analysis and
focus only on the transmitting interactions. The initial asymmetries are taken to be
Y in
D = 10−11 and Y in

L = 0.

• In Fig. 4.5a the system is solved for cross-sections 〈σv〉ann = 10−18 GeV−2, 〈σv〉DL1 = 0
and 〈σv〉DL2 = 3×10−19 GeV−2. The only violating interactions that are active are the
ones corresponding to 〈σv〉DL2, which preserve D−L. This is clearly seen on the right
plot, where the evolution of the purple line is parallel to the green D − L direction.
It can also be noted on the left plot that both the dark and lepton asymmetries have
analogous evolutions, which could be easily predicted by checking Eq. (4.1.15), where
the coefficient becomes +1. Physically, the reason for YL ≡ Yl − Ylc to evolve into
a negative value is that, of the two violating interactions active (χχ ↔ lc lc) and
(χ̄χ̄↔ l l), the one producing antileptons is the one that will have a larger rate even if
the cross-sections are the same. This is because the rate is proportional to the number
density as

Γ(χχ↔ lc lc) = nχ 〈σv〉DL2

Γ(χ̄χ̄↔ l l) = nχ̄ 〈σv〉DL2

and due to the initial asymmetry in dark matter we have nχ > nχ̄.
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• The opposite case is shown in Fig. 4.5b, where the system is solved for cross-sections
〈σv〉ann = 10−18 GeV−2, 〈σv〉DL1 = 3 × 10−19 GeV−2 and 〈σv〉DL2 = 0. Now the only
active violating interactions are those corresponding to 〈σv〉DL1, which preserve D+L.
Similarly to the previous case, both asymmetries follow the same evolution, but they
have opposite tendencies, as the coefficient in Eq. (4.1.15) is now −1. The right plots
in Figs. 4.5a and 4.5b are mirrored, and in this second case the evolution takes place
following a D + L preserving path, parallel to the red line. The interaction with the
higher rate now is (χχ↔ l l), which produces leptons, versus (χ̄χ̄↔ lc lc), as

Γ(χχ↔ l l) = nχ 〈σv〉DL1

Γ(χ̄χ̄↔ lc lc) = nχ̄ 〈σv〉DL1

and nχ > nχ̄. Therefore we end up with a positive lepton asymmetry.

• In Fig. 4.5c the system is solved for cross-sections 〈σv〉ann = 10−18 GeV−2, 〈σv〉DL1 =
8 × 10−18 GeV−2 and 〈σv〉DL2 = 0. This is analogous to 4.5b but for illustrative
purposes we took a larger 〈σv〉DL1, which produces an almost total transmission of D
into L.

• Finally, in Fig. 4.5d the system is solved for cross-sections 〈σv〉ann = 10−17 GeV−2,
〈σv〉DL1 = 2 × 10−18 GeV−2 and 〈σv〉DL2 = 10−18 GeV−2. Here both cross-sections
〈σv〉DL1 and 〈σv〉DL2 are non-zero, producing a combined effect. In this particular case
〈σv〉DL1 > 〈σv〉DL2, so the resulting YL is positive. The asymmetries have evolutions
with opposite signs, but this time with a scaling of −3 according to Eq. (4.1.15). In
the right plot of this figure, we can also see that the evolution of the quantum numbers
preserves neither D − L nor D + L.

Case 8: Breaking dark number D, lepton number L and CP

We could now also review the last case in our systematic analysis, the one in which all
symmetries D, L and CP are violated. This scenario would also succeed in the asym-
metry transfer. However, this case does not add any particular interesting features to
the transmission of the asymmetry and we would like to continue our analysis with the
minimal set of conditions necessary: D and L violation.
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Fig. 4.5: Evolution of the dark matter asymmetry YD(≡ D) and the lepton asymmetry YL(≡ L)
in Case 7, assuming mχ = 100 GeV. The system is solved for different values of 〈σv〉ann, 〈σv〉DL1
and 〈σv〉DL2, specified on each figure, 〈σv〉L = 〈σv〉D = 0, and initial asymmetries Y in

D = 10−11

and Y in
L = 0. The vertical axis on the left plots and both axes on the right plots are scaled by a

factor of 10−11. The markers correspond to x = 0.1, 2, 5 and 100. The notations are the same
as in Fig. 4.2.
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Fig. 4.6: The final dark matter yield Y 0
DM ≡ Y 0

χ +Y 0
χ̄ as a function of the cross-section 〈σv〉DL2

for different values of 〈σv〉ann, in the case where only these two cross-sections are non-zero. Here
we take mχ = 800 GeV and Y in

D = 2.5× 10−10. We can see how for each value of 〈σv〉ann, there
are two regimes. The first regime is where Y 0

DM is constant with 〈σv〉DL2 and the second regime
is where Y 0

DM is linear with 〈σv〉DL2 in logarithmic scale.

4.1.2 Analytic analysis
It is realistic to think that some of the cross-sections present in the Boltzmann equations
will dominate over the rest. In this case we can try to understand analytically how the
system will behave, analogous to the usual non-violating scenario.

We remember from Fig. 3.1 that the final abundance of a species is inversely proportional
to the annihilation cross-section. This relation is clearly seen from the instantaneous
freeze-out approximation, where freeze-out occurs at Γ(xf) = H(xf), and which implies
that the number density is n ' H/〈σv〉. This is a good approximation when one of the
two cross-sections involved in Eqs. (4.1.13) of Case 7 is negligible compared to the others.
If we take, for example 〈σv〉DL2 to be the dominating cross-section, only the second term
in the χ and χ̄ equations will be relevant, and we will have that

nχ , χ̄ ∝
1

〈σv〉DL2
. (4.1.16)

The inverse proportionality translates into a linear relation at logarithmic scale. We
can see this in Fig. 4.6, where we considered a case where only 〈σv〉DL2 and 〈σv〉ann are
non-zero. We solved the system for many different values of the cross-sections in order
to see this linear dependence. We can see how for each value of 〈σv〉ann, there are two
regimes. The first regime is that where Y 0

DM is constant with 〈σv〉DL2. This is because
〈σv〉ann � 〈σv〉DL2, and therefore 〈σv〉ann dominates the evolution of Y 0

χ,χ̄. The second
regime is where Y 0

DM is linear with 〈σv〉DL2 in logarithmic scale, as 〈σv〉ann � 〈σv〉DL2
and 〈σv〉DL2 dominates the evolution of Y 0

χ,χ̄. We see how in the linear regime, all lines
converge to the same values, as the contribution of 〈σv〉ann is negligible.
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4.2 Transmission from Lepton to Baryon Asymme-
tries by Sphalerons

In the previous section, we have successfully shown that an asymmetry in a dark sector
can be transmitted to the leptonic sector of the standard model if we have interactions
that simultaneously break the global symmetry U(1)D associated to dark matter and the
global lepton number asymmetry U(1)L. Now we would like to see if we can transmit
the asymmetry from the leptonic sector to the baryonic one. In section 2.2.2 we already
explained what electroweak sphaleron processes are, and here we will attempt to transmit
the asymmetry from L to B making use if these processes. Until now, we have treated
the leptons to which dark matter couples as generic, knowing that they should be neutral
in order not to violate electromagnetic charge when we break L. The setting we will
study now is the particular case where these product leptons are the standard left-handed
neutrinos.

In this thesis, the model building of the mechanism will not be addressed. It might be
concerning that before the electroweak phase transition, the left-handed neutrinos are part
of a SU(2)L doublet including the charged leptons, and that we cannot write an interaction
term in terms of νL without breaking the SU(2)L symmetry. One option would be trying
to transmit the asymmetry in the small window of temperatures in which the Higgs VEV
is already non-zero but the Sphalerons have not yet switched off. Nevertheless, here we
are going to consider a different scenario. We know we could build a model, for example
similar to the ‘verifiable radiative Seesaw mechanism of neutrino mass and dark matter’
model described in Ref. [62], which allows dark matter to couple to νL without breaking
any essential symmetry groups, by making dark matter part of a SU(2)L doublet too.
Knowing that such a mechanism or some other similar one could serve to our purposes,
we proceed assuming that dark matter could be coupled to the SM neutrinos well before
electroweak phase transition.

4.2.1 Sphaleron rate and chemical equilibrium
It is important now to understand at which temperature, Tsph, electroweak sphalerons
come out of thermal equilibrium, meaning that their rate is not rapid enough compared to
the expansion of the universe and they are effectively switched off. From this moment on,
the quantum numbers B and L will be conserved by all the standard model interactions.
Even if L is still violated in the interactions with the dark matter, there are not any
interactions that can change B, and therefore YB will freeze out at Tsph. The value of the
baryon asymmetry after the sphaleron freeze-out is the one that we would observe today.

In Ref. [63] they perform large-scale lattice simulations to compute the rate of baryon
number violating processes (sphaleron rate) across the electroweak phase transition. They
find that these processes are not completely effective at all times: the rate decays exponen-
tially when the temperature gets close to the sphaleron freeze-out. The parametrization
in terms of temperature is

Γsph '


T 4 · 8× 10−7, in the symmetric phase,

T 4 · exp (−147.7 + 0.83T /GeV) , in the Higgs phase.
(4.2.1)
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Fig. 4.7: Sphaleron rate in the symmetric and broken phase as parametrized in Eq. (4.2.1)
taken from Ref. [63] (in green), compared to the appropriately scaled Hubble rate (in blue),
where α = 0.1015. This scaling is taken from Ref. [64]. The shaded area is the error band,
dominated mainly by systematics, also obtained from Ref. [63], which in the symmetric phase
is too small to appear in the figure.

In Fig. 4.7 we see this evolution graphically, and also the comparison with the appropri-
ately scaled Hubble rate. In the moment when the sphaleron rate falls below the blue
line, which quantifies the expansion of the universe, sphalerons are considered to be out
of equilibrium and their interactions switch off. To carry out an exhaustive study of the
B generation, we would need to plug the rate Γsph into the Boltzmann equations. For the
purposes of this thesis we will take the simplified assumption that sphaleron processes are
highly effective above a critical temperature Tsph, and then they switch off instantly below
it. Taking the sphalerons to be fully effective means taking YB to closely follow Y eq

B , there-
fore the instantaneous freeze-out approximation corresponds to taking YB(T ) = Y eq

B (Tsph)
for T < Tsph.

The different interactions that are active during a certain temperature range, impose
some relations among the chemical potentials of said particles. Relating the number
densities to the chemical potential of each species, and then relating the baryon and
lepton numbers to these number densities, gives an equilibrium relation

YB = c (YB−L) ≡ c (YB − YL) .

The constant c depends on which interactions are in equilibrium at the moment when the
sphalerons are switched off, and on the particle content of the SM. This relation is usually
found in the literature using the notation B = c (B − L). For three SM generations
and one Higgs boson, and for the case in which sphalerons fall out of equilibrium after
electroweak symmetry breaking [65], this constant takes the value c = 36/111. A detailed
analysis of how this relation is derived, based on Ref. [66], can be found in appendix C.
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According to [65], YB is found to deviate from the equilibrium at a temperature Tdev '
140 GeV. A good choice for our purposes is therefore to take this temperature for the
instantaneous freeze-out approximation. Below Tsph ≡ Tdev, the change in the baryon
asymmetry does not contribute much, so this simplified treatment is good enough for our
scenario.

4.2.2 Boltzmann equations and numerical resolution
The generic form of the Boltzmann equations for the different asymmetry yields, now
adding the evolution of YB, and taking into account the electroweak sphaleron conversion,
is

dYD
dx

= f(x),

dYL
dx

= g(x) + dY EW
L

dx
,

dYB
dx

= dY EW
B

dx
,

(4.2.2)

where the functions f(x) and g(x) correspond to the evolution of our dark matter and
lepton asymmetries depending on the scenario that we choose, based the symmetries we
choose to break. The terms of the form dY EW

dx
correspond to the transmission due to

electroweak sphalerons. Since these processes preserve B − L, one has

dY EW
L

dx
= dY EW

B

dx
≡ dY EW

dx
.

With the considerations of section 4.2.1 regarding instantaneous sphaleron conversion
from L to B, and instantaneous freeze-out of YB and temperature Tsph, we derive the
following relation

YB = − c

1− cYL

dYB
dx

= − c

1− c
dYL
dx
≡ dY EW

dx

dYL
dx

= g(x)− c

1− c
dYL
dx

−→ 1
1− c

dYL
dx

= g(x) −→ dYL
dx

= (1− c) g(x)

where c = 36/111 for T > Tsph and c = 0 for T < Tsph. Here we already assumed Y in
B = 0

as the initial condition. Finally, for Case 7, our set of Boltzmann equations including the
baryon asymmetry take the form
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dYD
dx

= −2λ
x2

(
〈σv〉D + 〈σv〉DL1 + 〈σv〉DL2

)(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
,

dYL
dx

= (1− c)2λ
x2

(
〈σv〉DL1 − 〈σv〉DL2

)(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
,

dYB
dx

= − c

1− c
dYL
dx

,

(4.2.3)

where again c = 36/111 for T > Tsph and c = 0 for T < Tsph.

We are now ready to solve the system of differential equations that will give us the
evolution of the asymmetries in these three sectors, taking into account the interplay
among them. In Fig. 4.8 we have solved the system for two different choices of the dark
matter mass, and also different values of the cross-sections 〈σv〉DL1 and 〈σv〉DL2. There
we show the evolution of the three asymmetries with the decrement of temperature, and
also the evolution in the DL and BL planes.

The choice of the dark matter mass plays a very important role in the generation of a B
asymmetry, because it affects the moment in which dark matter stops being relativistic
and therefore, the range of temperatures in which the transmission from D to L does
happen. In the moment when the electroweak sphalerons freeze-out, xsph ≡ mχ/Tsph, the
transmission from L to B is interrupted. The higher xsph is, the later this happens relative
to the transmission from D to L. We can see in Fig. 4.8 and the rest of plots where the
asymmetry is being transmitted, that most of the evolution happens approximately at
1 . x . 10, which translates into temperatures of mχ & T & 0.1mχ. If mχ is too small,
the sphalerons will freeze out before we can generate any L and we will not be able to
generate a baryon asymmetry B. The greater the mass is, the more asymmetry will be
transmitted to B before it freezes-out. For large enough masses, the D to L transmission
will be completed before the sphaleron freeze-out, being this the case in which a greater
part of the asymmetry will be converted into B.

In Fig. 4.8a we have chosen mχ = 500 GeV, while in 4.8b the mass is larger, mχ = 800
GeV. As discussed, this results in a lower transmission from L to B in 4.8a as xsph is
lower. Apart from this, the choice of active interactions is different in each case: in Fig.
4.8a the non-zero cross-section is 〈σv〉DL2 while in Fig. 4.8b the non-zero cross-section
is taken to be 〈σv〉DL1 for illustrative purposes. The effects of this choice are described
in Case 7. If both cases had the same masses, the behaviour in the DL and BL planes
would be mirrored (flip of B and L axes). As the generated L is being partially converted
into B, we can see graphically in the DL middle plots how before xsph (from the circle
to the pentagon marker in the figures) the evolution is not exactly parallel to the D + L
or D − L lines any more. This is because now these quantities are no longer conserved
due to the sphaleron processes. After xsph (from the pentagon to the cross marker) the
evolution becomes again parallel to the correspondent line.

We can also see graphically in Fig. 4.8 how the sphalerons being completely effective
prior to their departure from equilibrium translates into the evolution in the BL asymme-
try plane to follow the equilibrium black dashed line of B = c(B − L). This equilibrium
line is described by the relations among the chemical potentials of the particle species
inside the thermal plasma, as exposed in the previous section and derived in appendix
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Fig. 4.8: Evolution of the dark matter asymmetry YD(≡ D), the lepton asymmetry YL(≡ L)
and the baryon asymmetry YB(≡ B) for dark matter masses mχ specified above each figure
and for cross-sections 〈σv〉ann = 10−16 GeV−2, 〈σv〉L = 〈σv〉D = 0 and in (a) 〈σv〉DL1 = 0
and 〈σv〉DL2 = 5 × 10−17 GeV−2 while in (b) 〈σv〉DL1 = 5 × 10−17 GeV−2 and 〈σv〉DL2 = 0.
The initial values are Y in

D = 10−11 and Y in
L = Y in

B = 0. All the axes corresponding to yield
asymmetries are scaled by a factor of 10−11. The dashed vertical line on the left plot corresponds
to xsph = mχ/(T sph = 140 GeV), the point where sphalerons instantaneously freeze-out and with
them the baryon asymmetry YB. The value of xsph changes in each case due to the different
mχ, in (a) it is xsph ' 3.57 and in (b) it is xsph ' 5.71. The rest of notations are the same as in
Fig. 4.2, and the additional right plot corresponds to the equivalent BL plane, where the black
dashed line corresponds to the equilibrium distribution imposed by the chemical equilibration
in the plasma for the value of c = 36/111. The markers correspond to x = 0.1, 2, xsph and 100.

C. After xsph (pentagon marker), B freezes out and only L is generated in this plane.
Because the generated B and L asymmetries have oposing signs, we conclude that we will
need a non-zero 〈σv〉DL2 to generate a positive baryon asymmetry.

4.2.3 Comparison with observations
Now that we managed to describe a mechanism to possibly account for the baryon asym-
metry generation, we want to check if we can obtain results which are compatible with
the CMB measurements within our scenario. The observations we need to address are
the baryon asymmetry ηB, which effectively contains the same information as the baryon
energy density Ωb, and the dark matter energy density ΩDM.
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Comparison with ηB

Previously, in section 2.2.1, we presented the value of the baryon-to-photon number den-
sity ratio in the universe, ηB = (6.12 ± 0.04) × 10−10 [2], measured from the CMB. We
also saw why this is too a measure of the matter-antimatter asymmetry, see Eq. (2.2.2).
In order to compare this value with our result in the form of the baryon asymmetry yield
after sphaleron freeze-out, Y sph

B , we can write

η0
B ≡

n0
b
n0
γ

= n0
B

n0
γ

= Y 0
B s

0

n0
γ

' Y sph
B s0

n0
γ

, (4.2.4)

using the fact that YB stays constant after T sph. We also know that the ηB measured in
the CMB is the same as the one today, as the number of degrees of freedom g?,S has not
changed since then. The superindex 0 refers to the values of these magnitudes today. The
number density of photons, integrating the Bose-Einstein distribution in Eq. (3.1.1) is

nγ = 2 ζ(3)
π2 T 3 (4.2.5)

where we used that µγ = 0 and gγ = 2. ζ(s) is the Riemann zeta function. The value of
the entropy of the universe today is s0 ' 2.21 × 10−38 GeV3 [2]. It is straightforward to
deduce from Eq. (4.2.4) and the observed value of ηB that the value of the final baryon
asymmetry should be Y sph

B ' 8.7× 10−11.

Comparison with ΩDM and Ωb

In section 2.1.1, we introduced the measured value for the dark matter density in the
universe today, ΩDM = 0.265(7). The most precise baryon density measure, also coming
from the CMB is Ωb = 0.0484(10) [2]. To connect these values with the yields of dark
matter and baryons after they freeze-out, we write

Ωb ≡
ρb

ρcrit
= mp n

0
b

ρcrit
= mp Y

0
b s

0

ρcrit
= mp Y

0
B s

0

ρcrit
' mp Y

sph
B s0

ρcrit
, (4.2.6)

and

ΩDM ≡
ρDM

ρcrit
= mχ n

0
DM

ρcrit
= mχ Y

0
DM s0

ρcrit
=
mχ

(
Y 0
χ + Y 0

χ̄

)
s0

ρcrit
, (4.2.7)

where mp ' 0.938 GeV and ρcrit ' 3.66× 10−47 GeV4 for h = 0.674 [2].

From Eq. (4.2.6) we find that the value of Y sph
B required to match the measured Ωb is

Y sph
B ' 8.7× 10−11, the same as the one obtained from ηB. This is what we expected, as
ηB and Ωb contain the same information. Similarly, we can estimate the expected dark
matter yield from Eq. (4.2.7) and the measured ΩDM, but the result in this case depends
on the dark matter mass mχ. We find that Y 0

DM ≡ Y 0
χ + Y 0

χ̄ ' 4.4× 10−10/mχ GeV.
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4.2.4 Our scenario and some considerations
We now have all the necessary tools to attempt to reproduce the measured dark matter
and baryon densities in the universe. We will focus on the minimal scenario for the
asymmetry transfer, where the only parameters are the dark matter mass, mχ, the initial
dark matter asymmetry, Y in

D , and the D − L preserving cross-section, 〈σv〉DL2. The rest
of violating cross-sections will be taken to be zero. This could be justified by imposing
D − L conservation in the interactions. In this case, also the annihilation cross-section,
〈σv〉ann, would be non-zero. We rename 〈σv〉DL2 ≡ 〈σv〉D−L from here on.

We will make use of the analytical arguments detailed at the end of section 4.1.2 to obtain
our results. As described in Footnote 1, there are some numerical issues when using cross-
sections larger than ∼ 10−15 GeV−2 in our set of Boltzmann equations. Nevertheless, we
understand well the physics for smaller values and we are confident that we can extrapolate
this knowledge to larger cross-sections. As Sakharov conditions evidence, being in thermal
equilibrium washes out any existing asymmetries of the species involved. Now, here we
have a slightly more complex scenario, because we have an interplay between two types
of processes: 〈σv〉ann and 〈σv〉D−L. In this minimal scenario, we remember that the
Boltzmann equations for χ, χ̄ and the dark asymmetry YD in this case are

dYχ
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+ 2〈σv〉D−L

(
Y 2
χ − Y 2

χ, eq

)]
,

dYχ̄
dx

= − λ

x2

[
〈σv〉ann

(
Yχ Yχ̄ − Yχ, eq Yχ̄, eq

)
+ 2〈σv〉D−L

(
Y 2
χ̄ − Y 2

χ̄, eq

)]
,

dYD
dx

= −2λ
x2 〈σv〉D−L

(
Y 2
χ − Y 2

χ̄ − Y 2
χ, eq + Y 2

χ̄, eq

)
.

(4.2.8)

Both 〈σv〉ann and 〈σv〉D−L contribute to bringing the dark matter into thermal equilib-
rium, but only 〈σv〉D−L can transmit the asymmetry. The asymmetry will therefore be
totally transmitted for the cases in which dark matter is in thermal equilibrium, along
with the condition that 〈σv〉D−L is relatively high compared to 〈σv〉ann. In the case where
the contribution of 〈σv〉ann is larger than that of 〈σv〉D−L, the system will be in thermal
equilibrium but the asymmetry will remain within the dark sector. For the purposes of
asymmetry transmission and for making use of the analytical considerations specified, we
will take 〈σv〉ann to be negligible compared to 〈σv〉DL2.

Consequently, we can be sure that for large cross-sections, if the condition regarding the
relative size of 〈σv〉ann and 〈σv〉D−L is met, the asymmetry will be completely transmitted
from D to L and B. We then end up with a universe where D = 0, corresponding to
symmetric dark matter which then freezes-out as in the WIMP scenario.

We focus our attention in the second regime of Fig. 4.6, where the asymmetry will be
fully transmitted. We can very accurately obtain the final dark matter abundances for
large values of 〈σv〉D−L by extrapolating from small values of 〈σv〉D−L. The initial value
of the asymmetry, Y in

D , does not influence the relic abundance of dark matter for the range
of values we consider, as the asymmetry is very quickly washed-out and we end up with
symmetric dark matter. Nevertheless, Y 0

L and Y 0
B will be very sensitive to Y in

D . They will
also sensitively depend on mχ, which determines the moment of B freeze-out relative to
the transmission from D to L.
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We now will look for values of 〈σv〉D−L which give the expected Y 0
DM, for specific mχ

and Y in
D . We always assume that 〈σv〉ann will be negligible compared to 〈σv〉D−L for our

analysis, but of course the scenario in which the this condition is not fulfilled and the
asymmetry is not completely transmitted is also possible.

4.2.5 Parameters and results
As we already analysed in the previous subsection, our scenario has four parameters that
affect the values of ηB and ΩDM. These parameters and their effect on the observations
are summarized in Table 4.3. Remember that ηB (and therefore Ωb) will be determined
by Y 0

B, while ΩDM will be determined by Y 0
DM.

Parameters Effect on observations

mχ

It strongly affects Y 0
B by determining the moment of the D

transmission relative to the sphaleron freeze-out. It also slightly
affects Y 0

DM as it is a parameter in the Boltzmann equations. ΩDM
is not only determined by Y 0

DM, but it is also proportional to mχ.

Y in
D

It strongly affects Y 0
B, as we will be working on a regime where

the asymmetry YD is completely transmitted. It does not affect
Y 0

DM as it will be effectively washed out.

〈σv〉D−L

It strongly affects Y 0
DM, as it determines the moment for the dark

matter freeze-out. It does not affect Y 0
B in our case as we assume

it to be large enough for the asymmetry to be fully transmitted.

〈σv〉ann

It does not affect Y 0
DM nor Y 0

B, as in our case it will be negligible
compared to 〈σv〉D−L.

Table 4.3: List of the parameters in our scenario and how they affect Y 0
DM, which determines

ΩDM, and Y 0
B, which determines ηB and Ωb. The effect on the final abundances is given for the

regime where 〈σv〉ann � 〈σv〉D−L, implying that the asymmetry will be fully transmitted.

We can now set bounds on some of the parameters, particularly on mχ and Y in
D . For

a given mχ, there will be a minimum Y in
D which is able to reproduce ηB. This minimum

Y in
D gives the measured baryon asymmetry in the optimal case of complete transmission

of the dark asymmetry D. For smaller values of Y in
D , it is not possible to reproduce the

observed ηB. For higher Y in
D , the observations could be matched in the case of a partial

transmission of D. These bounds are plotted in Fig. 4.9, where we show the three regions
that can be distinguished inside the excluded area.
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Fig. 4.9: Bounds on the mχ − Y in
D parameter space. The colored zone is the excluded area.

The solid black line corresponds to the lowest Y in
D necessary to reproduce the measured ηB for

a certain mχ. This bound is obtained assuming a complete transmission of the asymmetry.
Dashed lines separate three different regions inside the excluded area. These separations are
plotted at mχ = 4 GeV and mχ = 1400 GeV. See main text for more information on the different
regions.

• Region 1, shown in purple. For masses mχ . 4 GeV there is no possible value of Y in
D

that could reproduce the observed asymmetry. This is because the sphaleron processes
would switch off before the transmission of D began. All the dark asymmetry would
be transmitted to the leptons and none to the baryons.

• Region 2, shown in turquoise. For masses of 4 GeV . mχ . 1400 GeV. Here the
minimum Y in

D changes with mχ, as the sphaleron freeze-out happens while the asym-
metry is being transmitted from D to the visible sector. The lower the mass is, the
less asymmetry is transmitted.

• Region 3, shown in orange. For masses mχ & 1400 GeV, the minimum Y in
D stays

constant. This is because the transmission happens completely before sphaleron freeze-
out. The bound in this region is also the general bound for all parameter space, which
is Y in

D ' 2.7× 10−10.

Being in the allowed area from the mχ − Y in
D parameter space would not guarantee that

the baryon asymmetry could be reproduced in this way. Here the other two parameters,
〈σv〉ann and 〈σv〉D−L, come into play. 〈σv〉D−L needs to be large enough, and also large
enough relative to 〈σv〉ann in order to transmit enough of the asymmetry.

Making use of the extrapolation method detailed in subsection 4.2.4, we can find sets of
parameters that can reproduce simultaneously ηB and ΩDM. The cross-section 〈σv〉D−L
will be chosen in order to reproduce the dark matter density and 〈σv〉ann will be by
choice negligible in comparison to 〈σv〉D−L. The values of mχ and Y in

D will be chosen
from the lower bound (solid line in Fig. 4.9) as we are choosing the regime in which the
asymmetry is fully transmitted. Some examples of sets of parameters compatible with
the observations are
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mχ = 50 GeV, Y in
D = 9.7× 10−9 and 〈σv〉D−L = 1.55× 10−8 GeV−2,

mχ = 100 GeV, Y in
D = 2.6× 10−9 and 〈σv〉D−L = 1.20× 10−8 GeV−2,

mχ = 500 GeV, Y in
D = 3.3× 10−10 and 〈σv〉D−L = 8.1× 10−9 GeV−2,

mχ = 800 GeV, Y in
D = 2.8× 10−10 and 〈σv〉D−L = 7.4× 10−9 GeV−2,

mχ = 1000 GeV, Y in
D = 2.7× 10−10 and 〈σv〉D−L = 7.2× 10−9 GeV−2.

The size of 〈σv〉D−L that we obtain is quite close to the WIMP cross-section and therefore
also to the weak interaction of the SM, which is ∼ 2.6×10−9 GeV−2. The mediator of these
processes would be around ∼ 30 GeV, which is not such a large value. The size of these
cross-sections are also not ruled out by the current bounds for dark matter annihilation
to neutrinos [67], which in our range of masses set an upper limit of order ∼ 107 GeV−2.

The values of the lepton asymmetry Y 0
L are also allowed by the bounds for the example

cases we provided. As we saw on Eq. (2.2.10), these bounds are around 7 orders of
magnitude more relaxed than those on the baryon asymmetry. The lepton asymmetry
bounds could set an upper limit on the initial dark asymmetry Y in

D , but only for the
case of total D transmission. As it is always possible to have cross-sections which do
not completely transfer D, we cannot set an upper limit on Y in

D . This is why lepton
asymmetry constraints are not shown in Fig. 4.9.
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Chapter 5

Conclusions

The motivation of this thesis was to address two of the main fundamental open problems
in modern physics: dark matter and the baryon asymmetry of the universe, both of
them reviewed in Chapter 2. The measured energy densities of the dark matter and the
baryons are very similar, see Eq. (2.3.1). This fact suggests that the dark sector might
also be asymmetric, and hints a possible common origin or connection between the two
asymmetries.

In this work we focussed on the transmission of an asymmetry initially residing in the
dark sector, to the visible sector. Our mechanism connects dark matter to the leptonic
sector via interactions of the type (DM DM ↔ νL νL). In section 4.1 we performed a
systematic analysis of the different symmetry-violating processes that could be present,
in order to find the minimal set of conditions for the asymmetry transfer. We concluded
that even though some scenarios were successful in the generation or wash-out of the
asymmetries, for the purpose of transmission there must be simultaneous D and L viola-
tion, see Case 7. CP-violation is not necessary in the interactions connecting both sectors,
but it is already present in the initial condition of a dark asymmetry. Once we achieved
the transmission from D to L, we also reviewed the simultaneous transmission from L to
B via electroweak sphalerons in section 4.2. It is necessary that the sphaleron freeze-out,
and therefore B freeze-out, takes place after some part of (or all) the asymmetry has
already been transferred to the leptons.

We found that our mechanism could be reduced to three indispensable parameters that
play a role in the asymmetry transmission: the dark matter mass, mχ, the initial dark
asymmetry, Y in

D , and the D- and L-violating but D−L preserving cross-section, 〈σv〉D−L.
Also the annihilation cross-section, 〈σv〉ann, plays a role in the dynamics of our mechanism,
but it does not necessarily need to be non-zero. For a summary of these parameters and
their effect on the observations see Table 4.3.

Analysing the role of each of these parameters in subections 4.2.4 and 4.2.5, we then
tried to find the conditions for our scenario to be able to match the CMB measurements:
the observed baryon asymmetry encoded in ηB (and also in Ωb), and the dark matter
energy density ΩDM. We managed to find some constraints in the mχ− Y in

D plane, shown
in Fig. 4.9, consisting in the minimum Y in

D to reproduce the baryon asymmetry for each
mχ. We then also showed some examples of sets of parameters which simultaneously
explain both ηB and ΩDM, assuming the complete transmission of D.
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We conclude that our mechanism is capable, with only three parameters, of connecting
the dark matter and the baryon asymmetry in a way that relates their energy densities,
explaining the ratio ΩDM /Ωb ' 5. It is a plausible scenario, because there are no con-
straints that prevent a dark matter asymmetry to be originated in the early universe,
previous to the energy scales at which our mechanism takes place. The existence of in-
teractions mediated by some particle of a mass not far from the electroweak energy scale
is also plausible.

In this thesis we have set the minimal conditions for the transmission of an asymmetry
from the dark sector to the baryons, via the leptonic sector. We have developed the
computational tools to analyse this scenario, and we have proved that it could explain
the observations from the CMB. Now the mechanism is ready to be implemented into a
complete physical model which would describe the entire dark sector physics including
the asymmetry generation.
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Chapter 6

Outlook

In this thesis we developed a mechanism that could possibly explain the baryon asymmetry
of the universe and the closeness of the baryon and dark matter energy densities. However,
there are many possible directions towards which this scenario could be further developed.
Here we review some of the possible completions for the mechanism and aspects that we
did not fully address in this work.

• Developement of a complete model which includes this scenario. In order
to design a complete model for dark matter and asymmetry transfer, there are some
features that need to be developed. Some of these features are the following.

1. Dark sector completion. It is very likely that, similarly to the visible sector, the
dark sector has a rich structure. This includes many different fundamental particles,
interactions among them and with the visible sector, and a symmetry group which
all interactions obey. One of the multiple dark sector particles would constitute the
dark matter that we detect. An important aspect for our mechanism would be the
full description of the Lagrangian interaction terms which give rise to the processes
of the type (DM DM ↔ νL νL) that we consider. The design of a plausible dark
sector structure is a crucial aspect when developing a model for dark matter.

2. Asymmetry generation. We assumed an initial dark asymmetry, but for the sake
of completeness we would need a mechanism for the generation of this asymmetry
(darkogenesis). The knowledge about the dark sector is still very scarce, so the
design of such a mechanism is not very constrained. This darkogenesis mechanism
could be a dark-sector analogy to electroweak baryogenesis or leptogenesis, among
many other possibilities.

3. Neutrino masses. In the design of our scenario, we considered that the leptons
into which dark matter annihilates are the neutrinos of the SM. We could also
connect the neutrino masses problem with our work. We mentioned in section 4.2
the verifiable radiative seewaw mechanism for neutrino masses and dark matter,
introduced in Ref. [62]. This mechanism or a similar one could both describe the
(DM DM ↔ νL νL) interactions and account for the masses of active neutrinos.

• Testability. Another important aspect for future works would consist on analysing
the testability of our mechanism. The cross-sections needed to reproduce ΩDM are not
weaker than that of the electroweak interaction, meaning that the interactions with
visible matter are not notably small. This is favorable for collider searches. For dark
matter annihilation to SM neutrinos, the current upper bounds on cross-sections in the
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range of mχ we consider are ∼ 10−7 GeV−2 [67]. The values that we found are around
one order of magnitude weaker. This means that our scenario could be ruled out in
future neutrino detection experiments.

In the radiative seesaw mechanism mentioned above, the dark matter, χ0, would be a
part of a SU(2) doublet (χ− χ0), which interacts with the left handed lepton doublet
of the SM. Instead of focussing on the (χ0 χ0 ↔ νL νL) processes, we could also try
to detect the also present (χ− χ− ↔ e− e−) processes. This could be done in electron
colliders, trying to find the decay products of χ−, for example χ− → χ0 π− or χ− →
χ0W− → χ0 e− ν.

Our scenario is capable of generating large lepton asymmetries. The generation of
lepton asymmetries close to the current bound of order ∼ 10−3 would happen if we have
a large Y in

D and a small enough mχ so that little part of the asymmetry is transmitted
to the baryons. In this case, the large lepton asymmetries could leave further signals
in BBN and might be detected in the future.
Finally, if the dark matter mass would be experimentally determined in the future and
turned out to be much lower than our bound of mχ . 4 GeV, this could rule out our
mechanism.

• Other annihilation products. Further work could explore the different possibilities
regarding the particles dark matter annihilates into, like sterile neutrinos. This would
require adding all the physics regarding the sterile neutrino decays and scatterings,
which is also present in the leptogenesis scenario. The option of dark matter directly
decaying into baryonic matter could also be explored. It is important that the anni-
hilation products charge- and color-neutral, if we want to violate B without breaking
U(1)EM or SU(3)C . Plausible options to be considered could be annihilation into neu-
trons, other heavier baryons, or mesons. The annihilation would have to take place
at temperatures T < TQCD ∼ 150 MeV. Annihilation into 3-bodies might also be an
option.

• Different initial abundance. A similar ADM context but with an initial zero abun-
dance rather than a thermal initial condition and with a later freeze-in (see section
2.1.3) could also be an alternative worth exploring.

• Co-annihilations. Another possible scenario to take into consideration would be a
set of particles in the dark sector which co-annihilate with the dark matter into lighter
particles [68].

To summarize, we have put forward and explored a mechanism to explain and connect
the dark matter and baryon abundances of the Universe. However, as discussed in this
section, there are many aspects of the scenario that remain to be explored and that we
believe deserve further investigation.
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Appendix A

Equilibrium Number Density
Expressions

In this appendix we show the derivation of the equilibrium number density of a particle
species as a function of T . The calculation is made for relativistic and non-relativistic
particles, and also in the general case. We will assume the Maxwell-Boltzmann (MB)
approximation, treating fermions and bosons equally. The MB distribution phase space
distribution is

fMB = exp
(
−E − µ

T

)
.

Following the definition of the number density in Eq. (3.1.2), the integral expression for
the MB number density becomes

nMB = g

(2π)3 e
µ/T

∫
d3p e−E/T .

• Relativistic particles. The energy can be approximated to E ≈ |~p|. In this appendix
we will use the notation |~p| ≡ p. We write

nrel
MB = g

(2π)3 e
µ/T

∫
d3p e−p/T = g

(2π)3 e
µ/T4π

∫ ∞
0

dp p2 e−p/T =

= g

(2π)3 e
µ/T4π 2T 2 = g

π2T
3eµ/T .

(A.1)

• Non-relativistic particles. The energy can be approximated to E ≈ m + p2

2m . We
then have

nNR
MB = g

(2π)3 e
µ/T

∫
d3p e−m/T e−p

2/(2mT ) = g

(2π)3 e
−m/T eµ/T4π

∫ ∞
0

dp p2 e−p
2/(2mT ) =

= g

(2π)3 e
−m/T eµ/T4π

√
π

2 (mT ) 3
2 = g e−(m−µ)/T

(
mT

2π

) 3
2
.

(A.2)
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• General case. The energy is E =
√
m2 + p2. Then

nMB = g

(2π)3 e
µ/T4π

∫ ∞
0

dp p2 e−E/T = g

(2π)3 e
µ/T4πm2TK2

(
m

T

)
=

= g

2π2m
2TK2

(
m

T

)
eµ/T = g

2π2x
2T 3K2 (x) eµ/T ,

(A.3)

with x ≡ m/T .
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Appendix B

Calculations for the Boltzmann
Equation

B.1 Liouville Operator in terms of Number Density
To go from the Liouville operator for the FLRW metric as shown in Eq. (3.2.2) to the
Boltzmann equation in the form of (3.2.3), we need to recall the definition of the number
density in terms of the phase space density in (3.1.2). We use the relation EdE = |~p|d|~p|,
and integrate the Liouville operator by parts

g

(2π)3

∫ d3p

E
L̂[f ] = g

(2π)3

∫
d3p

∂f

∂t
− g

(2π)3

∫ d3p

E
H|~p|2 ∂f

∂E
=

= dn

dt
− g

(2π)3H
∫
d3p|~p|2 ∂f

E∂E
=

= ṅ− g

(2π)3H
∫
d3p|~p| ∂f

∂|~p|
= ṅ− 4πg

(2π)3H
∫
d|~p||~p|3 ∂f

∂|~p|
=

= ṅ− 4πg
(2π)3H

∫
�
�
�
��>

0
d|~p| ∂

∂|~p|
(|~p|3f)−

∫
d|~p|∂|~p|

3

∂|~p|
f


= ṅ+ 4πg

(2π)3H
∫
d|~p|3|~p|2f = ṅ+ 3H g

(2π)3

∫
d3pf = ṅ+ 3Hn.

Now we can introduce this into Eq. (3.2.1) and we find the relation (3.2.3).
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B.2 Liouville Operator in terms of Yield
We start from the left-hand side of Eq. (3.2.7). Having defined the yield as Y ≡ n/s, we
write

ṅ+ 3Hn = d(sY )
dt

+ 3HsY = Y ṡ+ sẎ + 3HsY = Y
d

dt

(
sa3a−3

)
+ sẎ + 3HsY =

= Y sa3 d

dt

(
a−3

)
+ sẎ + 3HsY = −3Y sȧ

a
+ sẎ + 3HsY = sẎ .

B.3 Thermal Average for Decay
In this appendix we will explicitly show how one gets from the general Boltzmann equation
in Eq. (3.2.13) to the integrated expression for the simplest case, the decay of a particle
a into two particles i and j.

In this case, the initial particle a is heavy and may or may not be in thermal equilibrium.
The product particles i and j are lighter (later assumed to be massless) and remain in
equilibrium with the thermal plasma at all temperatures relevant for the evolution of
na. We further assume that the particles i and j have negligible chemical potentials
µi = µj = 0 so that their phase space distributions become

fi = exp(−Ei/T ) fj = exp(−Ej/T ).

Using detailed balance as in section 3.3.1, we have that fi = f eq
i , fj = f eq

j and f eq
i f

eq
j =

f eq
a . With the relations above and knowing that |M | is constant for a decay, we arrive to

ṅa + 3Hna = −ga|M |2
∫
dΠadΠidΠj(2π)4δ4 (pa − pi − pj)

(
fa − f eq

a

)

= −ga
(2π)4

(2π)9 |M |
2
∫ d3pa

2Ea

(
fa − f eq

a

) ∫ d3pi
2Ei

∫ d3pj
2Ej

δ (Ea − Ei − Ej) δ3 (~pa − ~pi − ~pj) .

(B.3.1)

Now we introduce the two-body phase space, defined as
∫
dΦ2(pi, pj) ≡

∫ d3pi
(2π)32Ei

∫ d3pj
(2π)32Ej

(2π)4δ4 (pa − pi − pj) .

This expression is Lorentz invariant, and therefore we can solve it for the center of mass
frame and introduce the result into the integral Boltzmann equation. In the center of
mass of particle a, we have ~pa = 0 and Ea = Ma. We have then

∫
dΦ2(pi, pj) = 1

(2π)2

∫ d3pi
2Ei

∫ d3pj
2Ej

δ (Ma − Ei − Ej) δ3 (~pi + ~pj) .
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Solving the momenta delta and renaming ~pi = ~pj ≡ ~p, we get to

∫
dΦ2(pi, pj) = 1

(2π)2

∫ d3p

4
√
~p2 +m2

i

√
~p2 +m2

j

δ
(
Ma −

√
~p2 +m2

i −
√
~p2 +m2

j

)
.

Now, in order to solve the delta function, we use the identity

δ (f(x)) =
∑
i

δ(x− xi)∣∣∣∣∂f∂x(xi)
∣∣∣∣ .

Obtaining the root of the function,

Ma −
√
~p2 +m2

i −
√
~p2 +m2

j = 0 → M2
a + ~p2 +m2

i − 2Ma

√
~p2 +m2

i = ~p2 +m2
j

→
(
M2

a +m2
i +m2

j

)2
= 4M2

a~p
2 + 4M2

am
2
i → ~p2 =

(
M2

a +m2
i +m2

j

)2
− 4M2

am
2
i

4M2
a

→ ... → |~p| = Ma

2

√√√√1−
2(m2

i +m2
j)2

M2
a

+
(m2

i +m2
j)2

M4
a

≡ Ma

2 β,

and the derivative

∂f

∂|~p|
= −|~p|

(
1
Ei

+ 1
Ej

)
,

the delta function finally becomes

δ
(
Ma −

√
~p2 +m2

i −
√
~p2 +m2

j

)
=

δ(|~p| − Ma

2 β)∣∣∣∣− |~p| ( 1
Ei

+ 1
Ej

) ∣∣∣∣
|~p|= Ma

2 β

∣∣∣∣ .

Going back to the two-body phase space, we find

∫
dΦ2(pi, pj) = 1

(2π)2

∫ d|~p||~p|2dΩ
4
√
~p2 +m2

i

√
~p2 +m2

j

δ(|~p| − Ma

2 β)

Ma

2 β

 1√
(Ma

2 β)2
+m2

i

+ 1√
(Ma

2 β)2
+m2

j

 =

= 1
(2π)2

∫
dΩ

Ma

2 β

4
(√(

Ma

2 β
)2

+m2
j +

√(
Ma

2 β
)2

+m2
i

) = 1
(2π)2

∫
dΩ

Ma

2 β

4 (Ej + Ei)
∣∣∣∣
|~p|= Ma

2 β

=

= 1
(2π)2

∫
dΩ

Ma

2 β

4Ma

= 4π
4π2

β

8 = β

8π .
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In the particular case in which the two decay products are massless particles, then β = 1.
Plugging this into the Boltzmann equation (B.3.1), we obtain

ṅa + 3Hna = − ga
(2π)3 |M |

2 1
8π

∫ d3pa
2Ea

(
fa − f eq

a

)
. (B.3.2)

Using now the relation (3.2.11), we can turn our equation into

dYa
dx

= − 1
sxH(x)

ga
(2π)3

|M |2

8π

∫ d3pa
2Ea

(
fa − f eq

a

)
,

and rewriting |M |2 in terms of the decay rate ΓD = |M |2/(16πMa), we have

dYa
dx

= − ga
(2π)3

∫
d3pa

1
sxH(x)

2MaΓD

2Ea

(
fa − f eq

a

)
.

The factor Ma/Ea is the interaction suppression for the particle a being non-relativistic.
The remaining integral gives a modified Bessel function of the second kind and of order
1, K1(x),

∫ d3pa
Ea

(
fa − f eq

a

)
= 4π

∫ ∞
0

d|~pa||~pa|2

Ea

(
fa − f eq

a

)
= 4π

∫ ∞
Ma

dEa
√
E2
a −Ma

(
fa − f eq

a

)
=

= 4πMa(Ta − Teq)K1(x).

This leaves us with

dYa
dx

= − 4πga
(2π)3

1
sxH(x)MaΓDMa(Ta − Teq)K1(x).

Moreover, we can prove that

Ya
Y eq
a

= na
neq
a

=
∫
d3pa fa∫
d3pa f

eq
a

= 4π
∫
dpa p

2
a e−Ea/Ta

4π
∫
dpa p2

a e−Ea/Teq
= M2

a TaK2(x)
M2

a T
eq K2(x) = Ta

Teq
,

and using this back in our Boltzmann equation, we write

dYa
dx

= − 4πga
(2π)3

M2
aΓD

sxH(x)K1(x)Ma

x

(Ta − Teq)
Teq

= − 4πga
(2π)3

M3
aΓD

sx2H(x)K1(x)
(
na
neq
a
− 1

)
=

= − 4πga
(2π)3

M3
aΓD

sx2H(x)K1(x)na − n
eq
a

neq
a

= − 4πga
(2π)3

M3
aΓD

sx2H(x)K1(x)Ya − Y
eq
a

Y eq
a

.

Taking into account the expression in Eq. (3.2.9) for s and the equilibrium yield obtain
using Eq. (A.3),

Y eq
a = 45ga

4π4g?s
x2K2(x),

we write
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dYa
dx

= − 4πga
(2π)3

M3
aΓD

x2H(x)
K1(x)

2π2

45 g?sT
3
eq

45ga

4π4g?s
x2K2(x)

(
Ya − Y eq

a

)

= − 4π4π4

(2π)32π2
ΓDM

3
a

x4H(x)T 3
eq

K1(x)
K2(x)

(
Ya − Y eq

a

)
= − ΓD

xH(x)
K1(x)
K2(x)

(
Ya − Y eq

a

)
.

We arrive then to the expression we were looking for: the Boltzmann equation for a decay
of a heavy particle a into two massless particles

dYa
dx

= − ΓD

xH(x)
K1(x)
K2(x)

(
Ya − Y eq

a

)
.
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Appendix C

Chemical Equilibration: Baryon and
Lepton Asymmetries

In this appendix we present a detailed analysis for the chemical equilibration in the
thermal plasma, based on Ref. [66].

Particle asymmetries can be expressed in terms of their chemical potentials. Assuming
that all the particles are ultrarelativistic, which at temperatures above the Electroweak
Phase Transition (EWPT) should be a good approximation, this relation is given by

ni − nī = giT
3

6


βµi +O

(
(βµi)3

)
fermions,

2βµi +O
(
(βµi)3

)
bosons,

(C.1)

where ni is the equilibrium number density of a given particle species, nī that of the
CP-conjugate species, gi its internal degrees of freedom and µi its chemical potential. We
also assume that |µ/T | � 1, as the baryon and lepton chemical potentials are expected
to be of order |µ| ∼ 10−10T , and |µ| < m (no Bose condensation).

We now know that the electroweak sphaleron processes are rapid (Γsph � H) at temper-
atures both above the EWPT and below it. However, we will perform different analyses
for the case in which spalerons go out of equilibrium before and after this phase transi-
tion, for theoretical purposes. We will be working in a generalized model consisting of
NF generations of quarks and leptons, m complex Higgs doublets (φ+

i , φ
0
i ), and the gauge

bosons of SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The chemical potentials are assigned to be

• µuL
for all the left-handed up-quark fields and µuR

for all the right-handed up-quark
fields;

• µdL
for all the left-handed down-quark fields and µdR

for all the right-handed down-
quark fields;

• µeLi for the left-handed charged lepton fields and µeRi for the right-handed charged
lepton fields;

• µνi for the left-handed neutrino fields;

• µW for W− (and therefore −µW for W+);
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• µ0 for all the φ0 Higgs fields and µ− for all φ+ Higgs fields.

The eight gluon fields and the W 0 and B0 bosons have vanishing chemical potentials and
therefore we may ignore them.

We recall that whenever a reaction is occurring rapidly, the sum of the chemical poten-
tials of the incoming particles must equal that of the outgoing particles. According to
this, the vanishing chemical potentials of the gluons ensures equal chemical potentials for
the different colors of quarks. Also, Cabibbo mixing and the vanishment of the chemical
potentials of the neutral electroweak bosons maintains the equality of the various gen-
erations of up- and down-quark fields, respectively. At temperatures above the EWPT,
the bosons W± will also have vanishing potentials as we will show, which will ensure
the equality of the chemical potentials for fields in the same electroweak doublet, via
the Yukawa interactions. For now we will take the general approach as we will also be
studying the case below the critical temperature. In general, in absence of flavour-mixing
neutrino interactions, the lepton generations will not have equal chemical potentials. Fi-
nally, we can assume that the chemical potentials of the m Higgs doublets are going to
be equal due to mixing among them.

Rapid electroweak interactions in the early universe impose the following equilibrium
relations

µW = µ− + µ0 (W− ↔ φ− + φ0), (C.2)

µdL
= µuL

+ µW (W− ↔ ūL + dL), (C.3)

µeLi = µνi + µW (W− ↔ ν̄Li + eLi), (C.4)

µuR
= µ0 + µuL

(φ0 ↔ ūL + uR), (C.5)

µdR
= −µ0 + µdL

(φ0 ↔ dL + d̄R), (C.6)

µeRi = −µ0 + µeLi (φ0 ↔ eLi + ēRi). (C.7)

The last three processes correspond to the Yukawa interactions, which for temperatures
T . 108 GeV are in equilibrium for all the generations, even for the lightest ones [69]. By
making use of these relations we can express all the chemical potentials in terms of 3+NF
chemical potentials, which are chosen to be µW , µ0, µuL

and µνi. It is also convenient to
define the sum of the neutrino chemical potentials µν = ∑

i µνi.

As long as the electroweak sphalerons are rapid, they impose the following relation

NF(µuL
+ 2µdL

) +
∑
i

µνi = 0, (C.8)

coming from the creation of a uLdLdLνL state from each generation out of the vacuum.
Using the relation (C.5) we can rewrite this condition as

3NFµuL
+ 2NFµW + µν = 0. (C.9)

Now we express the baryon and lepton number densities in terms of the chosen chemical
potentials, making use of (C.1) and the relations (C.3), (C.5) and (C.6). From now on we
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will use the common notation nB ≡ B and nL ≡ L, and the subindexed Bi and Li will
represent the quantum baryon and lepton number of a species i. The relations are

B =
∑
b

Bb(nb − nb̄) = gqT
2

6 Bq [NF(µuL
+ µuR

) +NF(µdL
+ µdR

)] =

= 3 · 2T 2

6
1
3NF(2µuL

+ µ0 + µuL
+ µW − µ0 + µuL

+ µW ),

arriving at

B = T 2

3 (4NFµuL
+ 2NFµW ). (C.10)

Analogously:

L =
∑
l

Ll(nl − nl̄) = glT
2

6 Ll
∑
i

(µνi + µeLi + µeRi) =

= 2T 2

6 · 1 ·
∑
i

(µνi + µνi + µW − µ0 + µνi + µW ),

L = T 2

3 (3µν + 2NFµW −NFµ0). (C.11)

We can also express the number densities of charge Q and of the third component of weak
isospin I3,

Q = T 2

6

[
guNF(µuL

+ µuR
)qu + gdNF(µdL

+ µdR
)qd +

∑
i

ge(µeLi + µeRi)qe+

+ 2gW (µW+qW+ + µW−qW−) + 2gφ+mµ+qφ+

]
,

where we have taken into account the extra factor 2 that appears in the relation (C.1)
for bosons. Now, substituting the adequate charges for each particle and the degrees
of freedom gu = gd = 6, ge = gW = gφ+ = 2 (which we take before the EWPT, but
this should not change the result as charge is conserved), and using again the relations
(C.2−C.7) we arrive to

Q = 4T 2

3
[
NFµuL

− µν − (2NF +m+ 2)µW + (2NF +m)µ0
]
. (C.12)

And similarly

I3 = T 2

6

[
gqNF

(1
2µuL

+
(
−1

2

)
µuR

)
+ gl

∑
i

(1
2µνi +

(
−1

2

)
µeLi

)

+2gW
(
− µW (+1) + µW (−1)

)
+ 2gφ+m

(
−µ−

1
2 + µ0

(
−1

2

)) ]
,
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where we have already used the values of the third component of weak isospin for all the
involved particles, and their degrees of freedom. Rearranging, we get to

I3 = −T
2

12 (2NF +m+ 4)µW . (C.13)

Above the critical temperature: In this regime, both the total charges Q and I3 of
the plasma must vanish. As the relation (C.13) shows, this implies µW = 0. Making use
of the relation imposed by electroweak sphaleron transitions (C.9) and the vanishment of
electromagnetic charge number density (C.12), we get the following conditions among the
chemical potentials,

2NFµuL
− 2µν + (4NF + 2m)µ0 = 0,

3NFµuL
+ µν = 0.

We can express B and L in terms of one single chemical potential, taken to be µuL
,

B = T 2

3 4NFµuL
,

L = −T
2

3
14NF + 9NFm

2NF +m
µuL

,

and also

B − L = T 2

3
22N2

F + 13NFm

2NF +m
µuL

.

Finally, we get to relate the B and L number densities with the sphaleron-conserved
quantity B − L,

B = 8NF + 4m
22NF + 13m (B − L), (C.14)

L = − 14NF + 9m
22NF + 13m (B − L). (C.15)

These relations would be to be used in the case that sphalerons go out of equilibrium before
EWPT (for example if EWPT had been strongly first order or if they are suppressed by
some mechanism). In the case of the SM, with NF = 3 and m = 1, the above relations
acquire the values: B = 28

79B − L, and L = 51
79B − L.

Under the critical temperature: In this regime Q still must be zero, but I3 no longer
needs to vanish, since SU(2)L has been broken and it is not a symmetry of the model
any more. This translates in µW 6= 0. However, because of the vacuum condensate of φ0

Higgs bosons, µ0 must vanish in this case. The charge vanishment and the electroweak
sphaleron relation impositions take in this case the form
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2NFµuL
− 2µν − (4NF + 2m+ 4)µW = 0,

3NFµuL
+ 2NFµW + µν = 0.

Rewriting everything again in terms of µuL
, we get to

B = T 2

3
8N2

F + 4NF(m+ 2)
m+ 2 µuL

,

L = −T
2

3
16N2

F + 9NF(m+ 2)
m+ 2 µuL

,

B − L = T 2

3
24N2

F + 13NF(m+ 2)
m+ 2 µuL

,

and then to the relations

B = 8NF + 4(m+ 2)
24NF + 13(m+ 2) (B − L), (C.16)

L = − 16NF + 9(m+ 2)
24NF + 13(m+ 2) (B − L). (C.17)

These relations are valid in the case where electroweak sphalerons are rapid both above
and below the EWPT. In the particular case of our SM with NF = 3 and m = 1, then
the B and L numbers today are given by B = 36

111B − L, and L = 75
111B − L.
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