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Abstract

Dark Matter is one of the biggest unsolved puzzles of fundamental physics. In
recent years, direct detection experiments have increasingly constrained the parame-
ter space of weakly interacting massive particles (WIMPs), a very well theoretically
motivated dark matter candidate. Nevertheless, the unknown nature of dark matter
makes necessary to reanalyze the results of these experiments, accounting properly
for the yet misunderstood dark matter phase space distribution. This thesis attempts
to systematize and quantify, in a statistically solid manner, the impact of astrophysi-
cal uncertainties (particularly, of the dark matter velocity distribution) in local dark
matter searches, emphasizing the developed methodology for the CRESST experiment.

Zusammenfassung

Dunkle Materie ist eines der größten Rätsel der fundamentalen Physik. In den
letzten Jahren haben die Experimente zur direkten Suche den Parameterraum von
schwach wechselwirkende massereiche Teilchen (WIMPs), einem sehr gut motivierten
theoretischen Kandidaten für dunkle Materie, zunehmend eingeschränkt. Die unbekan-
nte Natur der dunklen Materie macht es jedoch notwendig, die Ergebnisse dieser Ex-
perimente neu zu analysieren und dabei die noch unverstandene Phasenraumverteilung
der dunklen Materie angemessen zu berücksichtigen. In dieser Arbeit wird versucht, die
Auswirkungen astrophysikalischer Unsicherheiten (insbesondere der Geschwindigkeit-
sverteilung der dunklen Materie) bei der lokalen Suche nach dunkler Materie zu sys-
tematisieren und auf statistisch solide Weise zu quantifizieren, wobei die entwickelte
Methodik für das CRESST-Experiment hervorgehoben wird.
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1 Dark Matter : Introduction

Although the discussion about the existence of invisible matter in the form of dark stars,
dark planets, dark nebulae or dark clouds was already active in the XIX century, [1], it
was not until the beginning of the XX century that the first theoretical estimates of the
amount of dark matter in the Milky Way were performed. Kelvin, only by using Newtonian
mechanics and the kinetic theory of gases, proposed a method to relate the size of the galaxy
and the velocity dispersion of stars, concluding from observations that many of them could
be extinct and dark, [2]. E.Öpik, J.H. Kapteyn, J.C. Jeans, and J.H. Oort tried to mea-
sure the local matter density in the solar neighborhood but did not find compatible results,
[3]. It was in two papers of 1933 and 1937, [4][5], when the first compelling observational
evidence of dark matter was found by Zwicky. He applied the virial theorem to the Coma
Cluster and estimated a mass-to-light ratio of ∼ 500, which could only be explained due to
the existence of an additional source of non-luminous matter. After some years in which
caveats to Zwicky’s publication were discussed, [6] and alternative explanations to the high
mass-to-light ratio were provided, [7], the measurement of rotation curves of stars in galaxies
of Vera Rubin and collaborators, [8], consolidated the dark matter paradigm.

The dark matter evidence coming from Vera Rubin and Kent Ford observations of galaxy
rotation curves is the starting point of this thesis. In section 1, we discuss further evidence
coming from colliding galaxy clusters, [9], the cosmic microwave background (CMB), [10],
and Big Bang nucleosynthesis, [32], which revealed the existence of dark matter to describe
consistently our current universe within the cosmological model of ΛCDM. More precisely,
latest results of the Planck satellite mission, [11], show that visible matter only accounts
for 5% of the total energy density of the universe, while dark matter represents ∼ 27%, the
remaining being dark energy Λ. Based in this evidence, we introduce Weakly Interacting
Massive Particles (WIMPs), [12] and motivate them as a dark matter candidate, describing
its production in the early universe. We furthermore briefly discuss the formation of struc-
tures in the universe within ΛCDM and in particular the dark matter halo and substructure
formation, [13][14]. In section 2, we discuss the state of the art about the dark matter halo
in the Milky Way, particularly the local density of dark matter in the solar neighbourhood
and the dark matter velocity distribution, quantities of crucial importance in different dark
matter searches, [15]. We point out that the current Standard Halo Model (SHM) used by
experiments might not be a good description of our dark matter halo. Finally, we propose
a novel method to compute the dark matter velocity distribution based in the principle of
maximum entropy, [16]. In section 3, we show some of the different experimental searches
for dark matter taking place, dedicating special attention to the description of the dark mat-
ter capture mechanism in indirect searches, which search for the products of annihilations
of dark matter particles into standard model particles, and the state of the art of direct
detection experiments, which search for direct interactions of dark matter with detectors
placed on Earth. We present in more detail the CRESST experiment, [17][18], as we will be
working with their results in the latter part of this thesis. In section 4, we review the direct
detection formalism necessary to make dark matter predictions, discussing the importance
of the kinematics in the capability of direct detection experiments to access certain dark
matter phase space configurations.
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In section 5, we develop a method to quantify the impact of astrophysical uncertainties in a
direct detection experiment, based on tools from information theory, [19]. By using this tech-
nique, we derive upper limits on the dark matter scattering cross-section using CRESST,
[20], including uncertainties from the velocity distribution. Furthermore, we discuss the
possibility of these methods to rescue or definitely rule out specific dark matter models in
a halo-independent manner. Finally, we perform a combined halo-independent analysis of
CRESST and Super-Kamiokande results, [21]. In section 6, we develop a bayesian technique
based in the quantified maximum entropy method, [22], which allows to interpolate between
the SHM and the maximally entropic velocity distributions consistently with the results of
a certain direct detection experiment.

The thesis concludes in section 7 with a short discussion about alternative scenarios that
could arise from the extragalactic dark matter component and the inelastic interaction of
dark matter particles with nuclei, [23][24]. We use the 4 high-recoil unindentified events of
CRESST II, [17], to show that a proper knowledge of the dark matter phase space distribution
and kinematics is crucial in order to make high precision measurements.

1.1 Evidence for Dark Matter

There is evidence for the existence of dark matter on different scales. We present here some
of the most convincing observations.

1.1.1 Rotation curves of galaxies

Rotation curves of galaxies represent the circular velocity vrot(r) of stars as a function of their
distance to the galactic center. For illustration purpose, we can naively assume a spherically
symmetric density distribution ρ(~r) = ρ(r) for the galaxy. From Newtonian mechanics, the
shape of the rotation curve can be derived equating the gravitational force produced by the
mass enclosed in the sphere of radius r and the centripetal force of an object at this position

GM(r)m

r2
=
mv2

rot

r
(1)

and

vrot =

√
GM(r)

r
, (2)

where

M(r) =

∫ r

0

4πρ(r′)r′2dr′. (3)
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Figure 1: On the left, the rotation curve of galaxy NGC 6503, taken from [25], including
the main contributions summing up the total measure: the gas, stellar disk and dark matter
halo. On the right, recent measurements of the Milky Way rotation curve from classical
cepheids, taken from [26].

At the center of the galaxy the density is roughly constant and vrot ∝ r. This can only
approximate the observed rotation curve at the very core of the galaxy, see Figure 1. For
stars orbiting the outer part of the galaxy, M(r) is equal to the total mass of the galaxy, thus
constant, and vrot ∝ r−1/2. In the case of spiral galaxies, this approximation is well justified,
since they typically present a bulge at the core which contains most of the luminous matter.
The prediction for vrot in the outer region of galaxies is incompatible with observations, that
show an approximately flat profile in the outskirts of, see Figure 1. This discrepancy can
be explained by considering an additional, non luminous, source of gravitational potentials
present on the galaxy beyond the baryonic disk.

1.1.2 Colliding galaxy clusters

Since the observation in 2006 of the galaxy cluster 1E0657-558, the Bullet Cluster, [9],
collisions of galaxy clusters have been argued as a proof of the existence of dark matter.
These works typically construct a map of the gravitational potential using weak gravitational
lensing, which measures the distortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass. While this shows that most of the
matter remains in the individual clusters after the collision, the thermal X-ray emission map
shows that most of the baryonic matter is concentrated in the collision region.

3



Figure 2: On the left, 6 examples of colliding galaxy clusters, taken from [27], where the dark
matter (blue) and stars are clearly separated from baryonic matter (pink). On the right, the
Bullet Cluster, [9]. The green contours show the weak-lensing reconstructions, and the color
gradient is the thermal X-ray emmission map. The centers of the gravitational potential are
shifted with respect to the strongest X-ray emission regions of the plasma

This effect has been observed not only in the Bullet Cluster but on several further colliding
galaxies, see Figure 2. Since there is 5 times more mass in the form of gas than stars, the
discrepancy between the weak lensing map and the thermal X-ray emission can only be
explained by the presence of dark matter. In this interpretation stars and dark matter move
nearly collisionless away from the center of the collision, while baryonic matter from both
cluster interacts electromagnetically and remains in the center. The observation of collisions
of galaxy clusters challenge the so-called MOND (Modified Newton Dynamics) theories,
which propose that the gravitational evidence for dark matter is due to a modification of
the law of gravity at large scales, [28].

1.1.3 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) radiation is one of the most compelling argu-
ments in favour of dark matter. In the early stages of the universe, at the time of recombina-
tion (redshift z ≈ 1100), radiation decoupled from matter and since then, photons travelled
freely. The almost perfect black-body CMB spectrum shows the temperature (2.728 K), or
the inverse wavelength, of the microwaves that we receive on Earth from this early times,
see Figure 3. When looking closely at this spectrum, one finds fluctuations in the µK scale,
[11].
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Figure 3: On the left, the most recent Planck satellite measurement of the CMB angular
power spectrum in terms of the multipole moment l, [11]. The first peak is correlated with
the amount of baryonic matter. The measured position and height of the second and third
peaks are consistent with a dark matter abundance of roughly 5 times higher than baryonic
matter, [55]. On the right, the most recent Planck satellite sky map of the CMB temperature
anisotropies

The temperature anisotropies of the CMB are explained as baryon acoustic oscillations, [29].
Previous to the recombination era, when the free electrons still strongly scattered the photons
of the cosmic plasma, this rang with sound waves excited by the initial perturbations of the
inflaton field, [30]. The photon radiation pressure keeps the ionized gas from clustering,
and this pressure leads to relativistic sound waves that propagate until the plasma becomes
neutral at recombination. The mechanism then freezes and CMB photons carry information
about the baryonic density profile in their temperature profile. Photons coming from dense
baryonic regions loose energy by escaping the gravitational potential and are redshifted.
On the other hand, photons coming from diluted regions are blueshifted with respect to
the average CMB photon temperature. This is called the Sachs-Wolfe effect, [31]. Since the
coupling of dark matter and baryons to photons is different, the power spectra of temperature
and polarization fluctuations depend crucially on the ratio between both components.

1.1.4 Big Bang Nucleosynthesis

At redshift z ≈ 4×108, Big Bang nucleosynthesis takes place and light elements are formed.
It starts with the production of deuterium and ends up with the production of helium

p+ n→ 2H + γ (4)

3H + 2H→ 4He + n, (5)

though low probability reactions up to 7Li also occured. While the fraction of baryons
that make up the helium abundance is mainly sensitive to the n/p ratio at the time of
nucleosynthesis, [32], which from Boltzmann statistics is ∼ 1/7 and leads to ∼ 25% of the
mass of baryons forming helium 4He, the deuterium, helium 3He and 7Li abundances depend
on the baryon density at the time of nucleosynthesis, see Figure 4.
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Figure 4: Primordial abundances of light elements as a function of the baryon density relative
to photons and the CMB observations. The bands show the 95%CL range. Boxes indicate the
observed light element abundances. The narrow vertical band indicates the CMB measure
of the cosmic baryon density, while the wider band indicates the BBN D+ 4He concordance
range (both at 95% CL), [33]

Deuterium, due to its stability (binding energy of 2.2 MeV), is a good thermometer of the
baryon density at nucleosynthesis, since it is only destroyed hereafter, like in the evolution of
starts, but never enduringly produced. Therefore, the amount of deuterium, but also of other
light elements in the universe can be used to set an upper limit in the baryon density, [33].
Therefore BBN, which provides a measure of the baryon density, indicates the existence of
dark matter when combined with the measure of the matter density coming from the CMB.

1.2 Cosmology : ΛCDM

The ΛCDM model of cosmology represents a century of confluence work of theoretical and
observational efforts. The universe contains four major components: dark energy Λ, cold
dark matter CDM, baryonic matter B and radiation R, where the density proportions can
be extracted from the CMB anisotropies and are given by, [11],

ΩΛh
2 = 0.3107± 0.0082 (6)

ΩDMh
2 = 0.1200± 0.0012 (7)

ΩBh
2 = 0.02234± 0.0001, (8)

where 0.4 ≤ h ≤ 1.0, and the density of radiation ΩR is negligible todayO(0.0001). Although
the yet unknown nature of dark energy Λ and dark matter may indicate some small scale
inconsistencies, [34], it is the current parameterization that better explains simultaneously
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the existence of the cosmic microwave background (CMB), the observed accelerating expan-
sion of the universe, the observed abundances of hydrogen (including deuterium), helium,
and lithium, and the formation of large scale structures in our Universe.

In this section, we will review the basics of the cold dark matter paradigm (CDM): the CDM
particle production in the early universe and the CDM structure formation, emphasizing the
formation of dark matter halos and its subsequent substructure.

1.2.1 Dark Matter production: WIMPs

In the modern cosmological picture, right after the inflationary period, [30], the Universe
is filled with a relativistic plasma of particles. For the understanding of the thermal his-
tory of the Universe and the CDM paradigm, the comparison between the rate of particle
interactions Γ and the rate of expansion of the universe H (Hubble rate) is crucial. In this
discussion, the temperature of the primordial plasma T is proportional to the scale factor
a of the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric T ∝ a−1, and the rate of
change in the temperature is just the Hubble expansion parameter Ṫ /T = −H, [35].

So long as the interactions necessary for particle distributions to adjust to the temperature
changes are rapid compared to the expansion rate, the Universe will evolve through a suc-
cession of nearly thermal states (local thermal equilibrium) with temperature decreasing as
a−1. It is considered in the literature, [35], that reactions are happening rapidly enough to
maintain local thermal equilibrium when Γ ≥ H. As the Universe cools, the rate of interac-
tions could decrease faster than the expansion rate. At Γ ≈ H , the different particles (dark
matter among them) decouple from the thermal bath. Different particle species may have
different interaction rates and so may decouple at different times. Boltzmann constant is
set equal to unity, kB = 1, so that the temperature has units of energy. The rate of particle
interactions is given by the expression:

Γ ≡ nσv, (9)

where n is the number density of particles, σ is their interaction cross section and v is the
average velocity of the particles. For a process 1 + 2↔ 3 + 4, the interaction rates of species
1 and 2 would be written as Γ1 = n2σv and Γ2 = n1σv respectively with v being the average
relative velocity of species 1 and 2 and ni their respective densities. The approximation
n1 ∼ n2 ≡ n will be taken for high energies. In conclusion, this interaction rate describes
the probability of particles 1 and 2 to scatter. The distribution functions of the different
particles in the thermal bath can be described by Fermi-Dirac and Bose-Einstein statistics.
If the Universe had remained in equilibrium, it would be mostly photons and neutrinos. Any
massive particle species would be suppressed due to the exponential factor in the distribution
function, e−m/T . For baryons this is not quite correct since baryon number is a symmetry of
the Standard Model. Deviations from equilibrium lead to the freeze out of massive particles,
where they acquire a relic abundance still present today.
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Figure 5: Freeze out process. At high temperatures T � m, the particle abundance tracks
its equilibrium value. At low temperatures T � m , the particles freeze out maintaining a
relic density much larger than the Boltzmann-suppressed equilibrium abundance, [36]

In order to understand the evolution beyond equilibrium, the Boltzmann equation is required.
In the absence of interactions, the number density of a particle species i evolves as

dni
dt

+ 3
ȧ

a
ni = 0, (10)

due to the fact that the number of particles in a fixed physical volume is conserved, so that
the density dilutes with the expanding volume, ni ∝ a−3 . Adding a collision term to include
the effects of interactions yields

dni
dt

+ 3Hni = Ci[nj]. (11)

This is the Boltzmann equation. The form of the collision term depends on the interactions
under consideration. If we only contemplate single particle decays and two particle scatter-
ings/annihilations, the processes are condensed in 1 + 2 ↔ 3 + 4 . To track the number
density n1 of species 1, it is considered that the rate of change in the abundance of species 1
is given by the difference between the rates for producing and eliminating the species. The
collision term then takes the form

dn1

dt
+ 3Hn1 = −〈σv〉12 n1n2 + 〈σv〉34 n3n4, (12)

where 〈σv〉 is the thermally averaged cross section. The thermally averaged cross section
is similar to that of a cross section, but one has to consider that the “initial conditions”
do not correspond to a well defined energy, but rather it is necessary to integrate to the
possible energies (or velocities) that the particles in the thermal bath may have. Thus, the
thermally averaged cross section depends on the relative velocity between particles, and the
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brackets denote an average over v . By taking into account that the collision term vanishes
in chemical equilibrium, equation 12 can be expressed as

1

a3

d(n1a
3)

dt
= −〈σv〉 [n1n2 − (

n1n2

n3n4

)eqn3n4]. (13)

This formula allows to compute the relic density of WIMPS (Weakly Interacting Massive
Particles) as dark matter agents. It is convenient to distinguish different dark matter par-
ticles according to their freeze out temperature x = mχ/T : Hot Dark Matter (HDM) with
xf � 3, Cold Dark Matter (CDM) with xf � 3 and the intermediate case of Warm Dark
Matter (WDM) with xf ∼ 3. This distinction is relevant because the value of xf is deter-
minant in the latter Universe structure formation, [37]. WIMP’s assumption as cold dark
matter is, a priori, well justified by two reasons. The first one is that, since the main as-
sumption in the thermodynamics depiction of the primordial bath is that it is formed by a
gas of weakly interacting particles, it is reasonable to consider dark matter also as weakly
interacting, though massive, since freeze out happens earlier for massive particles before
than photons decouple, [36]. The second and more important reason is that a cross section
characteristic of the weak interaction σχ ∼ 10−40 gives the right dark matter abundance
today. This is called the WIMP miracle. Another motivation to consider WIMPs as CDM,
not theoretical but purely experimental, is that the weak scale is testable and accesible to
several experiments nowadays.

1.2.2 Structure formation

In ΛCDM, the structures of the universe are formed from small early density fluctuations,
where the nature of dark matter plays a crucial role. The CMB temperature map anisotropies
indicate evidence for fluctuations δ(x, t) in the primordial matter density

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (14)

where ρ̄ is the average matter density over all space. These small density perturbations form,
via gravity, the large scale structures observed in the late universe. The growth of structure
are determined by the background pressure and gravity. The overall fluctuating density
field can be considered as a superposition of waves with different wavelengths, phases, and
amplitudes. Then, it is possible to take a Fourier transform δk ∼

∑
e−ikr and measure the

power spectrum on different scales, expressed either as wavelengths l, frequencies or wave
numbers k = 1/l, [37], see Figure 6.

At early times, in the radiation dominated era, density perturbations are small δ � 1
and general relativity linear perturbation theory can be applied. Indeed, the fields are still
weak, and it is possible to obtain the evolution of the density perturbations by using special
relativity fluid mechanics and Newtonian gravity (Poisson equation) with a relativistic source
term, [13],

∇2Φ = 4πG(ρ+ 3p/c2), (15)

which leads to the following evolution of the density field

δ̈ + 2
ȧ

a
δ̇ = 32

π

3
ρ0δ. (16)
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From equation 16, one sees that during radiation domination the growth is slow δ ∼ ln(a),
being a(t) the scale factor in the FLRW metric. After matter-radiation decoupling, matter
dominates the background density and the radiation pressure drops to zero, leading to a
linear growth in density perturbations δ ∼ a. This discussion is only valid for perturbations
outside the horizon, [37][35]. Nevertheless, in a combined picture of collisionless matter
in a radiation background there is a mode of perturbations inside the horizon where the
collisionless (non-relativistic) matter component of density ρm is perturbed relative to the
relativistic radiation component of density ρr. This leads to a perturbations growth mode
of δ ∼ 2/3 +a/aeq, where aeq is the scale factor at matter-radiation equality. For a < aeq the
(cold) matter perturbation is “frozen”, δ ∼ constant, while for a > aeq the matter pertur-
bation grows linearly with δ ∼ a/aeq. The overall behaviour (Mészáros effect) is therefore
similar to the effects of pressure on a coupled fluid: for scales greater than the horizon,
perturbations in matter and radiation can grow together, but this growth ceases once the
perturbations enter the horizon, [38].

The perturbations enter the horizon in both the radiation-dominated and the matter-dominated
epochs. The difference in the growth rate in these epochs set two important scales in the
power spectrum of density perturbations. These are the size of the horizon at matter radia-
tion equality, below which the power spectrum of density fluctuations flattens, and the size
of the horizon when dark matter freezes out, see Figure 6. Small scales become non-linear
first, δ ≥ 1 and form gravitationally bound objects that decouple from the overall expan-
sion. This leads to a picture of hierarchical structure formation with small scale structures
(like stars and galaxies) forming first and then merging into larger structures (clusters and
superclusters of galaxies).

Figure 6: Matter power spectrum P (k) versus wave number extrapolated to z = 0, from
various measurements of cosmological structure. The solid line shows the ΛCDM best fit,
[39]
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The most common approach in the literature to describe structure formation in the non-
linear regime are N-body simulations, [40], since there is no analytic solution for the evolution
of the density field in the strongly coupled case. Later in this thesis, section 2.2.2, these
methods will be analyzed in some detail. The formation of non-linear dark matter halos is
understood due to its hierarchical nature. In ΛCDM, dark matter halos form in essentially
the same way regardless of mass and the formation epoch. The slope of the power spectrum
changes as a function of length scale, see Figure 6, but the final dependence of P (k) in k
is still monotonic for cold dark matter, [41]. On the other hand, the formation of the first
baryonic objects involves a number of physical processes, and so is much more complicated
to depict. Also, if dark matter were not cold but warm xf ∼ 3 or hot xf � 3, the power
spectrum would significantly differ from the CDM case, presenting a cut-off at large k that
would prevent the formation of small dark matter halos at high redshift, in contradiction
with observations of the Lyman-α forest, [42].

1.2.3 Dark Matter substructure

Due to the hierarchical structure formation, the main halos of galaxies are expected to host
a number of substructures. Non-virialized structures have been both predicted in N-body
simulations, [43], and observed in stellar surveys data, [44]. The precise determination of the
dark matter substructure, in particular in the Milky Way, might be of crucial importance
for dark matter searches, [45], since they include the phase space distribution of dark matter
particles in their observables. Some examples of dark matter substructure are:

• Subhalos: These are halos bounded to larger halos. A large fraction of light subhalos
does not accrete sufficient matter to form stars and remain dark. In the CDM picture,
these can have masses in the range ∼ 10−4M� − 1010M� and lead to local regions of
overdensities that can affect the predictions of direct and indirect dark matter searches.
Its properties are determined by the subhalo mass function, depending on the dark
matter density profile and concentration parameter of the subhalos, [45].

• Streams: In the same way that the gravitational pull of the moon creates tides on
Earth, the gravitational pull of the Milky Way creates tides too. It is well known
that globular clusters lose stars to form tidal streams, such as the Sagittarius, Orphan
and Monoceros streams, orbiting around the Milky Way, [46], see Figure 7. A recent
study found a new stream in the outskirts of the Milky Way, the stream S1, [47]. This
suggests the possibility of analogous structures formed of dark matter wrapped around
the Milky Way. If this were the case, then the dark matter particle velocities in a given
stream would be coherent, with

fstream(~v) = δ3(~v − ~vstream) (17)
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Figure 7: The field of streams imaged by SDSS, [46]. On the x axis, the right ascension
(RA), and on the y axis, the declination, both in degrees. In yellow and red colours, the two
tails of the Sagittarius stream, note the bifurcation around RA ∼ 180◦. The Orphan stream
is the thin vertical line at RA ∼ 160◦ and the Monoceros stream is clearly visible in blue on
the right of the image.

• Debris flow: This dark matter substructure consists of the sum of different debris
materials from a subhalo infalling in the Milky way orbit, [14]. Its particle constituents
would have the same speed but different directions, and simulations suggest that debris
flow would constitute a significant fraction of the high-speed particles in the Milky Way,
as we will see in section 2.2.2

• Dark disc: A dark disc may form if subhalos merging with the Milky Way are dis-
rupted by its baryonic disc, resulting in a concentration of dark matter on the plane
that rotates in the same direction as the Sun, [14]. Its existence would provide an
excess of slow-moving particles in the solar neighborhood. Although the existence of
a dark disc was suggested by simulations, [48], recent works disfavour it and constrain
its possibilities, [49].

To summarize, there are different types of non-virialized dark matter substructure with
different phase space distributions that could be present in the Milky Way and cause an
impact on dark matter searches.
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2 Dark Matter in the Milky Way

In this section, we review in more detail our current knowledge of the dark matter local
density and velocity distribution in the Milky Way, particularly in the solar neighbourhood.

2.1 The Dark Matter density

There are two independent methods to obtain the radial dark matter density profile in the
Milky Way ρDM(r). One option is to fit the predictions of dark matter-only N-body simu-
lations. In this way the Navarro-Frenk-White (NFW) profile, [50], and the Einasto profile,
[51] are obtained. Alternatively, the Burkert profile is extracted from the rotation curve of
the galaxy, [52]. These methods lead to incompatible results, since N-body simulations show
a cuspy profile at the center of the galaxy and the Milky Way rotation curve indicates a
flat profile at the center. This discrepancy is known as the core-cusp problem, and alter-
natives such as hydrodynamical simulations including the effects of baryonic physics, 2.2.2,
or self-interacting dark matter models seem to provide solutions to this problem, see [53]
for a detailed review. We are particularly interested in the local dark matter density ρloc in
the solar neighborhood, since this is the quantity that affects the prediction of local dark
matter searches, specifically neutrino experiments, 3.2.1, and direct detection experiments,
3.3, that will be studied later in this manuscript. Two complementary analyses are carried
to measure this value, see Figure 8. Local measurements look at the motion of tracers nor
farther than 10 kpc away from the sun. These are metal-poor stars that are believed to
trace the dark matter component in the galaxy, since both dark matter and metal-poor halo
stars are accreted to the Milky Way via mergers of galaxies. The dominant uncertainties
here come from the kinematics of the tracers and the surface density of baryons, and current
studies go from no dark matter at all towards values so large as 0.85 GeV/cm3, [54][55]. The
second analysis consists in global measurements, which model the mass distribution of the
galaxy from the rotation curve and infer the dark matter density at the solar distance from
the galactic center. The uncertainties here arise from the precise determination of the Milky
Way mass components and the simplifying assumptions made for the dark matter density
profile. These studies however obtain more restricted values in the range 0.2-0.4 GeV/cm2,
[56][57].
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Figure 8: Schematic representation of local vs global measures, taken from [57]. The Milky
Way disc is marked in grey and the dark matter halo in blue. If the local measure is smaller
than the global measure ρdm < ρdm,ext, this indicates a prolate dark matter halo. On the
other hand, if ρdm > ρdm,ext, this would imply an oblate halo, or the existence of dark matter
substructure near the Milky Way, such a dark disc, [48].

The canonical value in the community is 0.3 GeV/cm3, but recent works suggest O(1)
uncertainties, such as [58]. Nevertheless, as we will discuss in section 5.1, the total dark
matter rates in experiments depend linearly on the local density of dark matter particles,
and therefore this uncertainty, though of course relevant for making precise predictions, can
be addressed by rescaling the signal normalization.

2.2 The Dark Matter velocity distribution

A proper understanding of the velocity distribution of dark matter particles is crucial to
determine both its particle nature and cosmological history. Furthermore, as we will discuss
in section 5.1, its impact on the dark matter scattering rates at experiments is difficult to
track, being a source of uncertainty. In this section, we review our current knowledge about
the dark matter velocity distribution.

2.2.1 The Standard Halo Model (SHM)

The benchmark dark matter velocity distribution used not only in WIMPs, but also axion
searches, [59], is a truncated Maxwell-Boltzmann (MB) velocity distribution at the galactic
escape velocity. The Standard Halo Model (SHM) consists in a dark matter density profile
given by the isothermal sphere and a truncated Maxwell-Boltzmann velocity distribution.
The Maxwell-Boltzmann velocity distribution can be obtained in several independent ways,
[60][43][55][16]. We would like to comment that there is confusion in the literature regard-
ing the derivation of the Maxwell-Boltzmann velocity distribution in the SHM used at dark
matter searches. Some studies model the dark matter density by an isothermal sphere, mo-
tivated by the observation of flat rotation curves, where the velocity dispersion is obtained
by integrating up to the virial radius the mass of the galaxy, and later use the Eddington
inversion method to infer the Maxwell-Boltzmann velocity distribution, [55]. Other studies
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just consider a generic Maxwell-Boltzmann distribution with three parameters: the normal-
ization constant, the Milky Way escape velocity, and the peak speed v0. The peak speed is
consistent with the circular speed of rotation curves in the case of the isothermal model, or

it can be taken to be v0 =
√

2
3
σv, where the velocity dispersion σv =

√
〈v2〉 can be obtained

from solving the spherically symmetric Jeans equation, [43]. Some parametrizations main-
tain a sharp truncate at vesc while others smooth it ad-hoc with an additional exponential
term, [61]. Furthermore, the isothermal sphere can be obtained by solving the collisionless
Boltzmann equation, taking a maxwellian profile as an ansatz, or independently from solv-
ing the hydrostatic balance equation for the isothermal equation of state P ∝ ρ, to obtain
the gravitational potential Φ, that allows to compute the isothermal profile by solving the
Poisson equation, [62]. In the following, we will describe only one of the approaches used
in the literature: obtaining the isothermal sphere from the assumption of the maxwellian
ansatz, later determining the velocity distribution via Eddington’s method.

The isothermal sphere model can be obtained by taking a Maxwell-Boltzmann distribution
f = C exp(E/σ2

v), with σ2
v being the velocity dispersion of the particles in the system, and

energy per unit mass E = v2/2 + Φ(~r), as an ansatz of the particles phase space distribution
f(~r,~v, t) to help solve the collisionless boltzmann equation

∂f

∂t
+ (~v · ∇)f − (∇Φ · ∇v)f = 0, (18)

where Φ is the gravitational potential that the collisionless particles are subject to. Equation
18 would therefore describe the evolution in phase space of an incompressible fluid of dark
matter particles subject to a gravitational potential Φ(r). As a historical note, equation 18
is misleadingly sometimes called Vlasov equation, though Vlasov took it initially from Boltz-
mann to track the evolution of a plasma of electrically charged particles, [63]. Integrating
out equation 18 in velocity space, the mass density yields

ρ(~r) =

∫
d3~vf(~r,~v) = ρc exp(−Φ(~r)/σ2

v). (19)

Assuming spherical symmetry and the the scale invariant ansatz ρ = Arα, one can solve the
Poisson equation

∆Φ =
1

r2

d

dr

{
r2dΦ

dr

}
= 4πGρ(r), (20)

and the density profile of the isothermal sphere yields

ρ(r) =
σ2
v

2πG

1

r2
. (21)

Now, we can use Eddington’s inversion method, [64]. In the maximally symmetric case of
an isotropic and spherically symmetric halo of self-gravitating dark matter particles with
energies per unit mass E > 0, the angular momentum is not relevant and and the phase-
space distribution function can be described as a function of the energy only f(~r,~v) = f(E).
By performing an Abel inversion of 19, one can derive the unique steady-state solution of
the collisionless Boltzmann equation 18 for a given density-potential

f(E) =
1√
8π2

[
1√
E

(
dρ

dΨ

)
Ψ=0

+

∫ E
0

dΨ√
E −Ψ

d2ρ

dΨ2

]
, (22)
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which is the Eddington formula. It is important to notice that ρ refers to the dark matter
density, while Ψ = Φ0 − Φ(r) is the total relative potential of the system. The first term
∝ 1/

√
E leads to a divergence in the velocity distribution at v → vesc and therefore must

be dropped, though more sofisticated methods to regularize it have been proposed, [65][66].
Using the Eddington inversion method, the dark matter velocity distribution can be obtained
as f~r(~v) = f(~r,~v)/ρ(~r), which leads to the result

fSHM(~v) =
1

(2πσ2
v)

3/2Nesc

exp

(
− ~v2

2σ2
v

)
for v ≤ vesc, (23)

where the velocity dispersion σ2
v of the dark matter particles of the Milky Way dark matter

halo can be obtained integrating the mass density in equation 21 over the Milky Way volume
(up to the virial radius), and equating to the mass of the dark matter halo in the galaxy,
which is experimentally known. Its value is σv ≈ 156 km/s, [67]. The escape velocity is
taken to be vmax = 544 km/s, according to [68]. The normalization factor Nesc is,

Nesc = erf

(
vesc√
2σv

)
−
√

2

π

vesc
σv

exp

(
v2
esc

2σ2
v

)
(24)

depending on the escape velocity vesc and velocity dispersion σv. Notice that the truncation
at the Milky Way escape velocity has been done a posteriori, which leads to a sharp cut-off
in the tail of the distribution. But this is not the only nor the most important caveat of the
SHM. First, the mass density in equation 21 diverges for r → 0, which leads to a diverging
mass in the Milky Way. The SHM behaves bad in the central regions of galactic structures,
where the circular speed is known to provide a very poor estimate of the velocity dispersion,
due to the influence of the baryonic disc. Furthermore, the NFW and Einasto profiles are
not proportional to r−2 but to r−3 for large radii. Moreover, the Maxwell-Boltzmann is
not a generic solution to the Boltzmann equation 18 for more realistic galactic gravitational
potentials including the effects of baryonic physics.

Despite all this discussion, the SHM is expected to provide a good first order approximation
at the scales of the solar neighbourhood. It is however necessary to look closely at the results
from N-body simulations 2.2.2 and tracers studies 2.2.3, to understand precisely where does
the approximation fails and to get hints from the existence of dark matter substructure
discussed in section 1.2.3.

2.2.2 N-Body simulations

N-body simulations evolve in time the phase space distribution f(~x,~v, t) of a set ofN particles
that are drawn from an initial power spectrum, being therefore able to track directly the dark
matter velocity distribution. For cold dark matter, the collisionless Boltzmann equation and
the Poisson equation describe the evolution of the gravitational field Φ(~x)

df

dt
=
∂f

∂t
+
∑
i

vi
∂f

∂xi
+
∑
i

∂φ

∂xi

∂f

∂vi
, (25)

ρDM(~x, t) =

∫
f(~x,~v, t)d3v, (26)
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∇2Φ(~x) = 4πGρDM(~x). (27)

Here, d/dt is the Lagrangian derivative and ρDM is the dark matter density. N-body simula-
tions solve this problem by discretizing the distribution function into N phase space elements
{~xi, ~vi} for i = 1, ..., N . These phase-space regions represent the dark matter particles of the
simulation. As an illustrative example, the Aquarius simulation, [69], consider up to 1 billion
dark matter particles (109), but there are way more dark matter particles in the Milky Way

Mχ,MW ∼ 1012M⊙, mχ ∼ 10−37 GeV

⇒∼ 1052 dark matter particles in the Milky Way

This sets a discrepancy of roughly 1043 orders of magnitude between reality and simulation.
Therefore, the conclusions drawn from N-body simulations are limited by the phase space
resolution. Another caveat is that the dark matter velocity distribution is usually obtained
from galaxies with similar characteristics to the Milky Way, but such galaxies may not
present a solar system at the very same distance from the galactic center as we do. N-body
simulations are however useful as they allow to determine the phase space distribution of
dark matter in the non-linear regime and study the properties of Milky Way-like halos under
the CDM paradigm. Precisely, equations 25, 26 and 27 allow to trace the dynamics of a sys-
tem of N particles subject to the potential imposed by the particles phase space distribution.

Figure 9: On the left, the dark matter speed distribution obtained from the dark matter-
only Aquarius simulation. The dark and light blue contours enclose 68 and 95 per cent of
all the measured distributions at each velocity, [71]. The peaks at high velocities might be
an indication of a debris flow of dark matter particles. On the right, the results from the
hydrodynamical EAGLE simulation, where the green line represents the closest simulated
velocity distribution to the SHM (in solid black), and the pink one the largest deviated
velocity distribution obtained, [72].

There are two types of simulations: dark matter-only simulations and hydrodynamical sim-
ulations, which include the effect of baryonic physics, see Figure 2.2.2. Hydrodynamical
simulations seem to provide a more realistic description of the gravitational potential, and
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could solve the core-cusp problem, [53], regarding the discrepancy of the dark matter-only
simulations motivated density profiles, such as NFW, which predict a cuspy profile in the
center of the galaxy, and the extracted density profiles from the rotation curve of the galaxiy,
flat in the center. Nonetheless, dark matter-only simulated galaxies seem to deviate less with
respect to kinematical studies of tracers, [70][58], which will be discussed in next section 2.2.3
and are in better agreeement with self-consistent theoretical methods of phase space distribu-
tion functions predictions, based in the Eddington inversion, [43]. Moreover, the resolution
is better than for hydrodynamical simulations, [55].

2.2.3 Tracers observations

The dark matter velocity distribution in the solar neighbourhood can be inferred from the
study of tracers, low-metalicity stars not farther than 10 kpc from the sun, which are believed
to trace the dark matter component, [14]. A study of such type is [70], where the authors use
the distribution of accreted stars in SDSS and Gaia, [44], to demonstrate that a non-trivial
fraction of the dark matter halo within Galactocentric radii of 7.5-10 kpc is in substructure.
They develop a two-component model for the dark matter velocity distribution, where the
observation of a metal-poor and isotropic stellar halo is likely associated with tidal debris
from the oldest luminous mergers that built up the Milky Way, while the anisotropic compo-
nent at intermediate metallicities is due to tidal debris from a more recent merger. Based in
this two-component separation of the velocity distribution, it is possible to derive the Jeans
equations in spherical coordinates, under the assumptions, for both components, of spherical
symmetry and uncorrelated spherical velocities. Furthermore, the isotropic distribution is
assumed to be in steady state, while the anisotropic component is not, and their velocities
have vanishing mean at present-day.

Figure 10: Dark matter velocity distribution in the SDSS-Gaia DR2 joint analysis at [70].
The dotted blue line represents the contribution of the dark matter component that is in
substructure, and the red dotted line the dark matter halo contribution. In solid black the
sum of both distributions is shown.
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In this study, the authors perform a mixture model likelihood analysis, allowing to statis-
tically identify the individual populations of accreted stars over the full metallicity range
of the sample. The summed velocity distribution appears to be more conservative than the
SHM, see Figure 10. A similar analysis using data provided by the GAIA mission, [44], pro-
poses a refinement of the SHM, named the SHM++, based in the consideration of a strongly
radially anisotropic population of our stellar hallo, the so-called Gaia Sausage. This new
model update the usual parameters of the SHM: the circular rotation speed, v0, the local DM
density ρ0 and the escape speed vesc, and adds two new parameters: the sausage anisotropy
β and the sausage fraction ν, see Table 1.

SHM
Local DM density ρ0 0.3 GeV cm−3

Circular rotation speed v0 220 km s−1

Escape speed vesc 544 km s−1

Velocity distribution fSHM(~v) Equation 23
SHM++

Local DM density ρ0 0.55 GeV ± 0.17 cm−3

Circular rotation speed v0 233 ± 3 km s−1

Escape speed vesc 544 km s−1

Sausage anisotropy β 0.9 ± 0.05
Sausage fraction η 0.2 ± 0.1

Velocity distribution fSHM++(~v) Equation 28

Table 1: Updated parameters of the SHM, according to [58]

The anisotropic component of the Milky Way is taken into account by splitting the velocity
distribution into two components, in a similar way as for the SDSS-Gaia DR2 study: A
Maxwell-Boltzmann-like component of the nearly round dark halo, which weights as 80% of
the total dark matter velocity distribution of the Milky Way, and the velocity distribution
of the Gaia sausage, which weights 20%, see Figure 11. The anisotropic velocity distribution
of the Gaia component takes the form

fS(~v) =
1

(2π)3/2σrσ2
θNS,esc

exp

(
− v2

r

2σ2
r

− v2
θ

2σ2
θ

−
v2
φ

2σ2
φ

)
× θ(vesc − |~v|), (28)

where the velocity dispersion in spherical coordinates are functions of the circular velocity
v0 and the anisotropic parameter β, and there is a normalisation constant NS,esc, which is
an anisotropic analogue of equation 23.
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Figure 11: On the left, the velocity distribution for the SHM++ in the radial and horizontal
directions on the Earth frame. The SHM like component is denoted as fR(v), and the
Sausage component, fS(v), whose radial anisotropy is clearly visible. On the right, the dark
matter velocity distributions for the SHM (red dashed) and the SHM++(blue), shaded for
different sausage fraction components η. The total velocity distribution is slightly more
agressive than the SHM, [58].

Although data provided by the SDSS and Gaia stars catalogue indicate the existence of dark
matter substructure in the Milky Way, in particular, a dark matter anisotropic component,
these studies present significant differences not only among them but also with the N-body
simulated Milky Way-like galaxies discussed in previous section 2.2.2, obtained from an initial
power spectrum of density fluctuations. The main caveat of these kinematical reconstructions
of the dark matter halo is that they rely on observational data which has uncertainties in
the kinematics of stars and the surface density of baryons, as we already discussed for
the local dark matter density determination in section 2.1. Furthermore, both isotropic
and anisotropic components are not well correlated in the case of recent mergers. Another
arguable argument disfavoring them is that dark structures such as subhalos are not taken
into account.

2.2.4 Maximum entropy velocity distribution

Here, we present a new method to compute the dark matter velocity distribution in an
independent way from the methods shown above. We will make use of the principle of
maximum entropy, [16], which states that the probability distribution that better represents
the current state of knowledge of a system is the one that maximizes the Shannon entropy,
[19], see Appendix B.1, while reproducing the precisely known prior data about the system.
In other words, it means that given some prior information about our physical system, the
maximally uninformative probability distribution about the system among the set of all
distributions satisfying the prior, is the one with largest entropy. The Maxwell-Boltzmann
velocity distribution can be obtained by this means, under the constraint of conservation
of the expectation value (average) of the energy E(v2) and the logarithm of the velocities
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E(log(v)). The constraint in the logarithm is discussed by Jaynes in [73], where he argues
that the differential entropy is only an appropriate continuum generalization of the discrete
Shannon entropy if the phase-space discretization that one chooses is uniform. We will
therefore construct the maximally entropic velocity distribution of the Milky Way dark
matter halo, under the basic restictions of the dark matter velocities to be smaller than the
escape velocity of the Milky Way, the conservation of the expected value of the energy, and
the velocity distribution to be positive-defined. If we further impose isotropy, the problem
is the following

Maximize : H(f) = −
∫
dvf(v)log

(
f(v)

m(v)

)
(29)

subject to:∫
v
f(v)dv = 1∫

v
f(v)v2dv = K

0 ≤ v ≤ vmax

where the discretization of the phase-space is encoded in m(v). We want to describe the
statistics of a system in velocity space ~v, using a probability distribution on the modulus of
the velocity vector |~v|, assuming isotropy. In D-dimensions, the density of states with velocity
between v and dv is ∝ vD−1, so that in 3D we need to choose m(v) = constant · v2[km

s
]−1.

From the Karush-Kuhn-Tucker conditions, see Appendix A.2, the lagrangian is:

L(v, ~λ, ~µ) = −
∫
f(v)log(f(v))dv − λ0(

∫
f(v)dv − 1)− λ1(

∫
f(v)v2dv −K)

+2

∫
f(v)log(v)dv − µ1(v − vmax) + µ2v,

(30)

and leads to

f(v) = e−λ0v2e−λ1v
2

, (31)

which is a maxwellian profile as in the SHM. The difference in the parameters depend on
the lagrange multipliers λ0 and λ1, which are determined by

e−λ0

[√
πerf(

√
λ1vmax)

4λ
3/2
1

− vmaxe
−λ1v2max

2λ1

]
= 1 (32)

e−λ0

[
3
√
πerf(

√
λ1vmax)

8λ
5/2
1

− vmaxe
−λ1v2max(2λ1v

2
max + 3)

4λ2
1

]
= K (33)

and thus can only be obtained if K is known. If the energy of the dark matter particles
of the system is just given by their non-relativistic kinetic energy E = mχv

2/2, we only
need to determine the velocity dispersion of the dark matter particles of the Milky Way
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halo to solve the system of equations 32 and 33. We could analogously to the proceeding
described in 2.2.1, obtain consistently with our distribution the velocity dispersion of the
dark matter particles by first solving the collisionless Boltzmann equation and then integrate
the density profile over the volume of the galaxy. This process is however technically difficult
and we leave it for future research. We take as a prior information of our system that the
velocity dispersion of the dark matter particles is given by the value from [67], where the
velocity dispersion is calculated by integrating the mass of the galaxy using a density profile
corresponding to an isothermal sphere, obatining σv ≈ 156 km/s.

Figure 12: Maximally entropic velocity distribution for a system of dark matter particles
with velocities v ≤ vesc, in the Earth frame, for the value of the velocity dispersion according
to [67].

This approach is interesting because it does not apply an unphysical truncation at the Milky
Way escape speed, but rather include this restriction in the velocity of the dark matter
particles a priori. Furthermore, it allows to derive the maximally uninformative distribution
of dark matter particles from a set of prior initial assumptions, therefore is particularly
appropiate for halo-independent analyses of dark matter searches sensitive to uncertainties
in the velocity distribution, like those that we will perform in section 5. The principle of
maximum entropy will be used in section 6 in a different way, we refer the reader there
for a bayesian interpretation of the method. Nevertheless, this technique is not complete,
since the derivation of the maximally entropic velocity distribution should be performed in 3
dimensions, without implying automatically isotropy, as the directionality of the dark matter
particles is crucial in current direct detection dark matter searches that aim to detect an
annual modulation signal, [74].
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Figure 13: Dark matter velocity distribution according to the different studies discussed in
this thesis, in the Earth frame. In dotted black, the SHM, 23. In green, the SDSS-Gaia
DR2 study, [70]. In red, the SHM++ study, [58]. In orange and blue, dark matter-only and
hydrodynamical simulations results, respectively, [69][72]. In pink, our result obtained by
using the principle of maximum entropy and the velocity dispersion of the standard halo
model, σv = 156 km/s

To conclude, we have presented several alternative methods to obtain the dark matter ve-
locity distribution in the solar neighbourhood, all of them presenting incompatibilities, see
Figure 13. How does this uncertainty affect the predictions of dark matter observables at
experiments? This is what we will study in the following sections, starting by describing the
different dark matter searches taking place nowadays.
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3 Dark Matter searches

There are three main approaches to search for dark matter. Collider searches attempt to
produce new neutral particles, indirect searches look at astrophysical sources of standard
model particles that could be explained by the annihilation of dark matter particles, and
direct searches measure the recoil of dark matter particles in a detector placed on Earth,
usually operated underground. In this section we give a general overview of the state of the
art of dark matter searches, focusing in neutrino and direct detection searches.

3.1 Collider searches

The search for dark matter at colliders is the search for missing energy. The main attempts to
find dark matter at the LHC have been performed in the framework of effective field theories
(EFT), [75], and simplified models, [76]. EFT’s present some advantages w.r.t simplified
models, for example, they have a limited number degrees of freedom (interaction scale, dark
matter mass) and allow for a model independent comparison with direct detection searches,
while simplified models require at least four model parameters: the mediator mass, dark
matter mass and coupling strengths of the mediator to the dark sector and the standard
model (mmediator,mχ, gχ, gq), and don’t allow for a proper model independent comparison
with direct detection experiments. Nevertheless, EFT’s are not valid for current energy
scales at colliders

√
s = 13 TeV, since they require that the center of mass energy of the

collision is smaller than the mediator mass q2 � m2
mediator. In the framework of simplified

models, there are two differentiated dark matter searches : mono-X searches and mediator
searches. The first consists on looking for single jet, photon, higgs, Z, etc., events, [77], while
mediator searches look for resonances like Z ′ mediator in dijet or dilepton events, [78], see
Figure 14.

Figure 14: (a) Mono-X searches. Dark matter interaction with SM particles is mediated by
Z ′ and therefore there are two couplings parameters : the coupling of Z ′ to standard model
particles gq and the coupling to the dark sector gχ. (b) Mediator searches. The dark matter
mediating particle Z ′ is produced and decaying back to standard model particles. The only
model parameters here are the Z ′ mass and the coupling of Z ′ to standard model particles
gq

The results presented by LHC present a strong dependence on the choice of the couplings
gχ, gl, gq to dark matter, standard model leptons and quarks, respectively. Fixing these
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values allow for comparison with the dark matter relic density and direct detection limits on
the mass-cross section plane mχ−σ, see Figure 15. Collider bounds are more stringent than
direct detection limits at low dark matter masses mχ ≤ 6 GeV, in the spin-independent case,
and in the complete parameter space, in the spin-dependent case, see Figure 14. However,
plots are usually presented in the mass-mass plane of the mediator and dark matter particle.
The translation of LHC results to direct-indirect detection plots is difficult to interpret, since
LHC results only hold for the mediator under consideration and the specific choice of the
couplings taken, [79].

Figure 15: On the left, a comparison of the inferred limits with the constraints from direct
detection experiments on the spin independent WIMP–nucleon scattering cross-section in
the context of the Z’-like simplified model with leptophilic vector couplings. On the right,
the spin dependent results in the case of leptophilic axial-vector couplings. LHC limits are
shown at 95% CL and direct-detection limits at 90% CL, [80].

3.2 Indirect searches

If WIMPS are produced thermally, they can annihilate into standard model particles. This
allows to analyze if dark matter annihilation (into different channels) could explain some
astroparticle physics anomalies, such as the observed gamma ray excess from the center of
the galaxy, [81], the positron excess, [82], the antiprotons and antideuterons flux, [83], or an
eventual increase of the neutrino flux, [84][21].

Neutrino searches are of particular interest since they provide an alternative search method
comparable with direct detection experiments. Could an excess of the solar neutrino flux on
Earth-based experiments happen due to dark matter annihilation? This was first suggested
in [85][86][87] and in the following we will review the formalism for a latter halo-independent
comparison of such signatures with direct detection experiments.

25



3.2.1 Capture mechanism : Detecting dark matter with neutrino experiments

Dark matter particles can be gravitationally captured in the sun, scattering with the sun
nuclei, sinking to the core, where they can annihilate into standard model particles, see
Figure 16. This could enhance the solar neutrino flux detectable on earth, [86]. A WIMP

with a velocity v∞ at large distances from the sun has a velocity w(r) =
√
v2
∞ + v2

sun,esc(r)

at a distance r from the center of the sun, being vsun,esc(r) the escape velocity of the sun at
a radius r.

Figure 16: Schematic representation of the dark matter capture mechanism. The dark matter
particle velocity at radii r must be smaller than a certain maximum velocity which depends
on the recoiling element, see equation 36, in order to be captured. Once accumulated in the
core, dark matter particles can annihilate into standard model particles. Some annihilation
channels studied by experimental neutrino collaborations are shown, [84][21].

Dark matter particles get gravitationally captured when they transfer enough energy to the
nucleus to have velocities lower than vesc,sun(r). This sets a minimum value of the energy
that a dark matter particle χ needs to loose by scattering in order to be captured, which is
Emin
R = mχ

2
v2
∞. In the following, we describe the capture formalism of [55]. The capture rate

per unit time is defined as

Ω(w) = νN(r)w

∫ EmaxR

EminR

dER
dσ

dER
(w,ER), (34)

where νN(r) is the number density profile of the nucleus N , dσ
dER

(will be described in detail

in section 4.2), and the maximal recoil energy Emax
R = 2µ2

χ,Nw
2/mN . We use the number

density of the solar model AGSS09, [88] and take into account the 29 most abundant elements
in the sun for spin-independent scattering. The capture rate per unit volume is

dC

dV
=
ρχ

mχ

∫ vmax(r)

0

dv3f(~v)

v
wΩ(w), (35)
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where vmax(r) arises from the condition Emin
R ≤ Emax

R and is

vmax(r) = 2 · vsun,esc(r) ·
√
mχ ·mN

|mχ −mN |
. (36)

The total capture rate is obtained integrating equation 35 over the total solar volume

C =
∑
i

∫ R⊙
0

dr4π · r2νNi
ρloc
mχ

∫ vmax(r)

0

dv3f(~v)

v

(
v2 + vsun,esc(r)

2
)

∫ 2µ2χ,Ni(v
2+vsun,esc(r)2)/mNi

mχv2/2

dER
dσχ,i
dER

(w,ER).

(37)

Thermal WIMPs can self-annihilate in the core of the sun once their number density n is
large enough. The annihilation rate is proportional to n2 and reads

ΓA =
1

2
CAn

2, (38)

where CA is the annihilation constant for the sun. Scattering of dark matter particles with
nucleai inside the sun can also increase their velocity above the escape velocity of the sun.
This process is called thermal evaporation, [89], and must be included in the evolution of
the number density of dark matter particles, which can be written as

dn

dt
= C − CAn2 − CEn, (39)

where CE is the evaporation rate of dark matter particles in the sun. In [90] it is discussed
that evaporation of dark matter is only relevant for light dark matter masses mχ ≤ 4 GeV,
so this effect will be neglected in the mass range studied by neutrino experiments Super-
Kamiokande and Icecube, [21][84]. By specifying the initial condition n(t = 0) = 0, we can
solve equation 39 obtaining

n(t) =

√
C

CA
tanh

(
t

τ

)
, (40)

where τ = 1/
√
C · CA is the equilibration time. After sufficient time t � τ , the number of

dark matter particles does not vary anymore. Using the estimate of CA from [12],

CA = 1.2 · 10−52 ·
(

〈σv〉
2.2 · 10−26cm3s−1

)
·
( mχ

TeV

) 3
2 1

s
. (41)

If we take a typical WIMP thermally averaged cross section 〈σv〉 ≥ 10−28 cm3

s
, with mass

mχ = 100 GeV and the age of the sun to be t⊙ = 4.5 · 109, we obtain(
t⊙
τ

)
= tanh(t⊙ ·√C · CA) ≈ 1 (42)

when using capture rates currently probed by IceCube or Super-Kamiokande. We can assume

n(t) =
√

C
CA

which leads to the following annihilation rate

ΓA =
C

2
(43)
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so that, for every two captured dark matter particles there is one annihilation event, i.e all
captured dark matter particles end up annihilating in the core of the sun. In this framework,
the number of high energetic solar neutrinos coming from the sun is completely determined by
the capture rate of dark matter particles. This statement only holds for certain dark matter-
nucleus scattering cross section and velocity distributions. Furthermore, we would like to
comment that this approximation is sensitive to the WIMP mass and thermally averaged
cross section and could no longer be valid in certain regions of the parameter space. From
equation 36, we notice that neutrino telescopes are sensitive to velocities smaller than vmax.
In section 4 we will see that direct detection experiments probe velocities larger than a
certain velocity threshold vmin. This aspect of the searches make them complementary, and
section 5.5 of this thesis is dedicated to combine their results in a halo-independent way,
studying the impact of the velocity distribution.

3.3 Direct searches

A large region of the WIMP parameter space is tested by measuring direct interactions
of dark matter particles with a detector placed on Earth. This approach was first pro-
posed in the 80’s by Goodman and Witten, where they suggested the possibility of using
neutrino experiments to detect particles with coherent weak interactions as well as spin-
dependent interactions, [91]. Since then, several experimental efforts have tried to detect
dark matter-induced scattering in a detector, based in different target materials and sig-
natures, [92]. But, how large is the WIMP realisable parameter space?. We are aware of
astrophysical/cosmological and geophysical constraints that, in principle, would restrict the
mDM -σDM region to be studied by direct detection experiments:

• The catalogue of astrophysical/cosmological constraints is varied and relies on
different types of studies. Gravitational lensing on the galaxy cluster Abell 2218 sets
an upper bound on the direct WIMP-nucleon cross section of σDM < 7 × 1013pb
×mχ/(GeV/c2), [93]. Some works set lower bounds on the dark matter particle mass
from the number of Milky Way satellites, since the number of satellites predicted
decreases with decreasing mass of the dark matter particle. In [94], a lower bound is
derived for different dark matter candidates, being the result mDM ≥ 2.3 keV for a
thermal DM particle. This limit is comparable to the ones obtained from the analysis
of the DM phase space distribution in dwarf spheroidal galaxies (dSphs). In [95],
a conservative lower limit of mχ ≥ 0.41 keV is derived, valid for a fermionic DM
particle. Strong interactions of dark matter with baryons also allow to set stringent
constraints. These are related to the change in the predicted elements abundances
from big bang nucleosynthesis (BBN) and the gamma ray flux produced by the decay
of neutral pions presumably originated in collisions between dark matter particles and
cosmic rays. These set a limit of σDM < 9×109 pb ×mχ/(GeV/c2), [93]. Cosmological
constraints arise from the CMB, [96] and the Lyman-α forest, [97]. Another popular
cosmologically-motivated bound for fermionic WIMPs is the Lee-Weinberg bound, [98].
The mass of WIMP’s should not be lower than mχ ≥ 2 GeV, otherwise WIMP’s would
freeze out too early and their relic density would overclose the universe. A later paper
of Kolb and Olive would update such calculation setting new limits of mχ ≥ 1.3–4.2
GeV for Dirac dark matter, and mχ ≥ 4.9–13 GeV for Majorana dark matter, [99].
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These bound for light and sub-GeV dark matter are however circumvented if dark
matter is made of scalar or pseudoscalar particles, if dark matter interacts via a light
mediator, [100], or when considering alternative non-thermal scenarios, [101].

• Geophysical constraints are also stringent and come from different studies. We discussed
in previous section 3.2.1 the WIMP capture mechanism by the sun, but if the WIMP-nucleon
scattering cross section is high enough, capture by the Earth may also happen, and the
annihilation of WIMPS in the core would lead to a heat flow from the center of the Earth,
which is restricted by geophysical measurements, [93]. An analogous analysis for capture in
the Moon leads to an exclusion of spin independent cross section of σχ ≥ 10−37

Figure 17: Dark matter mass-cross section bounds. The bounds that are valid only for
specific dark matter particle models are shown in gradient blue colors, [99][98][94][95]. The
rest of the bounds apply to any dark matter particle, [93][10][97][102]. The white region
would represent the model-independent analyzable region of the parameter space available
for direct detection experiments. Notice that, of course, the graded blue bounded region need
to be explored, since such bounds only apply to specific dark matter models and standard
dark matter cosmological freeze out. The neutrino floor is not shown as it depends on the
target detector under consideration and it represents a technical challenge but not a real
physical bound.

These constraints leave a large room for direct detection experiments to explore low WIMP-
baryon scattering cross sections down to the coherent neutrino scattering floor, where the
coherent scattering of neutrinos in the target nucleus as a whole would entail a major back-
ground reduction technical challenge for direct detection experiments, [103]. Direct detec-
tion experiments are based in different detector types. Among these are ionization detectors,
based for example in Germanium crystals, like the CoGeNT experiment, [104], light scin-
tillators, based for example in NaI crystals, like DAMA/LIBRA, [105], cryogenic ionization
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detectors, based for example in Germanium, like CDMS, [106], liquid noble experiments,
usually based in liquid Xenon, like XENON1T and PandaX, [107][108], or bubble chambers,
filled with C3F8 in the case of PICO, [109]. Since the detectors, signatures probed, and data
taking/analysis arquitectures are wide and varied among experiments, the sensitivity reach
in the dark matter mass-cross section is different for each experiment, see Figure 18.

Figure 18: On the left, the landscape of dark matter direct detection constraints in the pa-
rameter space of dark matter mass and spin independent cross section with protons/neutrons
(taken from [110]). The green region is currently ruled out. Not all current operating ex-
periments are shown due to their large number (∼ 30). Masses below 1 GeV are not shown,
see extensive light dark matter results in Figure 19. The positive analysis of DAMA are
shown in coloured shaded regions, [105]. The coherent neutrino scaterring floor is shown
in coloured orange, though it is importance to notice that this depends on the target ma-
terial under consideration, see for example CRESST calculation, [111]. On the right, the
constraints for spin dependent interactions with protons (up) and neutrons (down). The
results from IceCube and Super-Kamiokande on dark matter capture in the sun are shown
in dotted lines.

3.3.1 The CRESST Experiment

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST), is lo-
cated in the Laboratori Nazionali del Gran Sasso. CRESST detectors consist on scintillating
CaWO4 crystals which operate as calorimeters at cryogenic temperatures. The scintillating
property of the crystals allow to have an additional signal channel for particle identification.
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In addition to the phonon/heat signal, the simultaneously emitted scintillation light is ab-
sorbed in a separate silicon-on-sapphire absorber and measured with Superconducting Phase
Transition thermometers (TES). The scintillation light depends on the interacting particle,
yielding event-by-event discrimination between the dominant background (β/γ-interactions)
and the searched nuclear recoils. On the contrary, the phonon channel gives a precise mea-
sure of the energy deposition in the crystal, independently from the interacting particle.
This, combined with the low energy threshold due to the presence of Oxygen in the crystal,
makes CRESST very suited for low-mass dark matter detection. The CRESST-II and the
CRESST-III programs, [17][18] provide one of the most stringent dark matter-nucleon scat-
tering cross section bounds for light and sub-GeV dark matter masses, mχ ≤ 10 GeV, for
both spin independent (SI) and spin dependent (SD) interactions, see Fig 19.
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Figure 19: On the right, CRESST III results on spin-independent dark matter nucleus
scattering depicted in the cross section versus dark matter particle mass. On the right, the
spin-dependent constraint from dark matter interactions with the 17O isotope. CRESST
is the world leading experiment for spin independent DM scattering for masses below 1.6
GeV, and for spin dependent interactions below 0.6 GeV. Results are reported with 90%
confidence level (CL).
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4 Direct detection formalism

In this section, we describe the direct detection formalism necessary to compute the expected
WIMP-nucleus recoil rate on a certain experiment. First, it is necessary to make a small
discussion about the Earth frame of reference in which the WIMP scatterings are going to
be measured, since the velocity distribution of dark matter particles will not be computed in
the galactic center frame but on the Earth rest frame. We follow the usual parametrization
of direct detection reviews, [112][113]. The velocity of the observer ~vobs with respect to
the galactic rest frame can be decomposed into the velocity of the Sun with respect to the
galactic rest frame as well as the velocity of the Earth with respect to the Sun

~vobs = ~v� + ~v⊕ = ~vLSR + ~v�,pec + ~v⊕, (44)

where ~vLSR = (0, vc, 0) is the motion of the local standard of rest (LSR) and vc ≈ 220 km/s is
the local circular speed. Furthermore, ~v�,pec = (11.1, 12.24, 7.25) km/s is the Sun’s peculiar
motion. We notice that ~vobs actually present a phase dependence on the time of the year
at which the recoil is measured, which is relevant for annual modulation searches, [114].
Nevertheless, we omit this precise description since this work does not consider modulation
dark matter searches. The dark matter-induced scattering off the nucleus Ni in the detector
is given by

dRi

dER
=

ξi ρloc
mDMmNi

∫
v≥vmin,i(ER)

d3v
f(~v + ~vobs)

v

dσDM,i

dER
(v, ER), (45)

which has units of [counts/kg·day·keV]. The velocity of the dark matter particles in the
laboratory frame is given by ~v, and ~vobs is the velocity of the observer with respect to the
galactic frame in equation 44. The astrophysical inputs are ρloc, the local density of dark
matter particles discussed in section 2.1, and f(~v + ~vobs), the velocity distribution of dark
matter particles in the galactic rest frame discussed in section 2.2. mN,i is the target nucleai
i mass, and ξi is the mass fraction of the nucleai isotope under consideration. The total
scattering rate is then given by

R = M · T ·
∫ ∞

0

∑
i

εi(ER)
dRi

dER
dER, (46)

where M is the mass of the detector, T the exposure time and εi(ER) are the recoil efficiencies
of the nucleus Ni, determined experimentally.

We haven’t determined the lower bound in the velocity integration vmin,i(ER) and the dif-

ferential cross section of the dark matter-nucleon interaction
dσDM,i

dER
(v, ER) . These are given

by the kinematics of the scattering and the dark matter particle model under consideration,
respectively, and will be discussed in the following sections 4.1 and 4.2

4.1 Kinematics of DM-nucleus scattering

The scattering of cold dark matter particles (bounded to the Milky Way) with the target
nucleus happens in the non-relativistic regime, vχ ∼ 0.003c. For terrestial nuclei (this is
not the case in the core of the sun, for example), the dark matter particles velocities are
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significantly larger than thermal nuclei velocities |~vi,χ − ~vN | ≈ vχ, so we can safely assume
pi,N ≈ 0. Therefore we will derive here the non-relativistic equations in the laboratory frame.
Figure 20 illustrates the scattering of a dark matter particle of mass mχ with initial velocity
~vi,χ on a target nucleus of mass mN in both elastic and inelastic cases.

Figure 20: Coordinate representation of dark matter-nucleus scattering in the laboratory
frame, in both elastic (left) and inelastic (right) cases. The mass splitting δ can be positive
or negative depending on the reaction being endothermic of exothermic, [14].

From the conservation of energy and momentum

Ei,χ +Q = Ef,χ + Ef,N + Eexc = Etotal + Eexc, (Ei,N ≈ 0), (47)

pi,χ = pf,χcosθ + pf,Ncosψ, (48)

0 = pf,χsinθ − pf,Nsinψ, (49)

where E = p2/m, Q = mχ,i + mN,i −mχ,f −mN,f and Eexc is the excitation energy of the
particles after the reaction. Rearranging equations 48 and 49 we obtain the following relation
for momenta

p2
i,χ + p2

f,χ − 2pi,χpf,χcosθ = p2
f,N , (50)

and using equation 47 for the conservation of energy we get

p2
f,N = 2mN

(
Etotal −

p2
f,χ

2mf,χ

)
. (51)

Now, substituting in 50 and solving the quadratic equation for pf,χ one obtains the general
solution

pf,χ =

2pi,χcosθ ±
√

4p2
i,χcos2θ − 4 mN

µχf ,N
(p2
i,χ − 2mNEtotal

)
2 mN
µχf ,N

, (52)

where µχf ,N =
mN ·mf,χ
mN+mf,χ

is the usual reduced mass of the dark matter particle after scattering

mf,χ and the target nucleus mN . From equation 52 we can derive the remaining kinematic
variables. Direct detection experiment often measure the recoil energy ER, i.e the kinetic
energy transferred to the nucleus in the collision,

ER = Ef,N − Ei,N = Etotal − Ef,χ = Ei,χ − Ef,χ, (53)
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where the kinetic energy of the incoming dark matter particle is Ei,χ is known and the final

energy Ef,χ =
p2f,χ
mf,χ

can be obtained from equation 52. The difference between the elastic

and inelastic cases is only given by solving this equation for vf,χcosθ using mi,χ = mf,χ for
the elastic case and mf,χ = mi,χ + δ, δ 6= 0 for the inelastic one. The maximum energy that
can be transferred to a nucleus depends on the dark matter particle initial velocity vχ and
mass spliting δ, yielding

Emax
R =

µ2
χ,NmNv

2
χ ±

√
µ4
χ,Nm

2
Nv

2
χ − 2µ3

χ,Nδm
2
Nv

2
χ − µχ,NmNδ

m2
N

, (54)

which, for the elastic scattering case, δ = 0 reads,

Emax
R =

2µ2
χ,Nv

2
χ

mN

. (55)

This sets the minimum speed vmin(ER) for which a dark matter particle is capable to cause
a nuclear recoil of energy ER

vmin(ER) =
1√

2mNER

(
ER (mχ +mN)

mχ

+ δ

)
(56)

For the elastic case, it is reduced to

vmin(ER) =

√
ERmN

2µ2
χ,N

(57)

This quantity will be of crucial importance for direct detection experiments, since every
experiment register recoil events in a different energy range and this limits their capability
to access certain dark matter masses and velocities. The purpose of this section was to derive
vmin(ER), and conclude from equation 52 that the energy transfer is governed by the ratio
of masses between the dark matter particle and the target nuclei, and the distribution of the
scattering angle in the laboratory frame θ. We notice that in the literature the derivation
here exposed is usually performed in the center of mass frame and they refer to the scattering
angle θ in this frame, [113]. We can anticipate that the CRESST III experiment, due to is
low energy threshold Eth = 0.03 keV, is able to probe a significantly larger region of the
velocity spectrum for light and sub-GeV dark matter than other experiments. This also
allow CRESST to test larger mass splittings δ if dark matter interacts inelastically. The
inelastic scenario is discussed in section 7.

4.2 Effective field theories to describe DM-nucleus interactions

All evidence (except from the CMB and BBN) that we have of dark matter is based on its
gravitational influence on visible matter at astronomical scales. In order to probe its par-
ticle nature and possible non-gravitational interactions, it is necessary to describe a model
compatible with the Standard Model (SM). Ultraviolet complete extensions of the SM are
well motivated and contain a dark matter particle, such as Supersymmetry, [12]. We will
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study the viability of a concrete supersymmetric dark matter candidate, sneutrinos, in sec-
tion 5.4.2. Another popular phenomenological alternative is to use the so-called simplified
models, which introduce new degrees of freedom and symmetries to the SM lagrangian, not
always being gauge invariant but that are meant to have an ultraviolet completion. We will
study the viability of one of these extensions, the Z-mediated dark matter, in section 5.4.1.

Nevertheless, due to the large number of currently available simplified models on the com-
munity, a more general framework such as that of Effective Field Theories (EFT’s) seems
more appropiate to model the dark matter interactions with nucleai, since it can be used to
describe the low energy physics of many proposed extensions of the SM. This is the frame-
work in which most dark matter direct detection experiments attempt to make predictions
and set upper limits on. We can study all the possible interactions of the dark matter field
χ, e.g a massive Dirac fermion, in terms of Lorentz-invariant effective four-fermion operators
(at leading order)

Leff ⊃
∑
q

αq(χ̄Γχχ)(q̄Γqq), (58)

where the sum runs over all quarks q, [113][14] αq are the effective DM-quark couplings and
Γχ,q ∈ {1 γµ, γ5γµ, σµν , σµνγ5}, are the effective operators. The effective coupling αq(q

2,mφ)
is proportional to the particle mediator of the dark matter interaction with quarks as 1/m2

φ

for contact interactions (q � m2
φ) or to the center of mass frame energy of the scattering as

1/q2 for long-range interactions (q2 � m2
φ). Now, it is necessary to map the quark operator to

a nucleon operator and use this to obtain the matrix element for the DM-nucleus scattering.
After taking the non-relativistic limit, the scattering amplitude M enters the differential
cross section (averaging/summing initial and final-state spins), [14]:

dσ

dER
=

2mN

πv2
χ

〈
|M|2

〉
, (59)

where v is the relative velocity between the DM particles and the nucleus. The matrix
element M encodes all the particle physics information of the model. The total (elastic)
scattering cross section can be obtained by integrating over all recoil energies

σN =

∫ EmaxR

0

dER
dσN
dER

, Emax
R =

2µ2
χ,Nv

2
χ

mN

. (60)

According to the cross section dependence on the nuclear spin, interactions are divided in
two classes.

4.2.1 Spin-independent interactions

Spin-independent interactions can happen due to scalar-scalar and vector-vector couplings
of dark matter particles χ to SM quarks q, with operators Γχ,q = 1, Γχ,q = γµ, respectively

LSI =
∑
q

[
αSq χ̄χq̄q + αVq χ̄γ

µχq̄γµq
]
, (61)

where the first term represents the scalar interaction and the second term represents the
vector interaction. Dark matter particles in the form of WIMPs interact coherently with
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the target nucleus, since they have a de Broglie wavelength of the length scale of an atomic
nucleus

λ

2π
=

~
p

=
197 MeV · fm

100× 103 MeV× 10−3c
≈ 2fm, (62)

assuming a WIMP mass of 100 GeV and a velocity of the order of the escape velocity of the
Milky Way ∼ 500 km/s. Hence, it was proposed by J.Engel, [115], that the Helm form factor
can be used for spin-independent interactions, which is the Fourier transform of the nucleon
density and usually parameterized in terms of the momentum transfer q =

√
2mNER

F 2(q) =

(
3j1(qr0)

qr0

)2

exp(−q2s2), (63)

where j1 is the spherical Bessel function for n=1, s ≈ 1 is the thickness parameter of the
nucleus surface, and r0 =

√
r2
nuc − 5s2, with the nuclear radius rnuc = 1.2A1/3 fm. Its pa-

rameters are obtained from data of electron scattering experiments, so one assumption is
that the WIMP scatters are distributed as the charge in the nucleus, [93]. At small momen-
tum transfer, the DM particles do not probe the size of the nucleus and the cross section is
unaffected. However, as the momentum transfer increases, the interactions become sensitive
to the size of the nucleus and the cross section is weakened. This energy dependence is
parameterized in the form factors F 2(ER).

The matrix elementMscalar for the scattering between a dark matter particle χ and a nucleus
N via a scalar mediator in the non-relativistic limit reads, see [14] for a complete derivation,

M = [fpZ + fn(A− Z)]F 2(ER), (64)

and, according to equation 59, the differential cross section is

dσscalar
dER

=
2kmN

πv2
χ

[Zfp + (A− Z)fn]2F 2(ER), (65)

where k is a constant that arises from summing and averaging initial state respectively final
state spins (k = 1 if the WIMP is a Dirac particle and 4 if it is Majorana), [55]. A and
Z denote the mass number and the atomic number of the nucleus element. fp and fn

parameterize the coupling strength of dark matter to protons respectively neutrons. For
protons, they are given by

fp =
∑

q=u,d,s

mp · αSq
mq

fpTq +
2

27
fpTG

∑
q=c,b,t

mp · αSq
mq

, (66)

where fpTq represent the contributions of the light quarks (u, d, s) to the proton mass, and are
defined as mpf

p
Tq = 〈p|mqqq̄|p〉. fpTG refers to the WIMP interaction with the gluon scalar

density in the nucleon, being fpTG = 1−
∑

q=u,d,s f
p
Tq. Their values are determined experimen-

tally. Integrating out according to equation 60, the contribution from the scalar couplings
leads to the following expression for the WIMP-nucleus cross section at zero momentum
transfer

σ0,scalar =
kµ2

χ,N

π
[Zfp + (A− Z)fn]2 . (67)
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The vector coupling vanishes for Majorana particles but survives for Dirac fermions, giving
rise to the following WIMP-nucleus cross section at zero momentum transfer

σ0,vector =
µ2
χ,NB

2
N

64π
δ(k − 1), (68)

with
BN = αVu (A+ Z) + αVd (2A− Z), (69)

where αVu and αVd are the coupling constants for up-quarks respectively down-quarks as only
valence quarks contribute to this term, [113]. The total WIMP-nucleus cross section then
reads

σSI0 =
µ2
χ,N

π

[
(Zfp + (A− Z)fn)2k +

B2
N

64
δ(k − 1)

]
. (70)

Assuming equal coupling to protons and neutrons fp = fn as well as Majorana dark matter,
the expression reduces to

σSI0 =
µ2
χ,N

π
A2(fp)2. (71)

Direct detection experiments use different target nuclei so it is convenient to write the
differential scattering rates in terms of the WIMP-proton cross section. In the case of
fp = fn, the WIMP-proton and the WIMP-nucleus at zero momentum transfer cross sections
are related as, [14][60],

σSI0 =
µ2
χ,N

µ2
p,n

A2σSIp,n, (72)

where µχ,p,n and µχ,N are the dark matter-nucleon respectively the dark matter-nucleus
reduced mass and σSI0 is defined as,

dσSI
dER

=
mNσ

SI
0 F 2(ER)

2µ2
χ,Nv

2
, (73)

where σSI0 is the total, point-like WIMP-nucleon cross section at zero momentum transfer.
Taking this into account, the differential scattering cross section in terms of the interactions
with nucleons is given by

dσSI
dER

=
mN

2µ2
χ,p,nv

2
A2σSIp,nF

2(ER) (74)

where all the information on the WIMP model is encoded in σSIp,n. This formula is only valid
for elastic scattering, since the integration 60 would change in the inelastic case, being the
upper value of the integration of the recoil energy given by 54. We notice that the cross
section decreases with the inverse square of the speed of the dark matter particles, so we
would naively expect less high energetic recoils than low energetic ones at experiments. This
is interesting since the experimental backgrounds for high energetic events are usually better
suppressed than at low recoiling energies, for example at CRESST, [17][18]. We further
notice that the differential cross section scales with the squared number of nucleons A2

for fp = fn, so that heavy nucleai is favoured w.r.t light nucleai. For this reason heavy
target elements such as 184W at CRESST or 131Xe at XENON1T are used. The use of
complementary targets is essential to not miss a dark matter signal due to a destructive
interference fp/fn ≈ −(A− Z)/Z, as it is discussed in [55].
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4.2.2 Spin-dependent interactions

Spin-dependent interactions arise from the axial-vector coupling between dark matter and
quarks, with operator Γχ,q = γµγ5. For a Dirac or Majorana fermion dark matter, the
lagrangian of the spin-dependent interactions reads

LSD =
∑
q

αAq (χ̄γµγ5χ̄)(q̄γµγ5q), (75)

while for a bosonic (spin 1) WIMP, the interaction term reads,

L =
∑
q

αAq ε
µνρσ(Bρ

←→
∂µBν)(q̄γ

µγ5q), (76)

where Bρ are the spin-1 dark matter vector fields. According to [113], the nucleus N matrix
element for both cases is

〈N |q̄γµγ5q|N〉 = 2λNq 〈N |J
µ
N |N〉 , (77)

where JµN is the spin operator of the nucleus. The coefficients λNq relate the quark spin
matrix elements to the angular momentum of the nucleons and are parametrized as

λNq '
∆

(p)
q 〈Sp〉+ ∆

(n)
q 〈Sn〉

J
, (78)

where J is the total spin of the nucleus. ∆
(p,n)
q are obtained from the axial-vector current in a

nucleon and describe the amount of spin carried by a quark of flavor q inside the proton and
neutron. Their values were calculated in [116] . 〈Sp,n〉 are the expectation values of the spin
content in the proton group respectively the neutron group in the nucleus. Their values were
calculated in [117]. In order to achieve an expression for spin-dependent differential cross
section, we need to know the dark matter proton respectively neutron coupling constants.
These are determined by adding up the contributions from all quarks

ap,n =
∑

q=u,d,s

αAq√
2GF

∆p,n
q , (79)

where GF is the Fermi constant. The form factor squared can be expressed as

F 2(ER) =
SA(ER)

SA(0)
, (80)

where a strong isospin decomposition into isoscalar a0 = ap +an, and isovector, a1 = ap−an
is assumed in the parameterization, yielding

S(ER) = a2
0S00(ER) + a0a1S01(ER) + a2

1S11(ER), (81)

whose parameters are determined experimentally, [113]. The resulting differential cross sec-
tion for a fermionic (spin 1/2) WIMP is given by

dσSD
dER

=
4kmNG

2
F

πv2

(J + 1)

J
[ap 〈Sp〉+ an 〈Sn〉]

SA(ER)

SA(0)
(82)
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The main difference from the spin-independent dark matter-nucleus interactions is that the
spin-dependent differential scattering cross section does not increase with the number of
nucleons, but rather depend on the nucleus spin J . Indeed spin-dependent interactions
can be tested only on isotopes with J 6= 0. Furthermore, the differential cross section is
proportional to the expectation values of the spin content in the proton group respectively
the neutron group in the nucleus 〈Sp,n〉, which differ for different isotopes and do not favour
heavy ones, [117]. Thus, the ideal targets to test spin-dependent interactions are constituted
elements with J 6= 0, 〈Sp,n〉 = 1/2 and low masses. Some examples include Fluorine at
PICO, 17O at CRESST, [18], or recently 7Li, [118].
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5 Parametrization of dark matter astrophysical uncer-

tainties

We have discussed in section 2.2 that the Maxwell-Boltzmann velocity distribution used by
experiments presents deviations with respect to the results obtained from simulations and
tracers observations. Therefore, we need to account for this astrophysical uncertainty in
the results of dark matter searches, in particular direct detection experiments and neutrino
telescopes, sensitive to the velocity distribution of dark matter particles. In this section,
we review the methodology developed in [120][121][55] to optimize the velocity distribution
of dark matter particles, in order to perform combined halo-independent analyses of differ-
ent dark matter experiments. We furthermore propose an alternative new method to the
technique of [121] to measure deviations with respect to the Maxwell-Boltzmann velocity
distribution, 5.1. Our method will be based in information divergences, [122], and there-
fore we will discuss them in advance, 5.2. Later, we will apply the general methodology
to the CRESST III experiment, [18], and discuss the obtained results, 5.3. In addition, we
apply the methodology to the XENON1T experiment, [107], and contrast the results with
the cross sections predicted by two specific dark matter models, analyzing the importance
of the astrophysical uncertainties when interpreting the viability of such models, 5.4. Fi-
nally, we compute halo-independent upper limits from the combination of CRESST II and
Super-Kamiokande, 5.5.

5.1 Methodology: Optimization of the dark matter velocity dis-
tribution

We follow the notation of [55]. Our purpose is to optimize the outcome N (A) of a experiment
A under the constrains from further p+q experiments. We can have α = 1, ..., p upper limits
N (Bα) ≤ N

(Bα)
max and α = p + 1, ..., p + q lower limits NBα ≥ N

(Bα)
min from experiments Bα. In

this work, the outcomes N (A), N (Bα) will be the recoil rate of a direct detection experiment,
in equation 46, and the capture rate of dark matter particles in the Sun, given in equation
37. Since we want to optimize the velocity distribution of dark matter particles, we need to
rewrite it in terms of δ-functions

f(~v) =

∫
v0≤vesc

dv3
0f(~v0)δ(~v − ~v0), (83)

where v0 = |~v0|. In the discrete limit, this decomposition as a sum of dirac functions
is justified by the Padé approximation, [123], and we interpret it as a superposition of
streams with a fixed velocity ~v0 and weight f(~v0). In the limit of infinite streams we would
recover a continuous probability distribution, [124]. For each stream ~v0, we would obtain
an experimental outcome N ~v0 when considering the dark matter velocity distribution as a
single stream f(~v) = δ(~v − ~v0), so that the total experimental outcome would be given by

N =

∫
v0≤vesc

dv3
0f(~v0)N ~v0 . (84)

For a single stream ~v0, the experimental outcomes that we will consider in this thesis, that is,
the recoil rate in a direct detection experiment and the capture rate of dark matter particles
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in the sun, given by equations 46 and 37, are reduced to

R ~v0 =
∑
i

M T ξiρloc
mNi ,mDM

∫ 2µ2Ni
v20

mNi

0

dER εi(ER)v0
dσDM,i

dER
(mDM , ER), (85)

C ~v0 =
∑
i

∫ R�

0

dr 4πr2ηi(r)
ρloc
mχ

(v2
0 + vsun,esc(r)

2)

v0

θ(vmax(r)− v0)

∫ 2µ2Ni(v
2
0+vsun,esc(r)2)/mNi

mχv20/2

dER
dσχ,i
dER

(v0, ER),

(86)

where the kinematical constraint given by 57 in 85, that is, that the dark matter particle
velocities v0 need to be larger than vmin(ER) in order to produce a recoil, appears as a
heaviside function θ(v0 − vmin(ER)) that sets an upper limit in the recoil integration. We
notice that in the case of inelastic scattering this upper bound would be set by equation
54. Analogously, the velocity integral for the capture rate is bounded from above, from the
kinematical constraint of equation 36, leading to the heaviside factor θ(vmax(r)− v0). Now,
we can formulate the general problem of finding an upper limit on the outcome NA subject
to constraints from further experiments NBα as an optimization problem with the velocity
distribution f as the primal variable

Optimize: N (A)[f ] =

∫
d3vf(~v0)NA

~v0
(87)

subject to:∫
d3v0f(~v0) = 1

∫
d3v0f(~v0)N

(Bα)
~v0
≤ N (Bα)

max , α = 1, .., p.∫
d3v0f(~v0)N

(Bα)
~v0
≥ N

(Bα)
min , α = p+ 1, ..., p+ q.

f(~v0) ≥ 0

where the objective function N (A) is a functional of the velocity distribution. From the
KKT necessary conditions, see Appendix A.2, this problem cannot be solved analytically,
[55]. However, as we have already discussed, expression 83 can be discretized into n streams
with velocities ~vi for i = 1, .., n, which yields

f(~v) =
n∑
i=1

c~viδ(~v − ~vi), (88)

where the continuous probability densities f(v0) the are now given discretely by c~vi . More
technical discussions regarding this aspect are covered in [55][125][126]. With this, the
optimization problem 87 is recasted as
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Optimize: N (A)(c~v1 , ..., c~vn) =
n∑
i=1

c~viN
A
~v0

(89)

subject to:

n∑
i=1

c~vi = 1

n∑
i=1

c~viN
(Bα)
~vi
≤ N (Bα)

max , α = 1, .., p.

n∑
i=1

c~viN
(Bα)
~vi
≥ N

(Bα)
min , α = p+ 1, ..., p+ q.

c~vi ≥ 0

where the objective function N (A)(c~v1 , ..., c~vn) is now a function of the weights c~vi . The
problem is convex, since the functions 85 and 86 are convex if defined in a convex ve-
locity set. We take the velocity space to be the ball in the usual euclidean metric M ,
Bvesc(0) = {~v0 ∈M,d(~v0, 0) < vesc} of radius the escape velocity of the Milky Way vesc cen-
tered at 0, which is convex, [127]. A discrete subset C ⊂ Bvesc(0) made of n uniformly
discretized velocities ~vi would also be convex. Therefore the problem 89 can be solved using
convex optimization techniques, see Appendix A.1. We notice that the objective function
and the problem inequalities are linear functions of the primal variables c~vi . Hence, the
problem can be solved using linear programming, see Appendix A.3, once transformed into
its standard form. A nice attempt to find an analytical solution to this problems using
lagrange multipliers can be found in [55]. We will use in the following the publicly available
code CVXPY, [119], to solve problems with this structure numerically.

The optimization problem 89 presents many applications discussed in [120]. In this thesis,
we will use it to derive upper limits on the dark matter cross section from null results of
CRESST II and Super-Kamiokande, independently of the dark matter halo velocity distri-
bution. This approach is performed in section 5.5. There, for a fixed cross section and
dark matter mass, we calculate the minimal capture rate in the sun from varying the dark
matter velocity distribution, subject to the upper limit from CRESST II, that satisfies the
constraint on dark matter annihilation rates in the Sun from Super-Kamiokande.

Nevertheless, in the case of combining direct detection experiments only, we notice that the
optimized approach only works for the maximization case, since in the case of minimization,
(which is indeed the most relevant for us, since we want to be conservative due to our
ignorance of the dark matter velocity distribution in the Milky Way), the halo-independent
upper limits can’t be calculated, because all dark matter weights c~vi above the velocity
threshold of the experiment vmin(Ethr) are set to zero by the algorithm, and therefore the
experiment is not sensitive to a dark matter signal at all. In [121], this problem is adressed
by including an additional constraint in the optimization problem 89, that sets a maximal
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deviation that the optimized velocity distribution f(~v) can have with respect to the Maxwell-
Boltzmann fMB(~v), equation 23. This is achieved in [121] by parameterizing the deviations
using point-to-point relative differences in velocity space, i.e∣∣∣∣f(~v)− fMB(~v)

fMB(~v)

∣∣∣∣ ,≤ ∆ (90)

where the phenomenological parameter ∆ allows to quantify the deviation of the velocity
distribution from the SHM form. This constraint can be included in the optimization problem
89, so that, for a given ∆, the velocity distribution that maximizes/minimizes the signal
rate in a dark matter experiment can be calculated. This allows to calculate the most
conservative/agressive limits on the σ −mχ parameter space of a certain experiment A, for
the subset of admissible velocity distributions fulfilling the constraint 90. The problem now
reads

Optimize: N (A)(c~v1 , ..., c~vn) =
n∑
i=1

c~viN
(A)
~v0

(91)

subject to:

n∑
i=1

c~vi = 1

c~vi ≤ (∆ + 1)fMB(~vi)

c~vi ≥ max {0, (1−∆)} fMB(~vi)

c~vi ≥ 0

where the constraints from further experiments upper limits present in problem 89 could
also be included. Nevertheless, they do not play an important role when combining direct
detection experiments in the minimization case since velocity distributions more conserva-
tive than the Maxwell-Boltzmann will always respect the current experimental limits, and
therefore the constraints on the deviation w.r.t the Maxwell-Boltzmann are the ones which
set the optimized velocity distributions.

This method is very powerful since it allows to interpolate between the most aggressive and
most conservative upper limits of a dark matter experiment when varying the dark matter
velocity distribution, having the Maxwell-Boltzmann as the reference distribution. However,
it present some caveats. It consists in a point-to-point comparison, so that every point in
velocity space is restricted in exactly the same amount to deviate w.r.t the Maxwell Boltz-
mann, being therefore the shape of the optimized velocity distributions very similar to the
Maxwell-Boltzmann. Dark matter substructure such as streams, debris flows or subhalos
peaking at certain regions of the velocity distribution would never satisfy the constraint of
equation 90 and therefore those velocity distributions would be discarded by our algorithm.
Furthermore, the optimized velocity distributions obtained using relative differences to pa-
rameterize the deviations from the SHM strongly penalise the high velocity tail of the distri-
bution, presenting a sharp cut off at the peak velocity, which is compensated reweighting the
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low velocity tail. This is clearly visible in Figure 23 and will be thoroughfully discussed in
the following section 5.2. We need to account for deviations of the Maxwell-Boltzmann in a
proper way, such that the feasible set of distribution functions respecting a certain deviation
is as most generic as possible, so that our optimized limits are truly independent from the
dark matter halo. In the following section, we propose an alternative method to parametrize
deviations with respect to the Maxwell-Boltzmann that will allow for a more statistically
solid halo-independent analysis of direct dark matter searches.

5.2 Parametrizing deviations from the SHM: Information theory
divergences

We want to find an appropriate distance measure to parameterize the deviation of the true
velocity distribution from the SHM. The importance of choosing an appropriate distance
to measure how far from the truth is a certain set of models lies in the fact that each dis-
tance measure deals differently with the structure of the models of interest and provides a
different information about the phenomena under study. This will be translated in our case
to understand which features are accounted between velocity distributions associated to a
certain distance measure. In our case, as we will work with a truncated Maxwell-Boltzmann
velocity distribution as the reference model, the most relevant features are deviations in the
tails of the distributions and shifted values of the most probable speed. Before presenting our
methodology in a computable anologous form to problem 115, it is necessary to introduce
some concepts that will be relevant to understand our approach.

In measure theory, a measurable space or Borel space is given by the tuple (X , A), where
X is a set and A is a σ-algebra on X . A probability space is given by the triplet (X , A, P )
consisting on a Borel space where X is the sample space of all possible outcomes, A is the col-
lection of all events under consideration, and a probability measure P : F → [0, 1] assigning
probabilities to events. In this probability space is where the distance measures discussed in
this manuscript are defined. In information theory, divergence refers to a weaker definition of
”distance” between two probability distributions (or more generally, probability measures)
on a given set (Borel space). In particular, the divergence need not to be symmetrical, i.e
generally D(P,Q) 6= D(Q,P ). Of particular importance are the f -divergences [128], a class
of divergences defined as

Df (P,Q) =

∫
X
f

(
dP

dQ

)
dQ, (92)

where P and Q are two probability measures defined on (X , A), such that P is absolutely
continuous with respect to Q, so that the Radon-Nikodym derivative is given by dP/dQ,
and f is a convex function such that f(1) = 0. If µ is any measure on the set (a reference
distribution) X such that the probability densities p = dP

dµ
and q = dQ

dµ
exist, the f -divergence

can be expressed as

Df (P,Q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dµ(x). (93)

For a continuous random variable, taking the usual Lebesgue measure dx, it can be written
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Df (P,Q) =

∫
X
f

(
p(x)

q(x)

)
q(x)dx. (94)

In this thesis, we will work with three different f -divergences to parameterize the deviations
with respect to the Maxwell-Boltzmann velocity distribution. These will be related analyti-
cally between each other a priori, and later we will compare their performance in our specific
physics problem and interpret the different results obtained. The information divergences
that we will use are the total variation distance, the χ2-divergence and the KL-divergence.

The total variation distance between two probability measures P and Q defined on a Borel
space (X , A) is obtained by taking f = 1

2
|t− 1|, and reads

δ(P,Q) = supx∈X |p(x)− q(x)| . (95)

Informationally, this is the largest possible difference between the probabilities that the two
probability distributions can assign to the same event.

The Pearson χ2 divergence is obtained using f(t) = t2 − 1 and is then defined as

Dχ2(P,Q) =

∫
x∈X

dx
(p(x)− q(x))2

p(x)
, (96)

and the reverse result D(Q,P ) is obtained by taking f(t) = 1
t
− 1 and is named the Neyman

χ2 divergence.

The KL divergence is obtained by taking f(t) = tlogt and is then defined as

DKL(P,Q) =

∫
x∈X

dx p(x) log

(
p(x)

q(x)

)
. (97)

We are interested in defining distance measures between velocity distributions, i.e probabil-
ity distributions of a continuous random variable, although we will work in the end with
discrete probability distributions, due to the discretization of the optimized velocity distri-
butions expressed in previous section 5.1, equation 83. If P and Q are discrete probability
distributions of a random variable x, the total variation distance reads,

δ(P,Q) = supx∈X |P (x)−Q(x)| (98)

The Pearson χ2-divergence reads,

Dχ2(P,Q) =
∑
x∈X

(P (x)−Q(x))2

P (x)
(99)

and the KL-divergence,

DKL(P,Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(100)
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We will focus our study in the KL-divergence. The reason is that the KL-divergence is, by
its definition, a very well motivated distance measure to compute deviations with respect to
the Maxwell-Boltzmann distribution. In order to justify this statement properly, we need to
look in detail at the KL-divergence properties, [129]:

• It is not a metric, DKL(P,Q) 6= DKL(Q,P ).

• It is non-negative, DKL(P,Q) ≥ 0.

• It is convex in the pair of discrete probability distributions P and Q, i.e given two
pairs of probability distributions (P1, Q1), (P2, Q2),

DKL(λP1 + (1− λ)P2, λQ1 + (1− λ)Q2) ≤ λDKL(P1, Q1) + (1− λ)DKL(P2, Q2)

for 0 ≤ λ ≤ 1

• For discrete probability distributions, the KL divergence can be expressed as

DKL(P,Q) = −
∑
x∈X

P (x) log(Q(x)) +
∑
x∈X

P (x) log(P (x)) = H(P,Q)−H(P ) (101)

where H(P,Q) is the cross-entropy of P and Q and H(P ) is the entropy of P .

The KL-divergence is interpreted as the relative entropy of P with respect to Q. From a
Bayesian inference point of view, DKL(P,Q) is a measure of the information gained when
one revises one’s beliefs from the prior probability distribution Q to the posterior probability
distribution P. This is the interpretation that we will use in section 6.

Since the Maxwell Boltzmann velocity distribution, which is the reference distribution that
we want to compare with the true dark matter velocity distribution, can be obtained as
the distribution that maximizes the Shannon entropy of a system under the constraint of
conservation of energy, as we have discussed previously in section 2.2.4, the KL-divergence
is the most suitable distance to quantify such difference, representing the KL-divergence the
relative Shannon entropy between two distributions. Nevertheless, though the KL-divergence
is well motivated theoretically as a distance measure for our specific physics problem, the
usage of further divergences provides additional information about the system under study
that could escape the KL-divergence constraint. For this reason, to establish bounds on
the KL-divergence in terms of the total variation distance and the χ2-divergence helps to
understand the scaling between them and to constrain the true set of feasible dark matter
velocity distributions that wouldn’t give a dark matter signal in a certain experiment and
deviate a certain amount from the Maxwell Boltzmann.

Theorem 1 The KL-divergence DKL(P,Q) and the total variation distance δ(P,Q) diver-
gence are related via Pinsker’s inequality

2δ(P,Q)2 ≤ DKL(P,Q).

This theorem establish a lower bound on the KL-divergence in terms of the total variation
distace. The KL-divergence and the χ2-divergence are related via
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Theorem 2 The KL-divergence DKL(P,Q) and the χ2 divergence Dχ2(P,Q) satisfy the next
inequalities

DKL(P,Q) ≤ log(Dχ2(P,Q) + 1) ≤ Dχ2(P,Q)

In particular, DKL(P,Q) = Dχ2(P,Q)⇔ P = Q.

A complete proof of theorems 1 and 2 can be found in Appendix B.2. This result provides
an upper bound for the KL-divergence in terms of the χ2-divergence, when computed both
from the distribution P to Q (Pearson divergence). Unfortunately, in the specific optimiza-
tion problems that we will work with, only the χ2 from Q to P (Neyman divergence) can
be used while keeping the convexity of the problem. Since information divergences are not
symmetric, this bound is no longer viable. We have attempted to perform a mathematical

proof of this bound but we noticed that it is necessary to determine how are
∫
X dx

q(x)2

p(x)

and
∫
X dx

p(x)2

q(x)
related, which is not trivial for normalized distributions and thus depends

on p and q. Nevertheless, due to Pinsker’s inequality 1, we have to a lower bound for the
KL-divergence in terms of the total variation distance that provides us with a very useful
additional information.

After all this technical discussion about information divergences, we go back to our physics
problem. We design the following optimization problem based in information divergences

Optimize: N (A)[f ] =

∫
d3vf(~v0)N

(A)
~v0

(102)

subject to:∫
d3v0f(~v0) = 1

Df1(f, fMB) ≤ K1

Df2(fMB, f) ≤ K2

f(~v0) ≥ 0

where the constraint 90 in the problem 115 has been substituted by the constraint of the
f-divergence from the true distribution f(~v) to the Maxwell-Boltzmann distribution fMB(~v)
to be smaller than a certain value K1, or, alternatively, the f-divergence from the Maxwell-
Boltzmann distribution to the true distribution to be smaller than a certain value K2. This
problem can be formulated on general grounds, as we have done, but one needs to write
it in its discretized form for each f-divergence under consideration and check the convexity
of the problem and its solvability. The three information divergences that we have selected
(KL-divergence, total variation distance and Neyman divergence χ2) satisfy the convexity
requirements of problem 102 and can be recasted as Second Order Cone problems (SOCP’s),
see Appendix A.4 solvable by CVXPY, concretely with its internal solver ECOS, [130]. In
the case of the total variation distance, equation 98, the constraint would be simply linear
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on the weights c~vi , so convexity is guaranteed. In the case of the Neyman divergence χ2,
equation 99, the constraint is quadratic on the weights and can be solved using quadratic
programming, [131], a class of problems that can be transformed into Second Order Cone
Problems (SOCP’s) as described in [55]. The KL-divergence can also be converted into a
convex constraint by transforming it into a form in which belongs to the exponential cone,
see Appendix A.5. Then it can be solved using exponential cone programming, [132]. Our
constraint would be given by K2 ≥ DKL(fMB, f) and is equivalent to

K2 ≥ D(fMB, f)⇐⇒ −K2 ≤ fMB log(f/fMB)⇐⇒ (f, fMB,−K2) ∈ Kexp, (103)

where the exponential cone Kexp is described in Appendix A.5. Our optimization problem
can be therefore written as

Optimize: N (A)(c~v1 , ..., c~vn) =
n∑
i=1

c~viN
(A)
~v0

(104)

subject to:

n∑
i=1

c~vi = 1

−K2 ≤ fMB(~vi) log(c~vi/fMB(~vi))

c~vi ≥ 0

and solved using CVXPY. We would like to point out that, in the consulted literature, the
KL-divergence is typically used in convex optimization problems as the objective function,
but not as a constraint of the optimization problem under consideration. We can safely
state that this methodology is maybe not new but definitely not widespread, not only in this
physics context but in generic convex optimization studies.
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5.3 Analyzing the impact of astrophysical uncertainties in CRESST
III

In the previous section, we have presented our methodology to account for astrophysical
uncertainties at direct detection experiments and neutrino searches. In this section, we
will use it to derive upper limits on the dark matter mass-cross section of the CRESST III
experiment, [18], accounting for deviations with respect to the Maxwell-Boltzmann velocity
distribution. Our results go from the most agressive limit to the most conservative, although
in some cases we will stop the computation once the deviations lead to velocity distributions
kinematically unseen by the experiment. We will use the different distance measures that
we have discussed in section 5.2 to parameterize the deviations, in order to analyze the ob-
tained results properly and cross-check them. We will perform our computation for both
spin-independent, see Figure 21, and spin-dependent cases, see Figure 22. We will use Pois-
sonian statisics, even though the CRESST collaboration usually present their limits using
the Yellin methods, [133]. Hence, our limits will be generally more conservative than the
official CRESST ones. Nevertheless, at sufficiently low masses, mχ ≤ 2 GeV, which is the
range in which CRESST is a competitive experiment, see Figure 19, our spin-independent
limit (when using the SHM), matches the CRESST official one or even performs better at
sub-GeV masses. For the spin-independent limits we have implemented the CRESST III
experiment into the DDCalc-2.2.0 software, [134][135], while for the spin-dependent case we
have used a self-implemented code from scratch, using the energy recoil data and efficiencies
provided by the CRESST collaboration in [136]. In Appendix C, we discuss the different
statistics and compare explicitely the performance between different statistical techniques,
including a dedicated discussion about the DDCalc-2.2.0 software.

In the following, we discuss the results presented in Figure 21 and 22. We will only discuss
the spin independent results, since the conclusions apply analogously for the spin dependent
case. In the upper left plot of Figure 21, CRESST III poissonian upper limits are computed
using relative differences as a distance measure to compute deviations from the SHM in
the way described at [121], for both the minimization and maximization cases. Our results
present a similar behaviour than [121], although their work was performed for XENON1T,
PICO, and IceCube experiments. In the upper right panel, the parameterization chosen is
the total variation distance. In the lower left we use the Neyman χ2 divergence, and on the
lower right we work with the KL-divergence.
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Figure 21: CRESST III spin-independent upper limits on the dark matter mass-cross section
parameter space for different deviations w.r.t the Maxwell-Boltzmann (MB) distribution, at
90% CL. The colour bands represent the feasible set of velocity distributions that satisfy
the CRESST III constraint and deviate a certain value with respect to the MB. We show in
dotted colours the specific results for three different halo models discussed in section 2.2. The
SHM limit is shown on solid black. The neutrino floor for CaWO4, [111] lies below our plot
boundaries. The results are valid for both DM-proton and DM-neutron elastic scattering,
setting fp = fn, see equation 74. The different plots show the results obtained for different
distance measures: Relative differences (upper left), total variation distance (upper right),
Neyman χ2-divergence (lower left) and KL-divergence (lower right). These plots have been
obtained using DDCalc-2.2.0, [135] and a discretization in velocity space of 2000 points.

50



Figure 22: CRESST III spin-dependent upper limits on the dark matter mass-cross section
parameter space for different deviations w.r.t the Maxwell-Boltzmann (MB) distribution, at
90% CL. The colour bands represent the feasible set of velocity distributions that satisfy
the CRESST III constraint and deviate a certain value with respect to the MB. We show
in dotted colours the specific results for three different halo models discussed in section 2.2.
The SHM limit is shown on solid black. The neutrino floor for CaWO4, [111]. The results
are valid for DM-neutron elastic scattering, and would differ for DM-proton case, see section
4.2.2. The different plots show the results obtained for different distance measures: Relative
differences (upper left), total variation distance (upper right), Neyman χ2-divergence (lower
left) and KL-divergence (lower right). These plots have been obtained using our own code
implementation, not yet publicly available, where we have used the 17O isotope of CaWO4

CRESST target in the abundance given by [18]. The discretization space was reduced to 100
points due to the larger computational cost of this implementation. We notice however that
the difference between 100 and 2000 points is merely aesthetical, and that physics output is
analogous.
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The maximization case is not specially interesting, since most distance measures perform in
a similar way approaching a single stream of all dark matter particles moving at the Milky
Way escape velocity. For the minimization case, the discrepancy between different meth-
ods is not only due to their different scaling, which is difficult to determine for the case of
relative differences, since it is a point-to-point comparison between both distributions and
the information divergences are given by a single number (point-to-point deviations are in-
tegrated), but also due to the way in which the distance measure applies. At low masses,
the relative differences behaviour can be explained kinematically. As ∆ increases, the high
velocity tail is suppressed and, at some certain deviation, the experiment is not sensitive to
such velocity distributions anymore. This is clearly visible in Figure 23, where the optimized
velocity distributions for the different distance measures used are shown. We notice that
the χ2-divergence shows a similar behaviour as the relative differences, being the deviation
at low masses very large mDM ∼ 0.6 GeV, and compensated at high masses, mDM ∼ 10
GeV, where the experiment is kinematically sensitive to the complete velocity spectrum and
deviations are washed out. They are washed out because the χ2-divergence optimized veloc-
ity distributions present a very particular shape of two pronounced peaks in both the low
and high velocity tails, supressing completely the Maxwell-Boltzmann most probable speed
peak, see Figure 23.

The total variation distance and the KL-divergence perform quite differently. The total
variation distance shows a larger impact of astrophysical uncertainties at low masses, but
the optimized velocity distributions do not lie completely below the velocity threshold of
the experiment, but retain a fraction of the kinematically accessible spectrum, so that the
bands do not deviate so sharply at low masses. This effect is more pronounced in the case
of the KL-divergence, which does not suppress the high velocity tail at low dark matter
masses, and this explains that the upper limits do not deviate so largely w.r.t to the col-
laboration upper limit. The KL-divergence parametrization tells us, against our kinematic
intuition, that there could be feasible velocity distributions that cause an uncertainty in the
results shown by the CRESST experiment that is larger at high masses than at low masses.
This can happen since the KL-divergence does not penalize the high velocity tail so strongly
but smoothly interpolates between the Maxwell-Boltzmann-like velocity distribution and the
most agressive/conservative velocity distributions. The CRESST experiment is sensitive to
the complete dark matter velocity spectrum at 10 GeV, so differences between the distribu-
tions at low masses are taken into account. For sufficiently low masses mDM ≤ 1 GeV, only
the high velocity tail is seen and there the KL does not penalize it so strongly, therefore being
the difference in the upper limits not so large. We notice that Pinsker’s inequality presented
in Theorem 1 holds for our analysis. Indeed, the total variation distance scaling is signif-
icantly lower than the KL-divergence, obtaining similar deviations for values of δ = 0.001
and DKL = 0.1 in the case of the total variation and the KL-divergence, respectively. We
have, as well, shown the upper limits for three specific halo models discussed in section 2.2 in
dotted colours. We notice that for each distance measure, even though the deviation is not
so strong, O(1) uncertainties, these fall in different bands, which motivates the need of using
different distance measures to make a proper halo-independent analysis. In Table 2, we have
computed the distance measure between different halo models and the Maxwell-Boltzmann
velocity distribution, in order to get a hint of which deviations (bands) of our analysis are
consistent with experimental results and are physically motivated. We notice that, in the case
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of tracers studies, see section 2.2.3, we obtain deviations in the lightest and next to lightest
blue bands, leading in some regions to uncertainties of O(10− 102). For the case of N-body
simulations, these uncertainties can reach values of O(103) in some regions of the parameter
space. These of course depend on the distance measure under consideration and remark that
for the KL-divergence we do not encounter physically motivated deviations larger than O(1).

Deviations from SHM for different velocity distributions

Distance measure SDSS-Gaia DR2 SHM++ Aquarius simulation Eagle simulation

Averaged ∆ 0.37 2.06 4.25 22.95

Max ∆ 5.3 102 164 1256

Total variation 0.0064 0.0033 0.0083 0.0086

KL divergence 0.037 0.019 0.14 0.22

χ2 (Neyman) 0.060 0.096 0.73 9.73

Table 2: Deviations from SHM for different velocity distributions and distance measures.
Since the relative difference is a point-to point comparison, we show the average value and
the maximum value of the array of deviations. This table is used as a reference to interpret
the results of Figure 21 and 22.

We notice in Table 2 that relative differences and the χ2-divergence yield larger deviations for
the SDSS-Gaia DR2 w.r.t the SHM than the SHM++, while for the total variation distance
and the KL-divergence happens the contrary. By looking at Figure 13, where we plotted
all velocity distributions discussed in this thesis, we notice that SDSS-Gaia DR2 presents
a good agreement with the SHM up to velocities of ∼ 200 km/s. On the other hand, the
SHM++ deviates w.r.t the SHM for all points in velocity space from velocities of ∼ 100 km/s.
The average relative differences between points on the SHM++ and the SHM is therefore
larger than for SDSS-Gaia DR2 when considering the complete velocity spectrum. A similar
behaviour occurs with the χ2-divergence, since it represents the integration of all squared
relative differences, see equations 90 and 99. On the contrary, the total variation distance
compute a larger deviation for SDSS-Gaia DR2, since this distance measure penalizes the
absolute maximum deviation between two points of the distributions, which is clearly larger
in SDSS-Gaia DR2 for points near peak speed ∼ 320 km/s. The same occurs for the the
KL-divergence, since this distance measure accounts for the relative entropy, although the
interpretation here is more subtle. In Figure 23 we appreciate that the optimized velocity
distributions obtained with the KL-divergence parametrization are smoother than the opti-
mized velocity distributions obtained with different distance measures, and penalize less the
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high-velocity tail than the rest. This helps to understand why this distance measure yields
larger deviations of the SDSS-Gaia DR2 than the SHM++, since SDSS-Gaia penalizes the
region close to the peak speed and the low velocity tail more than the SHM++.

Figure 23: Optimized velocity distributions for different distance measures and deviations
w.r.t the Maxwell Boltzmann velocity distribution, for a dark matter particle mass of mχ=1
GeV and a fixed cross section of σχ = 10−40cm2.

From all the above discussion, the KL-divergence is the distance measure that yield more
conservative results and therefore the most suited for a halo-independent analysis. We con-
clude that the KL divergence is a statistically more robust way to account for astrophysical
uncertainties than the relative differences used in [121], since it is less constrained by initial
assumptions on the shape of the distribution, and the feasible set of velocity distributions
that respect their constraint is more varied than for other distance measures. The presence
of the logarithm causes the optimized velocity distributions to present smoother shapes, that
could match physically motivated velocity distributions like those discussed in section 2.2.
However, we emphasize that this methodology does not reconstruct the dark matter velocity
distribution from CRESST data, but rather are mathematically optimized distributions that
allow for an interpolated model-independent analysis.
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5.4 A proof of concept : Ruling out specific DM models

In this section, we will apply our methodology for the specific purpose of testing in a halo-
independent manner concrete dark matter particle models. In particular we will study the vi-
ability of Z-mediated dark matter, [137][138][139], and Sneutrino dark matter, [140][141][142],
dark matter.

5.4.1 Testing Z-mediated DM in a halo-independent manner

The Z-boson and the Higgs are the only particles naturally present in the Standard Model
which are able to play the role of mediator between the visible and the dark sector. The
Z-portal scenario is present in a large number of extensions of the SM (sneutrinos, higgsinos,
heavy neutrinos, models involving kinetic mixing or dark photons, etc), [140][143][144][145].
The lagrangian modelling the Z-boson mediated dark matter interaction with the SM sector
is given by

L =
g

4cosθW

(
χ̄γµ

(
Vχ − Aχγ5

)
χZµ + f̄γµ

(
Vf − Afγ5

)
fZµ

)
, (105)

with g the electroweak coupling (g ≈ 0.65), Vf,χ and Af,χ the vectorial respectively axial
charges. f represents the SM fermions with:

Vf = 2(−2qfsin
2θW + T 3

f );Af = 2T 3
f , (106)

θW being the Weinberg angle and T 3
f the isospin number of the fermion f with electric charge

qf . At low energies, ΨγiΨ̄→ 0 and Ψγ0γ5Ψ̄→ 0, and thus only VχΨγ0Ψ̄Zµ vector-vector and
AχΨγiγ5Ψ̄Zµ axial-axial interactions are not suppressed by powers of velocity or momentum
transfer, [138]. Therefore, The spin-independent (SI) WIMP-nucleon elastic cross section
is exclusively dependent on Vχ and the spin-dependent (SD) WIMP-nucleon elastic cross
section on Aχ. They can be derived from the lagrangian 105. We take the formulae provided
by [137] but use our own notation consistent with the discussion performed in section 4.2.
For the SI case we have

σpSI =
g4|Vχ|µ2

χp

4cos2θWπm4
Z

[αVu (A+ Z) + αVd (2A− Z)]2

A3
, (107)

σnSI = σpSI
µ2
χn

µ2
χp

(2αVu + αVd )2

(αVu + 2αVd )2
, (108)

where mZ is the Z-boson mass, and αu,d are the vector-vector coupling constants for u and
d quarks, respectively, as it was already described in section 4.2.1. For the SD case the cross
section reads

σpSD =
3kg4µ2

χp

4cos2θWπm4
Z

[
αAu (∆p

uS
A
p + ∆p

dS
A
n ) + αAd ((∆p

d + ∆p
s)S

A
p + (∆p

u + ∆p
s)S

A
n

SAp + SAn

]2

, (109)

σnSD = σpSD
µ2
χn

µ2
χp

(αAu∆p
u + αAd (∆p

d + ∆p
s))

2

(αAu∆n
u + αAd (∆n

d + ∆n
s ))2

, (110)
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where k = 4 for Majorana dark matter and k = 1 for Dirac dark matter. We included this
factor here, while it was skipped in [137]. SAp,n are the proton and neutron contributions to

the nucleus spin. ∆
(p,n)
q describe the amount of spin carried by a quark of flavor q inside

the proton and neutron. Their results are given by [117] as it was discussed in section 4.2.2.
For a target detector with several isotopes it is necessary to sum the terms depending on
A,Z over all of them weighted by their relative abundance in the material. For the SD case
only the isotopes with odd number give non-zero contribution, as we discussed in section 4.2.2

Due to the dark matter relic abundance constraint, [11], large vectorial couplings are indeed
prohibited by direct detection limits, [137]. In all these extensions, the axial and vectorial
coupling are assumed to be of the same order of magnitude coupling Aχ ≈ Vχ. The reason
is that in a framework of SU(2)L×U(1) breaking the original SU(2)L condition Aχ = Vχ is
only mildly modified by the dynamic of the breaking.

Figure 24: Dependence of XENON 1T upper limits on DKL at 90% CL, for spin independent
(left) and spin dependent (right) scattering with protons and neutrons, respectively. The
coloured bands correspond to the minimization case of problem 104 only. In dotted pink a
constraint from the invisible Z-width from LEP is shown, [33]

The left plot of Figure 24 shows the Z-mediated WIMP-neutron SI cross section when con-
sidering equal axial and vectorial couplings (Aχ = Vχ) and the dependence of XENON 1T
limits on deviations from the SHM using the KL-divergence. A lower bound coming from
the Z-invisible width from LEP, [33], and the dark matter relic abundance is also shown,
[138]. It was already known from previous analyses that the XENON1T results restricted
the viability of such a dark matter candidate, [137], [138]. The novelty here is that, even
when considering astrophysical uncertainties in a strongly conservative manner, that is, for
DKL(fMB, f) = 10, the region of the parameter space between ∼ 15-1000 GeV remains ex-
cluded. The region near the Z-boson mass pole is still ruled out for conservative deviations
of DKL(fMB, f) = 3. It is only for sufficiently low masses mχ ≤ 15 GeV, that moderate
deviations from the Maxwell-Boltzmann, DKL(fMB, f) = 1, could rescue this model. This
region would still be incompatible with the collider bound from the invisible Z-width. Also,
it is important to notice, as it can be seen in table 5.3, that most halo models considered in
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the literature deviate from the Maxwell-Boltzmann in the range DKL(fMB, f) ∈ (0, 1), and
no region of the parameter space of SI interacting Z-mediated DM can be rescued for such
deviations.

The interpretation of the results for SD WIMP-neutron interaction (only-axial Z-mediated)
shown in Figure 24 is quite different. The lower bound coming from the invisible Z-width
mχ ≥ 32GeV is slightly more constraining, [138]. Results for both Dirac and Majorana
particles are shown. In this case, the region near the Z-mass pole can be rescued when
considering small deviations from the SHM, DKL ∈ (0, 3). This model also alleviates the
XENON1T bound for masses larger than mχ ≥ 100 GeV within DKL ∈ (0, 3), and escape
completely the SHM limit for mχ ≥ 300 GeV, for Majorana dark matter, and mχ ≥ 500
GeV, for Dirac dark matter. The SD WIMP-neutron cross section weakens at high masses,
since the relic abundance constraint needs to be saturated. Analogously to the SI case at
low masses, moderate deviations from the SHM allow to recover this region of the parameter
space, though still in contradiction with the Z-width constraint.

We would like to point out that deviations obtained with different distance measures, such
as the total variation distance or the χ2-divergence, yield more conservative results at high
masses, being the ”recovery” of the Z-mediated model even less spectacular, though near
the Z pole and at low masses the results would be much more agressive as we discussed for
the CRESST III results in section 5.3. Nevertheless, we also argued there the suitability
of the KL-divergence to account for astrophysical uncertainties and therefore the presented
results are the most reliable statistically. More technical discussions regarding the validity
of these results is still convenient and this section only pretends to be a proof of concept of
our developed halo-independent analysis, aiming to show its possibilities to discuss direct
detection bounds on specific dark matter models. In next section we will go one step beyond
and analyze a particular class of Z-mediated models: Sneutrino dark matter in the Minimal
Supersymmetric Standard Model (MSSM).

5.4.2 Testing Sneutrino DM in a halo-independent manner

The usual supersymmetric frameworks provide the neutralino as the lightest supersymmetric
particle (LSP), fully stable, (i.e it does not decay), and thus a natural dark matter candidate.
Neutralinos are mass eigenstates of a linear superposition of the SUSY partners of the neutral
Higgs and of the SU(2) and U(1) neutral gauge bosons [146]

χi = αi1B̃
0 + αi2W̃

0 + αi3H̃
0
u + αi4H̃

0
d . (111)

In particular, the superpartner of the U(1)Y hypercharge gauge boson, the bino B̃, has
received extensive discussion, [12], as it reproduces the observed dark matter cosmological
abundance for certain choice of superpartner masses.

There is another natural election for the LSP : Sneutrinos. Sneutrino as a cold dark matter
candidate has been studied in the past, [140][141][142]. Its simplest realisation in the Min-
imal Supersymmetric Standard Model (MSSM) is ruled out by the combination of direct
detection + collider constraints. In the following, we will review the sneutrino as the LSP
in the MSSM as it was already discussed in [141]. We will follow the notation and take the
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same model parameters as [141]. This study does not pretend to be a model-building of
sneutrinos in the MSSM. We only aim to contrast the result for the sneutrino cross section
already derived in the past with the latest XENON1T results in a halo-independent manner,
accounting conservatively for the dark matter astrophysical uncertainties.

In the MSSM, sneutrinos are the scalar partners of the left-handed neutrinos. Therefore it
shares with the neutrino the same quantum numbers: both are electrically neutral, colorless,
have same hypercharge but different masses, since SUSY is broken, and different spins.
L̂I superfields contains the fermionic SU(2)L doublets LI ≡ (νIL, l

I
L) and its corresponding

scalar doublets L̄I ≡ (ν̄IL, l̄
I
L), where I = e, µ, τ . All terms of the supersymmetric lagrangian

including sneutrino fields are not shown here, [141]. The part of the superpotential relevant
for the leptonic sector is

W = εi,j(µĤ
1
i Ĥ

2
j − Y

I,J
l Ĥ1

i L̂
I
j R̂

J), (112)

where Ĥ1, Ĥ2 are the two Higgs-doublet superfields, RJ are the right-handed lepton su-
perfields, µ is the usual Higgs mixing parameters and Y I,J

l is a matrix which contains the
Yukawa couplings. In the MSSM, Y IJ

l is real and diagonal in flavour space and the Yukawa
couplings are linked to the charged lepton masses by the usual relation mI = v1Y

II
l , where

v1 is the vacuum expectation value of the neutral component of the H1 Higgs field. The
soft-supersymmetry breaking potential relevant for the sneutrino sector is:

Vsoft = (M2
L)IJ L̄I∗i L̄

J
i + [εij(λ

IJ
l H

1
i L̄

I
j R̄

J) + h.c] (113)

where λIJl is, as Y IJ
l , real and diagonal in flavour space. ML is also diagonal and all their

values are taken equal to mL in order to reduce the number of parameters. The scalar po-
tential is then given by V = Vsoft + VF + VD, where the D-term describe gauge interactions
and the F-term is given by the derivates of the superpotential W with respect to the scalar
variables, [146].

From all what has been stated, the mass term for each family of the sneutrino field ν̄L is

Vmass =

[
m2
L +

1

2
m2
Zcos2β

]
ν̄∗Lν̄L (114)

where β = arctan(v2
v1

), and v2 is the vacuum expectation value of the neutral component of

the H2 Higgs field. In this case, the three sneutrinos are also (degenerate) mass-eigenstates
with squared–mass m1 = m2

L + 1
2
m2
Zcos(2β). m1 refers to the mass of the lightest sneutrino

mass eigenstate. The phenomenology of the sneutrino slightly depends on β, so that mL is
the main free parameter.

Colliders present experimental bounds for MSSM sneutrinos. Colliders bound arise due to
the non-observation of the corresponding charged sleptons. If only considering low-energy
supersymmetry, it is assumed in [141] that all the soft mass parameters of the charged and
neutral leptons are common at the electroweak scale and mL = mR is set. In this case the
lower bound of the sneutrino mass is the same as the one coming from the invisible width of
the Z boson, [33], yielding mν̄ ≥ 43.7GeV for one neutrino species and mν̄ ≥ 44.7GeV for
three degenerate sneutrinos.
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The sneutrino relic abundance can be computed, by taking into account all the relevant
annihilation channels and coannihilation processes which may arise when the sleptons are
close in mass to the sneutrinos, [140]. We do not show them here but refer to [140][141]. We
use the results on the sneutrino mass m1-nucleon scattering cross section from [141], which
use the following parameters: the consideration of neutralinos at least 30% heavier than the
lightest sneutrino, so that the lightest neutralino mass is mχ = min(294GeV, 1.3m1), and
the values for the Higgs masses, which are 120 GeV (notice that this value is outdated, but
it does not affect the results significantly) for the lightest CP-even state h and at 400 GeV
for the heaviest CP-even H and for the CP-odd state A

Figure 25: Dependence of XENON1T limits on DKL at 90% CL, contrasted to the spin
independent sneutrino-nucleon scattering cross section taken from [141]. A lower bound
on the sneutrino mass coming from invisible Z-width constraint is also shown in dotted
magenta. The factor ε accounts for the rescaling of the sneutrino cross section that saturates
the cosmological sneutrino relic abundance. On the right plot, we have naively scaled the
XENON1T limits to the case in which the local density of dark matter particles for each
mass would be given by the cosmological sneutrino abundance multiplied by the canonical
value of ρloc=0.3 GeV/cm3. The three poles in the sneutrino cross section refer (from left
to right) to the Z, h to the degenerate H and A poles in the (co)annihilation cross section,
which occur when m1 is close to half the mass of the exchanged particle.

The results of Figure 25 show that sneutrino in the MSSM as described in [140][141] re-
mains ruled out when considering strong deviations from the Maxwell-Boltzmann velocity
distribution DKL(fMB, f) ∈ (0, 10) in the region of the parameter space 10-1000 GeV. For
lower masses the model escapes the XENON1T bounds as well as further experimental
bounds from low mass experiments such as CRESST, but these sneutrino masses are in
contradiction with the invisible Z-width constraint. Furthermore, for such low masses, the
sneutrino cosmological relic abundance is far from being in agreement with the dark matter
relic abundance. When rescaling XENON1T bounds to the sneutrino relic abundance, the
discrepancy is slightly alleviated but still strong. There might be a saviour for sneutrinos in
supersymmetric theories with lepton number violation, [24]. These would cause a lift between
the sneutrino’s odd and even CP eigenstates ν̄+, ν̄−, that would prevent elastic scattering
through Z-exchange. We discuss some aspects of inelastic scattering in section 7.2. Here, we
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can conclude that sneutrino dark matter in the MSSM scattering elastically with nucleai is
ruled out independently of the dark matter halo by the XENON1T experiment.

5.5 Combined halo-independent analysis of CRESST II and SK

The Icecube and Super-Kamiokande collaborations are able to reconstruct the directionality
of neutrino-like events in their detectors and thus quantify the flux of neutrinos coming from
the Sun. Therefore, according to the WIMP capture mechanism and annihilation in the sun
described in section 3.2.1, they are able to present limits in the dark matter mχ-σχ param-
eter space for a non-observation of an excess of the flux of neutrinos coming from the sun.
These experiments are able to compare the observed angles and energy spectrum to signal
expectations from different simulated WIMP masses and annihilation channels induced neu-
trino fluxes, [84][21]. All three flavours of signal neutrinos are considered in their analyses.
When WIMPs annihilate into W+W−, the W bosons decay promptly and neutrino emission
from the leptonic decay channels peaks at energies close to the mass of the WIMP. The
τ+τ channel produces a similar distribution of neutrinos in energy with a higher overall nor-
malization. When the WIMP annihilates predominantly to bottom quarks bb̄, the neutrino
emission peaks at energies much below the mass of the WIMP, since the b quarks hadronize
before they can decay to produce neutrinos, [84].

There is extensive work dedicated to perform combined halo-independent analyses of Icecube
and Super-Kamiokande with direct detection experiments for both SI and SD dark matter,
[120][121][147]. Nevertheless, we notice that these studies predominantly use the stringent
results of direct detection experiments such as XENON1T, LUX or PICO. It happens though,
that such experiments are only sensitive to the high velocity tail of the dark matter velocity
distribution at low masses (mχ ≤ 10 GeV), due to their limited energy thresholds. This
kinematical constraint has been discussed in section 4.1. Furthermore, as we also explained
in section 3.2.1, the capture mechanism sets an upper bound on the WIMP velocities that
can get gravitationally bound by the sun. This upper bound is larger as the WIMP mass
gets smaller: vmax(r) ∝

√
mDM ·mN
|mDM−mN |

. As an example, the LUX direct detection experiment

velocity threshold for a dark matter mass of 4 GeV, is of ∼ 640 km/s. The point that we aim
to show here is that the upper velocity vmax(r) of such a dark matter particle will be smaller
than this value for several elements in the sun, while for others the difference between these
velocity thresholds will be, comparatively to the whole dark matter velocity spectrum, very
small. This fact, while it doesn’t prevent from performing such a halo-independent analysis
in the low mass range, lacks from reliability, as it is very sensitive to small changes in the
phase-space distribution of the dark matter particles (e.g the distribution could shut-off just
below this values, being therefore no 4 GeV dark matter particles having velocities in the
analysis range). Notice that the above discussion is not applicable for larger dark matter
masses mχ ≥ 10GeV , since Xenon-based dark matter experiments are able to prove a larger
region of the velocity space for such dark matter masses.

Being exposed this issue, and in order to complement these analyses in the dark matter mass
range from 4 GeV to 10 GeV accounting for a wider region of the velocity space, we need to
combine Super-Kamiokande results with a direct detection experiment with a lower energy
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(velocity) threshold, such as the CRESST experiment. Though the CRESST III run has a
lower energy threshold than CRESST II, we use the last one due to its stringent results (larger
exposure) for sufficiently high masses. The difference between using CRESST II or CRESST
III is not indeed very relevant since both runs cover almost completely the velocity space for
dark matter masses above 4 GeV. Lower masses can’t be proven by neutrino searches due
to dark matter evaporation effects in the Sun, [89]. According to the method described in
problem 89, our minimization problem takes the form:

Minimize: C(SK)(c~v1 , ..., c~vn) =
n∑
i=1

c~viC
(SK)
~vi

(115)

subject to:

n∑
i=1

c~vi = 1

R(CRESST )(c~v1 , ..., c~vn) ≤ NCRESST
obs

c~vi ≥ 0

where NCRESST
obs is the poissonian number of observed events by CRESST at 90%CL. The

dark matter cross section σχ can be consequently obtained from

2 · ΓA,SK = C(SK)(c~v1 , ..., c~vn), (116)

where ΓA,SK is the experimental annihilation rate result from SK, [21].
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Figure 26: Combined halo-independent upper limits on the dark matter mass-spin indepen-
dent cross section of CRESST II and Super-Kamiokande, for the most agressive (τ+τ−, in
solid black) and more conservative (bb̄, in solid blue) annihilation channels. The annihila-
tion of dark matter particles into W+W− is relevant for masses mDM ≥ mW however here
omitted since the results lie between the other channels. The annihilation channel into taus
goes down to mχ ≥ 6 GeV, since lower masses are not kinematically allowed, [21].

Figure 26 shows the results of our calculation. We are particularly interested in the mass
range going from 4 to 10 GeV, where our limits are most competitive compared to previous
analyses, [120][121]. For the annihilation channel into taus τ+τ−, our halo-independent
limit is ∼ 1 order of magnitude more conservative than neutrino collaborations limit. For
the annihilation channel into bottom quarks bb̄, we also encounter a halo-independent limit
O(1) more conservative than the Super Kamiokande bound.
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6 A bayesian approach to the dark matter velocity dis-

tribution problem

In previous sections, we have been able to derive halo-independent upper limits on the
dark matter mass-cross section by combining direct detection experiments and neutrino
searches. Moreover, we have interpolated between the most aggressive and the most conser-
vative upper limits from one single experiment by parametrizing the deviation with respect
to the Maxwell-Boltzmann velocity distribution using information divergences (though our
methodology shown in problem 102 allows to include more than one experiment). We briefly
discussed in section 5.3 that the optimized velocity distributions that we obtain with such
methodology are difficultly interpretable as feasible dark matter velocity distributions with
a physical meaning. Instead, they are optimized mathematical solutions to our convex prob-
lem under consideration, even though the parametrization chosen to account for deviations
with respect to the Maxwell Boltzmann highly impacts the shape of such distributions. We
argued that the KL-divergence is the most suited distance measure to smoothly interpolate
with respect to the Maxwell-Boltzmann, since it consists in the relative entropy between two
distributions and the Maxwell-Boltzmann is constructed on entropic grounds, as we discussed
in section 2.2.4. There, we constructed the maximally entropic velocity distribution under
basic physically-motivated requirements (conservation of energy and uniform discretization
of phase space). In this section, we aim to combine elements of both approaches, to try
to extract real and useful information about the dark matter velocity distribution from the
non-observation of dark matter at experiments, using Bayes theorem. Our work will be moti-
vated by similar studies, [124][148], although our approach will include noticeable differences
and will be solvable using convex optimization techniques, see Appendix A.1.

6.1 The quantified maximum entropy method

According to Bayes theorem

p(f |data, prior) =
p(data|f, prior) · p(f |prior)

p(data|prior)
, (117)

and using Markov’s assumption, which considers that a variable xt depends only on its direct
predecessor state xt−1 and not on xt′ with t′ < t− 1 [150],

p(f |data, prior) =
p(data|f) · p(f |prior)

p(data|prior)
, (118)

where we will consider f as the ”updated” most credible prior dark matter velocity distri-
bution, given the data as the null results from some direct detection experiments and the
truncated Maxwell-Boltzmann velocity distribution as the prior distribution. We want to
apply the principle of maximum entropy discussed in section 2.2.4, but assuming this time
the Maxwell-Boltzmann as a prior knowledge. For this we will follow the quantified max-
imum entropy approach, [149]. This method was proposed by J. Skilling as a technique
for obtaining probabilistic estimates of positive additive probability distributions from noisy
and incomplete data. Skilling proposes the construction of an entropic prior that penalises
deviations from our prior knowledge, which in our case is the Maxwell-Boltzmann velocity
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distribution fMB(~v). Thus, we construct an entropic prior making use of the KL-divergence
(relative entropy), already discussed in section 5.2, equation 100

p(f |prior) ∝ e−βDKL(fMB ,f), (119)

where β is a regularization parameter which describes the strength of our prior information:
β = 0 corresponds to no prior information while β → ∞ corresponds to f(v) = fMB(v)
regardless of any data, [124]. For the probability of having the data given a certain velocity
distribution p(data|f), we can use a χ2 factor that penalises deviations from the observed
data

χ2[f ](α) =
∑
α

(
R

(α)
f(v)(σDM ,mDM)−N (α)

obs

∆(α)

)
, (120)

where we define ∆(α) to be the average uncertainty on the recoil spectrum energies of a dark
matter direct detection experiment α, and R

(α)
f(v)(σDM ,mDM) is the expected dark matter

scattering rate of a direct detection experiment α for a certain velocity distribution, dark
matter-nucleon cross section and dark matter mass.

The factor in the denominator reflects the probability of having the data given the prior and
can be constructed by a constant factor,

p(data|prior) = e
1
2
χ2(fMB). (121)

The posterior probability then takes the form,

p(f |data, prior) ∝ e−βDKL(fMB ,f)− 1
2
χ2(f), (122)

which is a convex function and can be transform in a solvable second order cone problem
SOCP, see Appendix A.4. We can interpret β by noting that an n nat (natural unit of
information, see Appendix B.1) departure from f(v) is punished by a factor equivalent to a
χ2 of 2βn. We have constructed the posterior distribution reflecting the credibility of f(v)
as the dark matter velocity distribution explaining the observed recoil rate in one (or more)
direct detection experiments, given a dark matter particle mass mDM , a cross section σDM ,
and the strength of our prior β. The approach now will be to maximize the posterior for any
velocity distribution f(v) expressed as a superposition of streams, like we did in equation 83,
given constraints on the observed rate of the direct detection experiments not yet considered
in the posterior. Formally, our optimization problem takes the form,

Maximize: − βDKL(fMB, f)− 1

2
χ2[f ](α), α = 1, ..., p (123)

subject to:

n∑
i=1

c~vi = 1

R(α)(c~vi , ..., c~vn) ≤ N
(α)
obs , α = p+ 1, .., q

c~vi ≥ 0
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where we maximize the logarithm of the posterior in equation 122 and where the objective is
convex (KL-divergence belonging to the exponential cone, and χ2 quadratic on the weights
c~vi , see section 5.2). The index α goes from 0 to p experiments, whose recoil rates will be used
as a penalisation factor for those velocity distributions producing rates that deviate from the
measured number of events by those experiments, and from p+1 to q for those experimental
constraints that we will choose to be strict, that is, not as a penalisation factor in the
objective function but constraints that must be strictly fulfilled by the optimized velocity
distribution. The input in this optimization problem is the dark matter mass mDM , the dark
matter cross section σDM and the confidence in our prior β. Therefore, we can compute,
for a given dark matter mass, cross section and strength of prior β , the maximally entropic
velocity distribution that respects the experimental constraints from a given number of dark
matter experiments. To be precise, the experimental constraints α = 1, .., p are allowed to be
violated for sufficiently large confidence in our prior β, but will be respected when this value
is small. If no strict constraints are considered, q = p, this method allows to interpolate
between the Maxwell-Boltzmann prior fMB(~v), and the best velocity distribution χ2 fit to
a certain number of experiments p, constructing maximally entropic velocity distributions
among those extreme results.

6.2 Extracting information of the DM velocity distribution from
CRESST III

We will apply the discussed methodology to the CRESST III experiment. In particular, we
will solve the convex optimization problem 123, where we will consider one single experiment
p = 1, CRESST III, accounting for the χ2 factor in the objective function. The philosophy
of our approach is schematized in Figure 27

Ruled out by SHM. What is the
maximally entropic VDF that would

reconcile such a dark matter particle with
CRESST?

Untested by SHM. What is the maximally
entropic VDF that would keep such a dark
matter particle undetected by CRESST?

What is the maximally
entropic VDF here?

Figure 27: Philosophy of our approach. VDF refers to Velocity Distribution Function.

First, let’s look at the performance of our approach for two points in the parameter space:
Ruled out by CRESST III, see left plot of Figure 28, and a point not yet proved, see Figure
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right plot of Figure 28. We notice that, for a point already ruled out of the parameter space,
our reconstructed velocity distributions are naturally more conservative than the Maxwell-
Boltzmann velocity distribution, in order to escape the CRESST constraint penalising the
objective function. For small values of β, our velocity distributions highly weight the region
below CRESST velocity spectrum. As it was expected, for sufficiently high values of β,
that is, high confidence in our prior, the reconstructed velocity distributions approach the
SHM form. Analogously, for points of the parameter space not yet probed by CRESST,
the reconstructed velocity distributions are more aggresive than the Maxwell-Boltzmann,
approaching a single stream at the escape velocity of the Milky way. As one increases the
value of β, the SHM shape is recovered.

Figure 28: Maximally entropic reconstructed velocity distributions obtained with the quan-
tified maximum entropy method, for different values of confidence in our prior β, and a dark
matter mass of 1 GeV and cross section of 10−37cm2(left) and 10−38cm2(right). The CRESST
III kinematical velocity threshold for such a dark matter particles is shown in dotted grey.

We are particularly interested in those points of the parameter space corresponding to upper
limits provided by collaborations, corresponding to the extreme dark matter parameter con-
figurations that experiments are able to test. In Figure 29 we show our results for different
dark matter masses.

66



Figure 29: Maximally entropic reconstructed velocity distributions obtained with the quan-
tified maximum entropy method, for different values of confidence in our prior β, and dark
matter masses-cross section combinations corresponding to the CRESST III limit. The
CRESST III kinematical velocity threshold for a such dark matter particles is shown in
dotted grey.

We distinguish three scenarios according to the value of β:

• β = 0, i.e, no confidence in the prior distribution:

For sub-GeV Dark Matter, we obtain maximally entropic (uninformative) distributions,
presenting a flat distribution up to the experimental velocity threshold, above which
the probability distribution decays. The maximally entropic velocity distribution is by
definition given by a equally weighted distribution (i.e a flat line in our plot), and the
observed decay compensation is an artifact of the optimization problem constraints
(positive and normalized distribution + χ2 fit). For dark matter masses of 5 GeV
and 10 GeV, the posterior distribution consists on a single stream. This result is
very interesting since it indicates that the best χ2 fit to CRESST observed number of
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events is given by a stream of dark matter particles with a single velocity. A similar
behaviour of the quantified maximum approach was observed in [124] when studying
DAMA/LIBRA data.

• β ∈ (0, 10], i.e, ”limited” confidence in the prior distribution: For sub-GeV dark
matter, we notice that for a small value of β = 1, which corresponds to a penalisation
factor of 2n for each nat n deviation, we are close to completely recover the Maxwell-
Boltzmann velocity distribution. For higher dark matter masses, larger values of the
strength parameter β are necessary to obtain smoother distributions. From this sizable
differences in the interpolation parameters it is possible to infer that the CRESST III
observed number of dark matter events favours a Maxwell-Boltzmann-like velocity
distribution for sub-GeV Dark Matter masses more ”naturally” than it does as we
move to higher dark matter masses.

• β → ∞, i.e, absolute confidence in the prior distribution: We are able to
recover the Maxwell-Boltzmann VDF for β = 100. No provided data from experiments
can change the credibility of our prior. This sets an upper bound in the interpolation
range that facilitates the interpretation of the results obtained for different dark matter
masses.

We would like to emphasize that this work has been motivated by [124] and [148], but there
are noticeable differences among them. In [124], the data used in the bayesian analysis is
the DAMA/LIBRA dark matter signal with constraints in the modulated moments, while
here we simply use the CRESST III observed dark matter rate (though we generalize to
use further constraints from additional direct detection experiment or neutrino searches).
We would like to point out a similar behaviour with [124] in the interpolated dark matter
velocity distributions, though using completely independent data sets. For small values of β,
both analysis favour a distribution consisting on a few streams, while at large β we recover
the truncated Maxwell Boltzmann distribution. Still, there are some differences. For a Dark
Matter mass of mχ = 10 GeV and σχ = 10−41cm2, which falls inside the DAMA Island dark
matter signal region, [105], our updated velocity distribution after consideration of CRESST
III data favours a most probable speed of ∼ 290 km/s, while [124] favours a most probable
speed of ∼ 360 km/s. The truncated Maxwell-Boltzmann velocity distribution presents an
intermediate value of the most probable speed of ∼ 320 km/s.

There is a caveat in the analysis [124] and [148] that we would like to comment, where a
similar approach using XENON1T is used. DAMA/LIBRA can’t access kinematically the
whole dark matter velocity spectrum for the signal they observe at 10 GeV dark matter mass.
XENON1T neither. The lack of information on the low velocity tail of the distribution makes
very difficult to properly reconstruct the complete velocity distribution, since the only infor-
mation in this region is given in the prior distribution. It is only for sufficiently heavy dark
matter masses ∼ 50-100 GeV that these experiments are able to probe the whole spectrum.
The advantage of this work is that CRESST is sensitive to a larger part of the velocity
spectrum, even at sub-GeV masses, and provides a dark matter recoil spectrum consisting
on a large number of events, though not interpreted as a signal because it is yet believed to
be unknown background, [18]. There is still room for improvement, and the methodology

68



here proposed should include information about the recoil spectrum of CRESST, which is
not equally distributed for each dark matter mass, see Appendix C for a discussion about
this in the context of Poissonian statistics and the Yellin methods. Furthermore, information
from further experiments should be included in the posterior. Nevertheless, in the case of
a claim of dark matter by some experimental collaboration, this technique could be used to
cross-check the feasibility of this signal with further experiments by looking precisely at the
reconstructed dark matter velocity distribution which allows a signal at a certain experiment
and a null results at others.
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7 Alternative scenarios: Extragalactic dark matter and

Inelastic dark matter

To conclude this thesis, we explore two scenarios that could also strongly affect the con-
clusions drawn from dark matter experiments. First, we will present the extragalactic dark
matter contribution, which has been widely discussed in the context of indirect dark matter
searches, [151][152], but not extensively in direct detection, [23], quantifying its impact in
the upper limits of the CRESST III experiment. Later, we will consider the possibility that
dark matter interacts inelastically with nucleai, deriving precise upper limits from CRESST
II data, and comparing them with predicitons and estimates from previous works, [24][143].
Finally, we will look at the 4 unidentified high recoil events observed at the CRESST II run,
and sketch the impact that astrophysical uncertainties might have if interpreting such events
as dark matter recoils.

7.1 Extragalactic dark matter at CRESST

A fraction of the dark matter particles detectable at Earth might not be bounded to the
Milky Way, [153]. This fraction is small compared to the total local density of dark matter
ρ ∼ 0.3 GeV/cm3, but the large velocities of these particles v ≥ 500 km/s could make their
contribution significant to probe the low mass dark matter region of the parameter space in
which most direct detection experiments lose sensitivity due to their energy threshold and
minimum velocity required to produce such recoils. In this section we discuss the different
extragalactic dark matter components that could yield a signal on Earth and calculate their
impact in the CRESST experiment, whose sensitivity in the sub-GeV spectrum could be
particularly affected by these contributions. There are two independent extragalactic dark
matter contributions:

• The Local Group, consisting of two very massive galaxies (Milky Way and An-
dromeda galaxy M31), less massive Triangulum galaxy M33, and a host of dwarf
galaxies, could contain a fraction of dark matter particles that is not bound in the
galaxies, forming a large envelope that can penetrate the central region of our Galaxy
and reach the solar system, [154]. Estimations in [23] show that this component is the
of the order ∼ 10−2 GeV/cm3.

• Extragalactic dark matter not belonging to the Local Group, in particular, the diffuse
component of the Virgo Supercluster, in addition to galaxies and their groups,
[153]. Measurements estimate the average of the diffuse component to be ≈ 10−5

GeV/cm3

The dark matter envelope of the Local Group is modelled in [23] by an isotropic velocity
distribution with small velocity dispersion σv ≈ 20 km/s, which would lead to a sharped
peak in the velocity distribution of dark matter particles near the Earth at velocities slightly
higher than the escape velocity of the Galaxy, see Figure 30, that could dominate over the
SHM-like component for the regions of the dark matter parameter space where experiment
are only sensitive to the high velocity tail of the distribution. Regarding the supercluster
dark matter particles, there is little knowledge about its velocity and space distributions. We
assume that the dark matter particles have coherent velocities, comparable to the observed
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velocity dispersions of the members of the supercluster, such that the velocity of dark matter
particles at large distances from the earth is v∞ ∼ 500 km/s. The measurements estimate
the average density of the diffuse component to be ρ ≈ 10−6 GeV/cm3, [153]. However,
the gravitational field of the local group increases this quantity near the Earth. We can

roughly estimate the enhancement as 1 + v2esc
v2∞

. Taking the escape velocity of the solar sys-

tem to be 544 km/s, the density of the supercluster dark matter particles is ∼ 10−5 GeV/cm3.

At a distance r from the center of the Milky Way, a dark matter particle has velocity w(r) =√
v2
∞ + vesc(r)2. This yields velocities for the Virgo Supercluster dark matter particles at

Earth to be ∼ 740 km/s, which may produce high energetic recoils at direct detection
experiments. Nevertheless, due to the low density of these extragalactic dark matter particles
ρ ≈ 10−5 GeV/cm3, the expected scattering rate is very low.

Figure 30: Normalized velocity distribution of dark matter particles at earth, according to
[23], contrasted with the Maxwell-Boltzmann velocity distribution.
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Figure 31: Impact of extragalactic component in CRESST III upper limits, from the Lo-
cal Group contribution (left), and the diffuse component of the Virgo Supercluster (right),
assuming for this case very large velocities of v∞ ∼ 2000 km/s

Our results are shown in Figure 31. The dark matter envelope of the Local Group would
dominate the signal at CRESST III for masses below 5 GeV, causing uncertainties in the
limits w.r.t the SHM limit of O(1). In the case of the diffuse component of the Virgo
Supercluster, such high-speed dark matter particles do not affect the limits significantly,
O(0.001) uncertainties. We conclude that the impact of the Local group component in
the sensitivity of direct detection experiments in the elastic scattering scenario is small but
sizable. If dark matter were made of light or sub-GeV particles, the extragalactic contribution
may cause a signal on Earth that the Milky Way component wouldn’t, therefore the study
and determination of the precise shape and contribution of the extragalactic dark matter
component from the Local Group is very important. In next section we will see indeed that
in the case of inelastic dark matter this contribution could also dominate over the Standard
Halo Model for sufficienly large mass splitings.

7.2 Inelastic dark matter at CRESST

We discussed in section 4.1 the possibility that dark matter scatters off inelastically with
nuclei, accesing an excited state with mass splitting δ = mχ2 −mχ1 . Inelastic dark matter
has been suggested as a possible explanation for the DAMA dark matter signal, [155][156],
and arises as a natural scenario in many dark matter particle models, [24][143][157]. Indeed,
the inelastic kinematics provide scenarios in which dark matter particles would scatter in
the DAMA Iodine detector (A=127) but not in other experiments with target nucleai of
lower atomic number, such as CDMS, [106]. However, there is dedicated work to probe the
incompatibility of the DAMA signal with other direct detection experiments, [55][158].

Regardless of its validity to explain the DAMA signal, inelastic scattering is a viable pos-
sibility that worths to be studied. If the state χ2 is slightly heavier (∼ keV) than χ1, such
that χ1 can only scatter inelastically by making a transition to χ2, we have the following
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kinematical constraint:
δc2 <

mχmN

2(mχ +mN)
v2
χ, (124)

where δ is the mass splitting between χ1 and χ2. It is straightforward to notice from equation
124 that heavier nucleai are able to test larger mass splitting values and thus we could
encounter the situation in which some direct detection experiments are invisible to dark
matter while others are not. As an example, if we take the largest possible velocity of a
dark matter particle to be the Milky Way escape velocity (at the Galactic frame), vχ = 544
km/s, we see that the CRESST experiment (184W ) would satisfy the bound of 124 for mass
splittings δ ≤ 343 keV. The PICO-60 and DAMA experiments containing Iodine, (127I),
require splittings of δ ≤ 249 keV. The CDMS experiment, 74Ge, is blind to splittings larger
than 151.2 keV. We could encounter an scenario in which a dark matter particle interacting
inelastically with a sufficiently large mass splitting δ ∼ 300 keV would only be kinematically
accesible to CRESST. In [143], it was suggested that 4 high energetic unidentified events
at the CRESST II experiment, lying below the 5σ lower boundary of the electron/gamma
band [17], could be produced by the inelastic scattering of heavy dark matter particles ∼
1 TeV, see Figure 34. Although these events are statistically incompatible with leakage,
they are believed to be originated from unvetoed α-decays, since the Lise detector module
where these events were registered uses non-scintillating clamps and recoils happening on the
surface are more difficult to distinguish. Additional data from further modules support this
origin. Nevertheless, in the following we will consider these events as dark matter events, only
with the purpose to show that a proper knowledge of the dark matter velocity distribution is
crucial if one wants to make precise predictions, specially if dark matter scatters inelastically
with nucleai.

Figure 32: Minimum velocity necessary to produce recoils of 45 keV and 95 at tungsten, for
different values of the dark matter mass, see equations 57 and 56. In dotted coloured lines
we show the inelastic lower bound, and in solid lines the elastic case. In dotted black lines
we show the Milky Way escape velocity at the Earth frame. On the left we consider a mass
splitting of δ = 200 keV, and on the right a value of δ = 400 keV.

In Figure 32, we show the lower bound on the velocity that dark matter particles need to
have in order to produce the lowest (45 keV) and the highest (95 keV) energy recoils from
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the 4 unidentified events registered at CRESST II. We can appreciate that a mass splitting
of 200 keV could only explain the CRESST results for dark matter particles having velocities
close to the escape velocity of the Milky Way. For a dark matter mass splitting of 400 keV,
this is not even possible. We can use the CRESST II data to constrain the parameter space
of inelastic dark matter. Equation 46 for DM-induced elastic scattering rate in an element
i is modified in the inelastic, spin-independent case as

dRi

dER
=
ξimN ρloc σp,n
2 mDM µ2

p,n

(
fpZ + fn(A− Z)

fn

)2

F 2(ER) η̄(vmin) (125)

η̄(vmin) =

∫
v≥vmin(ER)

dv
f(v)

v
=

erf(xmin + ve/v0)− erf(xmin − ve/v0)

ve
(126)

where v0 = 220 km/s, xmin = vmin/v0, η̄(vmin) is the mean inverse speed of the Maxwell-
Boltzmann velocity distribution, [24], and vmin(ER) in the inelastic case is given by equation
56. By using this scattering rate formula in our analysis, we can derive upper limits on the
spin-independent dark matter mass splitting cross section, for a fixed dark matter mass, that
we will choose to be mDM = 1 TeV, see Figure 33.

Figure 33: On the left, upper limits on the dark matter mass splitting δ-spin independent
cross section on shaded colours for CRESST II, derived in this work, and the combination
LUX-PandaX, taken from [143]. The dotted lines correspond to projections, or rough es-
timates, that consider energy ranges larger than actually analysed and published ones by
CRESST II and PICO, probably not including the effect of target elements efficiencies, taken
from [143]. On the right, the recoil energy boundaries according to equation 57, derived in
section 4.1, for different values of the dark matter mass mχ and mass splitting δ.
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Figure 34: On the right, the light yield vs energy plane data taken at CRESST II, [17]. The
solid lines mark the 90% upper and lower boundaries of the electron-gamma band (blue),
the band for recoils off oxygen (red) and off tungsten (green). 4 events marked in blue circles
are below the 5σ band. On the right, the expected differential recoil rate at CRESST for
a dark matter particle of 1 TeV and different combinations of scattering type, dark matter
cross section and mass splitting. The 4 unidentified events observed by CRESST are marked
in black dots.

We notice that CRESST is able to rule out mass splittings δ ≤ 200-270 keV for dark mat-
ter cross sections greater than 10−37-10−35cm2. Projected limits for a larger energy range
consideration from [143] will allow CRESST to test mass splittings as large as 400 keV.
LUX-PandaX constraints are stronger than CRESST at low mass splittings, being able to
rule out inelastic dark matter up to 180 keV for cross sections larger than 10−41cm2. There
is a large region of the parameter space which is yet untested. In Figure 34, some differential
rates are calculated for different dark matter mass-cross section configurations. We notice
that the 4 unidentified events from CRESST II lie close to a form factor suppressed region
ER = 55 keV, therefore being the event at 50 keV very problematic to explain with both
elastic and inelastic scattering predictions. Furthermore, it is argued in [143] that a inelastic
1 TeV dark matter particle of mass splitting δ = 200 keV and cross section δ = 10−39cm2

could be in tension with PICO results, [109], although the energy range considered in this
article is larger by one order of magnitude than published PICO data. We therefore treat
this bound with precaution.

How would this discussion change if the dark matter velocity distribution were different from
the SHM? In Figure 35 we calculate the differential scattering rates at CRESST II when
considering the extragalactic dark matter contribution to the velocity distribution of dark
matter particles near the Earth discussed in previous section 7.1.
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Figure 35: Expected differential recoil rates at CRESST II for a dark matter velocity distri-
bution consisting in a mixture of the SHM and the extragalactic high velocity narrow peak
coming from the Local Group dark matter envelope. On the left we show the rates for a
dark matter mass splitting of 200 keV and on the right for a mass splitting of 400 keV.

We appreciate that due to the high velocity of the extragalactic dark matter particles,
mass splittings of δ = 400 keV are now accesible to CRESST, while for the SHM velocity
distributions the rates were completely suppresed. For a mass splitting of 200 keV we
notice a slightly better matching of the event occured at 45 keV. This is only a qualitative
study, and a proper analysis must include astrophysical and nuclear (from the Helm form
factor) uncertainties in the differential rates, further calculating the significance of this events
according to predictions of the differential dark matter inelastic recoil spectrum. We do not
propose here that a dark matter particle with a mass of 1 TeV and a cross section in the range
10−37-10−40 with mass splittings δ ≥ 200 keV interacting inelastically, with a dark matter
velocity distribution including the extragalactic components, is an explanation for this 4
events. Nevertheless, what is clear from the previous discussion is that the extragalactic
dark matter component could lead to measurable differences in dark matter signatures w.r.t
the SHM, and that a proper knowledge of the dark matter velocity distribution is crucial to
make high precision predictions. Such a dark matter particle should furthermore be accessible
kinematically to Xenon and Iodine based experiments. Nevertheless, current inelastic bounds
shown in Figure 33 do not rule out this possibility. It would be in tension with PICO-60
null results, but we remark again that the bound shown in [143] corresponds to an energy
range larger than the one described in the collaboration paper [109], and thus we cannot
conclude that such a bound is sufficently solid statistically as it was not performed by the
collaboration, and the recoil efficiences in the range 100-1000 keV are not available.
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8 Conclusions

The dark matter velocity distribution in the solar neighbourhood is unknown. In this thesis,
we have proposed a novel method to calculate the dark matter velocity distribution based in
the principle of maximum entropy, from a set of initial prior assumptions. We have shown
that our method and the rest of techniques available in the literature to obtain the dark
matter velocity distribution present incompatibilities. We conclude that the Standard Halo
Model (SHM) used at experiments might not be a correct description of our dark matter
halo, and that deviations from this model need to be considered in order to make precise
predictions at direct detection and indirect dark matter searches. We have described the
formalism of direct detection and neutrino experiments searching for annihilation of dark
matter particles in the Sun, emphasizing the relevance of the dark matter scattering kine-
matics. Based in this discussion and the work [121], we have developed a method to quantify
the impact of astrophysical uncertainties in a direct detection experiment, based on tools
from information theory. By using this technique, we have derived upper limits on the dark
matter scattering cross-section using CRESST III data, including uncertainties from the ve-
locity distribution. Being conservative, we find O(1) uncertainties in CRESST upper limits
for both spin-independent and spin-dependent cases. Furthermore, we use our methodology
to study the impact of astrophysical uncertainties when interpreting direct detection bounds
on specific dark matter models. In addittion, we perform a halo-independent analysis of
CRESST and Super-Kamiokande, finding upper limits up to 1 order of magnitude more
conservative than Super-Kamiokande bounds. Our spin-independent halo-independent limit
is competitive with respect to previous studies in the range 4-10 GeV.

We also propose a different approach, motivated by [124], and based in the quantified max-
imum entropy method, that allows to interpolate between the maximally entropic and the
Maxwell-Boltzmann velocity distributions under restrictions on upper limits coming from
direct detection searches. We apply this methodology to the CRESST III experiment, dis-
cussing that this method could be used to cross-check a positive signal of a certain direct
detection experiment, with the null results obtained at other experiments, by studying the
velocity distributions that could satisfy all results simultaneously. Finally, we discuss the
impact that the extragalactic dark matter contribution could cause on direct detection ex-
periments, and the importance of having a proper knowledge of the dark matter phase space
distribution to interpret a signal, if dark matter scatters inelastically with nucleai.
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A Appendix A

A.1 Convex Optimization

This appendix is dedicated to discuss basic theoretical aspects of convex optimization and
the main algorithms used along this thesis, following the notation of [131][159]. We have
mostly used the programming language Python, and the public available code CVXPY,
[119], which allows for a simple formulation of the optimization problems of interest, making
use of disciplined convex programming, [160], and which includes several optimization pack-
ages with different functionalities such as ECOS, CVXOPT and OSQL, [130]. Most of
the work here has been performed under the ECOS software, which is based in primal-dual
path following algorithms. These are briefly discussed in A.6.

A convex optimization problem has the form

Minimize: f0(x) (127)

subject to:

fi(x) ≤ 0, i = 1, ...,m

aTj x = bi, j = 1, ..., p

where f0, ..., fm are convex functions, i.e, they are defined in a convex set C ⊂ Rn, such
that f0(x), fi(x) : C → R, and and if for all x, y ∈ C , and θ with 0 ≤ θ ≤ 1, the following
condition is fulfilled:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (128)

The problem 143 is said to be in the standard form. Alternative representations in terms
of generalized inequalities are also possible, see [131].The function to optimize f0 is
called the objective function and the conditions to which is subject fi, ai are the inequality
constraints and equality constraints, respectively. These define the feasible set, which is the
set x ∈ C that fulfills all constraints. If there is any local (global) optima for the problem,
it belongs to this set. A fundamental property of convex optimization problems is that any
locally optimal point is also (globally) optimal. A short and nice proof can be found in [131].
We do not extend further here for simplicity.
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A.2 The Karush-Kuhn-Tucker optimality conditions

The Karush-Kuhn-Tucker (KKT) conditions are first-order necessary conditions for a solu-
tion of a non linear problem to be optimal, provided that some regularity conditions are
satisfied. They are applicable to both convex and non-convex problems, though here we
will assume only convex problems in the form of 143. The KKT conditions generalize the
Lagrange multipliers method, which is only valid for problems with equality constraints, to
problems including inequality constraints.

Given a non-linear convex problem in the standard form 143, being the objective function
f0 : Rn → R and constraints fi : Rn → R, aj : Rn → R continuously differentiable at a point
x∗. If x∗ is a local optimum and the optimization problem satisfies some regularity conditions
(they are not exposed in this appendix, we refer to [131] for a detailed description of them),
then there exist constants µi (i = 1, . . . ,m), λj (j = 1, . . . , `), called KKT multipliers, such
that the following four groups of conditions hold:

• Stationarity

∇f0(x∗)±
m∑
i=1

µi∇gi(x∗)±
j=`∑
j=1

λj∇aj(x∗) = 0 (129)

where the plus or minus is chosen whether we want to minimize or maximize the
objective function, respectively.

• Primal feasibility
gi(x

∗) ≤ 0, i = 1, . . . ,m (130)

hj(x
∗) = 0, i = 1, . . . , ` (131)

• Dual feasibility
µi ≥ 0, i = 1, . . . ,m (132)

• Complementary slackness

µigi(x
∗) = 0, i = 1, . . . ,m (133)

A local/global (the sufficient conditions are more subtle and not discussed here, we refer
to [131] for a complete description) optimal value for a certain problem can be therefore
obtained by finding the optimal values of the lagrangian L(x, µ, λ). For the special case of
m = 0, i.e, no inequality constraints, the KKT multipliers reduce to the usual Lagrange
multipliers.

In section 2.2.4 we have used the KKT conditions analytically to find the maximally entropic
VDF that respects some certain well motivated physical constraints. The KKT conditions
have also been indirectly used in the computation of all halo-independent limits shown in
this work, since they belong to the skeleton of all the optimization algorithms and packages
that we have made used of.
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A.3 Linear programming

Linear programs (LPs) are the simplest convex optimization problems, characterised by
being affine both objective function and constraints. It reads

Minimize: cTx (134)

subject to:

Gx ≤ h

Ax = b

where the vectors c ∈ Rn, h ∈ Rm, b ∈ Rp and the matrices G ∈ Rm×n, A ∈ Rp×n. Linear
programs are usually written in their standard form. Transforming some problem to the
standard form is necessary, for example, in order to use an algorithm for standard form LPs.
Any problem which is not in the standard form can be transformed to this, in the case of
unrestricted primal variables, by writing a general primal variable zi as the difference of two
non-negative primal variables, i.e. zi = xiyi, so that the primal variables xi are non-negative
in the standard form. Inequality constraints must be written as equality constraints as
well, and this is achieved by introducing m slack variables si. Combining primal and slack
variables into one vector y = (x1, ..., xn, s1, ..., sm), the LP A.3 can be transformed into the
standard form:

Minimize: cTx (135)

subject to:

Ay = b

x ≥ 0

where A is now a (m+p)×(n+m) matrix. It is important to note that the non-negativeness
of the primal variables is not considered as an inequality constraint. It is possible to show,
[131], that the rows ai of the matrix A must be linearly independent for the optimal solutions
of the problem p∗ ∈ Rn+m that belong to the set ai|Ap∗ = b, b∗i 6= 0. As a i × j matrix can
have at most min(i, j) linearly independent rows, we conclude that there are exactly minn +
m, p + m entries of p∗ that are larger than zero. As there are m slack variables that could
be larger than zero, the number of positive primal variables is given by

min {m+ n, p+ n} − k ≤ Number of xi 6= 0 ≤ min {m+ n, p+ n} (136)

In common problems, the number of primal variables n is much larger than the number of
constraints, which implies

p ≤ Number of xi 6= 0 ≤ p+m (137)

80



Therefore, the number of positive primal variables is at least equal to the number of equality
constraints and can be as large as the total number of constraints. This observation is
especially useful to get analytic insight into the solutions that have been obtained during
this work, and for some objective functions, this can be used to determine the solution. This
is particulary useful in reference to the number of dark matter streams that we are able to
compute for the completely halo-independent analysis, as it has been discussed in section
5.1.

A.4 Second Order Cone Problems (SOCP)

Along this thesis, most problems discussed were solved in the form of Second order cone
problems (SOCP). Before discussing this specific class of optimization problems, it is neces-
sary to introduce the concept of cone and generalized inequalities.

A convex set K is called a convex cone, if for every x1, x2 ∈ K and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ K (138)

A proper cone K ⊂ Rn is a convex cone that satisfies the additional following conditions:

• K is closed (i.e its complementary set is open, it contains all its limit points..)

• K is solid (i.e its interior set is non-empty)

• K is pointed, which means that it contains no line (i.e x ∈ K, x ∈ K ⇒ x = 0)

Proper cones K are used to define generalized inequalities, which is a partial ordering on
Rn, and can be interpreted as a generalization to the standard ordering in R. This partial
ordering in proper cones is defined as

x �K y ⇔ y − x ∈ K (139)

A strict partial ordering is defined as

x ≺K y ⇔ y − x ∈ intK (140)

Where intK is the interior set of K. When K = R+ , the partial ordering �K is the usual
ordering ≥ on R, and the strict partial ordering ≺ K is the same as the usual strict ordering
< on R. So generalized inequalities include as a special case ordinary (nonstrict and strict)
inequality in R.

The simplest example of a proper cone is the non-negative orthant Rn
+, as it can be seen

from conditions A.4. It can be straightforwardly seen, that the partial ordering x �Rn+ y are
just component-wise inequalities of the vectors x and y, i.e. xi ≤ yi which can be written as
matrix-vector inequality Gx ≤ h.

We have now the necessary ingredients to introduce the example of second order cones
Qn,[55],

Qn :=
{

(x, t) ∈ Rn
+|t� ||x||2

}
, (141)
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where ||x||2 denotes the Euclidean norm. Let’s prove that Qn is a proper cone. First, we
notice that it is convex. Being θ ∈ [0, 1] and (t1, x), (t2, y) ∈ Qn, we have

||θx+ (1− θ)y||2 ≤ θ||x||2 + (1− θ)||y||2 ≤ θt1 + (1− θ)t2 (142)

where we have used that the Euclidean norm is subadditive and absolutely homogeneous.
We notice also that Qn is a closed and solid set, [55]. Furthermore, the second order cone is
pointed as the only vector for which both x and x are in Qn is the vector consisting of only
zeros.

Now we can define the standard form of second order cone optimization problems (SOCP).
They are defined as

Minimize: cTx (143)

subject to:

||Gix+ di||2 ≤ eTi x+ hi, i = 1, ...,m

Ax = b

where we see that the variables (Gix + di, e
T
i x + hi) should belong to a second-order cone

Qm.

A.5 Exponential Cone Problems

Many optimization problems can contain exponentials and logarithms. These can sometimes
be modelled with the exponential cone, which is a convex subset of R3 defined as

Kexp =
{

(x1, x2, x3) : x1 ≥ x2e
x3/x2 , x2 > 0

}
∪ {(x1, 0, x3) : x1 ≥ 0, x3 ≤ 0} (144)

Thus the exponential cone is the closure in R3 of the set of points which satisfy

x1 ≥ x2e
x3/x2 , x1, x2 > 0 (145)

When working with logarithms, as in the case of the KL-divergence, equation 145 can be
rewritten as

x3 ≤ x2 log (x1/x2) , x1, x2 > 0 (146)

Alternatively, it can be written as

x1/x2 ≥ ex3/x2 , x1, x2 > 0 (147)

This shows that Kexp is a cone, i.e. αx ∈ Kexp for x ∈ Kexp and α ≥ 0. The convexity of
Kexp follows from the fact that the Hessian of f(x, y) = y exp(x/y) is positive,

D2(f) = ex/y
[

y−1 −xy−2

−xy−2 x2y−3

]
is positive semidefinite for y > 0, [161]
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A.6 Interior-point methods

The main algorithms used for solving convex optimization problems that include inequality
constraints are the so-called interior-point methods. Along this work, we have made use
of them within the CVXPY package, in particular when using the embedded conic solver
ECOS for second order cone problems (SOCP). Formally,

Minimize: f0(x) (148)

subject to:

fi(x) ≤ 0, i = 1, ...,m

Ax = b

where f0, ..., fm : Rn → R are convex and twice continuously differentiable, and A ∈ Rp×n

with rank A = p < n. We assume that the problem is solvable and strictly feasible, [131].
Interior-point methods solve the problem using a barrier function to reduce the problem 148
to a series of linear equality constrained problems, each approximately solved by Newton’s
method. The idea of the barrier function is to make the inequality constraints implicit in
the objective:

Minimize: f0(x) +
m∑
i=1

−(1/t)log(−fi(x)) (149)

subject to:

Ax = b

where t > 0 is a parameter that sets the accuracy of the approximation. The larger the
value of t, the more accurate is the approximation. The objective here is convex, since
−(1/t)log(−u) is convex and increasing in u, and differentiable. The barrier function

φ(x) = −
m∑
i=1

log(−fi(x)) (150)

has domain domφ =
{
x ∈ Rp×n|fi(x) ≤ 0, i = 1, ...,m

}
, which is the set of points that

satisfy the inequality constraints of 148 strictly. The problem 149 is just an approximation
of the original problem, and the quality of the approximation improves as the parameter t
grows. On the other hand, when t is too large, the objective function is difficult to minimize
by Newton’s method, since its Hessian varies rapidly near the boundary of the feasible set.
This problem is circumvented by solving a sequence of problems of the form 151, increasing
t at each step, and starting each Newton minimization at the solution of the problem for the
previous value of t, thereby by a sequence,

χk+1 = χk − χk∆χk, k = 0, 1, 2... (151)
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with χk = (xk, yk, sk, zk), being x and y the optimized variables of the primal and dual prob-
lems, respectively, and s and z the slack variables associated to its inequality constraints. ∆k

yields a particular search direction found by solving one or more linear systems, and αk > 0
is a step length found by line search, [130].

In path-following algorithms, iterates 151 loosely track the central path. Assuming that the
problem 149 is solvable by Newton’s method, and that for each t > 0 there is a unique
solution x∗(t), [131], the central path points are characterized by the following necessary
and sufficient conditions:

• x∗(t) is strictly feasible, i.e, satisfies Ax∗(t) = b, fi(x
∗(t)) ≤ 0, i = 1, ...,m

• There exists a ν̄ ∈ R s.t

0 = t∇f0(x∗(t)) +∇φ(x∗(t)) + AT ν̄ = t∇f0(x∗(t)) +
m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) + AT ν̄

(152)
holds

We can give a simple geometric interpretation of the centrality condition for the case of a
inequality form linear programming, i.e an optimization problem with only linear inequal-
ity constraints, but not equality ones. At a point x∗(t) on the central path the gradient
∇φ(x∗(t)), which is normal to the level set of φ through x∗(t), must be parallel to c. In
other words, the hyperplane cTx = cTx∗(t) is tangent to the level set of φ through x∗(t). An
example is presented in figure 36.
From the second condition listed, every central point yields a dual feasible point, and hence
a lower bound on the optimal value p∗. Concretely, define

λ∗i (t) = − 1

tfi(x∗(t))
, i = 1, ...,m, ν∗(t) = ν̄/t (153)

and claim that the pair λ∗(t), ν∗(t) is dual feasible.
Only the basic aspects common to all interior point methods have been presented here. In
particular, most of the calculations performed during this thesis have primarily used primal
dual methods, [130]. These are characterized by updating both primal and dual variables at
each iteration, and the search direction ∆χk is obtained from Newton’s method, applied to
the the modified KKT equations. For a detailed mathematical description of this and other
interior point methods see [131][130] and references therein.
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Figure 36: Central path for a linear problem with n = 2 and m = 6. The dashed curve
show three contour lines of the logarithmic point x∗ as t → ∞. Also shown is the point
on the central path with t = 10. The centrality condition 152 at this point can be verified
geometrically: The line cTx = cTx∗(10) is tangent to the contour line of φ through x∗(10)

A.7 Disciplined Convex Programming (DCP)

Disciplined convex programming (DCP) is a system for constructing mathematical expres-
sions with known curvature from a given library of base functions and sets (atoms). The
convex optimization package used in this thesis, CVXPY, [119], uses DCP to ensure that the
specified optimization problems are convex. For this reason, we consider necessary to ded-
icate an specific appendix to discuss this methodology. Instead of constructing constraints
and objective functions without an advance regard for convexity, DCP consists of an atom
library of functions and sets, whose properties of shape (convex/concave/affine), monotonic-
ity and range are explicitely declared, and a ruleset, based on basic principles of convex
analysis, that governs how atoms, variables, parameters and numeric values can be com-
bined to produce convex results. The rules provide a set of sufficient conditions to guarantee
that any problem constructed in accordance with the the ruleset is convex. Nevertheless,it
could happen that a mathematical convex problem is not a valid DCP, so that they have to
be rewritten to comply with the ruleset, or this itself and the atoms need to be enlarged. A
concrete example of this is shown in Figure 37.
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Figure 37: The variable x has affine curvature and unknown sign. The square function is
convex and non-monotone for arguments of unknown sign. It can take the affine expression
x as an argument; the result square(x) is convex. The arithmetic operator + is affine and
increasing, so the composition 1 + square(x) is convex by the curvature rule for convex
functions. The sqrt function is concave and increasing, which means it can only take a
concave argument. Since 1 + square(x) is convex, sqrt(1 + square(x)) violates the DCP
rules and cannot be verified as convex. In fact, sqrt(1+square(x)) is a convex function of x,
but the DCP rules are not able to verify convexity. If the expression is written as norm2(1, x),
the L2 norm of the vector [1, x], which has the same value as sqrt(1 + square(x)), then it
will be certified as convex using the DCP rules, [160]

We will present a list of top-level rules, which will form the skeleton of any DCP. From these,
further convex analysis knowledge can be applied to restrict the composition of functions.
The extension and elements of the atom library also need to be discussed but we will omit
this as it is out of the purpose of this work. For a more detailed treatment of the subject we
remit the reader to [160].

Problem types :

• T1 Minimization: convex objective and convex constraints

• T2 Maximization: concave objective and convex constraints;

• T3 Feasibility problem : no objective and one or more convex constraints.

Constraints:.

• T4 Equality constraint with affine-left and right-handed expressions

• T5 Inequality of type (<,≤), with a convex left-hand expression and concave right-
hand expression;
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• T6 Inequality of type (>,≥), with concave left-hand expression and a convex right-
hand expression;

• T7 Set membership constraint (lexp1, ..., lexpm) ∈ cset, where m ≥ 1, lexp1, ..., lexpm
are affine expressions, and cset is a convex set.

Figure 38: Valid constraints

Further top-level expressions refer to constant expressions and assertions. Constant expres-
sions involve numeric values and/or problem parameters (T8), while non-constant expres-
sions depend on the value of at least one problem variable, and assertions refer to constraints
involving only constant expressions (like Boolean expressions, T9). Finally, if a function or
set is parameterized, then those parameters must be valid constant expressions, T10.

B Appendix B

B.1 Introduction to Information theory

Information theory was originally formulated by Shannon (1948) as a theory of communi-
cation: specifically, the transmission of a signal of some given complexity over an unreliable
channel, such as a telephone line corrupted by a certain amount of noise [19]. Nowadays,
Information theory is understood within Probability theory. In particular, it emphasizes
over some properties of probability distributions (more generally, of probability measures)
that are independent of how those distributions are represented. The most fundamental of
this properties is the entropy, formulated by Shannon based on the already known physical
thermodynamical entropy. In Information theory, the entropy quantifies the amount of un-
certainty involved in the value of a random variable or the outcome of a random process.
Precisely, for a discrete probability distribution P (X), it is defined as,

H(P ) = −
n∑

x∈X

P (x)logbP (x) (154)

The logarithm of the probability distribution is useful as a measure of entropy because it
is additive for independent events or sources. b is the base of the logarithm used, and it
represents the units in which the information over the random variable is encoded. Some
common values are:

• b = 2 → bits

• b = e → nats
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• b = 10 → bans

In this thesis we have used natural logarithms (b = e). The fact that we are using natural
logarithms is justified because we have dealt with physical processes and probability distri-
butions based on thermodynamical assumptions, whose formulation is done using natural
logarithms (to define the physical measurable quantities).

B.2 Proofs of theorems 1 and 2

Proof of theorem 1:

This proof is due to Pollard’s [162].

We’ll use this relation

(1 + t) log(1 + t)− t ≥ 1

2
· t2

1 + t/3
, t ≥ −1 (155)

There is no loss of generality in assuming that

sup
x∈X

p(x)

q(x)
<∞

since otherwise DKL(P,Q) =∞ and the claim is vacuously true. Assuming this, we can take
p(x) = (1 + r(x))q(x) where r(x) = p(x)/q(x)− 1 ≥ −1. Now, using the following relations

EX∼Q[r(X)] =
∑
x∈X

q(x)r(x) = 0 (156)

EX∼Q[|r(X)|] =
∑
x∈X

q(x)|r(x)| = ‖P −Q‖1 (157)

DKL(P,Q) = EX∼Q[(1 + r(X)) log(1 + r(X))− r(X)] (158)

Combining equations 155 and 158 we get

DKL(P,Q) ≥ 1

2
EX∼Q

[
r(X)2

1 + r(X)/3

]
(159)

Now 157 implies EQ[1 + r(X)/3] = 1, and hence

DKL(P,Q) ≥ 1

2
EQ
[

r(X)2

1 + r(X)/3

]
EQ[1 + r(X)/3] (160)

Now, using the Cauchy-Schwarz inequality:

(EQ[f(X)g(X)])2 ≤ EQ
[
f(X)2

]
EQ
[
g(X)2

]
(161)
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Taking f(x) =
√
r(x)2/(1 + r(x)/3) and g(x) =

√
1 + r(x)/3, we have

DKL(P,Q) ≥ 1

2
EQ
[
f(X)2

]
EQ
[
g(X)2

]
≥ 1

2
(EQ[f(X)g(X)])2

=
1

2

(
EQ

[
|r(X)|√
1 + r(X)2

·
√

1 + r(X)2

])
=

1

2
(EQ[|r(X)|])2

=
1

2
‖P −Q‖2

1

where the last equality follows from 157.

Proof of theorem 2:

The χ2 divergence can be written as

Dχ2(P,Q) =
∫
X dQ

(
dP
dQ

)2

− 1,

and by the concavity of the logarithm, reminding that

logx ≤ x− 1 , ∀x > 0,

the RHS inequality can be directly proven,

Dχ2(P,Q) ≤ log(Dχ2(P,Q) + 1)

For the LHS inequality, using that E[f(x)] ≤ f(E[x]) for f concave,∫
X
dP log

(
dP
dQ

)
≤ log

(∫
X dQ

(
dP
dQ

)2
)

so that

DKL(P,Q) ≤ log(Dχ2(P,Q) + 1)

and the theorem is proven.

C Appendix C

C.1 Statistics of DM discovery and upper limits

C.1.1 Poisson statistics

Dark matter searches consist in detectors counting events and measuring their recoiling
energies. The probability to observe n events for an expected value of µ is given by the
Probability Mass Function (PMF) of the Poisson distribution,

P (n|µ) =
µn

n!
e−µ (162)
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If a set of parameters predicts that a experiment should have observed more events than it
actually did with a certain Confidence Level (CL), then this point is excluded at that CL.

CL = P (n > N |µ) =
∞∑

n=N+1

µn

n!
e−µ = 1− CDF(N |µ) (163)

For a given dark matter mass, we find the cross section σDM corresponding to the value of
µa determined by equation 163. The simplest way is to choose a reference cross section σref ,
compute the number of events Nref and find the upper bound at confidence level CL by

σDM <
µCL
Nref

σref (164)

So that we need to solve CDF (N |µCL) = (1 − CL) for µCL at a given CL and number
of observed events N . With the exception of N = 0, the Poisson Cumulative Distribution
Function (CDF) can not simply be inverted, but it can be expressed in terms of incomplete
gamma functions, [164]

CDF(N |µ) = e−µ
N∑
n=0

µn

n!
=

Γ(N + 1, µ)

N !
≡ Q(N + 1, µ) (165)

were the incomplete gamma function is given by,

Γ(s, x) ≡
∫ ∞
x

dt ts−1e−t (166)

and can be solved numerically for µCL by usual optimization packages in most programming
languages. Poissonian statistics assumes no knowledge about the expected spectrum or the
background of the experiment and interprets all observed events as a dark matter signal
of equal significance. Therefore, the results are the most conservative ones, see Figure 40.
The main caveat is that poissonian statistics assigns the same relevance to all recoil events,
independently of their energy, while the expected spectrum of experiments is not constant
but rather changing and supressed at some specific energies due to the presence of the form
factors F (ER), as we discussed in the section of inelastic dark matter 7.2.

C.1.2 Yellin Methods

If one knows the background of the experiment, methods based on likelihood, such as the
Feldman-Cousins, [163], or Bayesian analysis, take into account the information encoded in
the expected energy spectrum. S. Yellin proposed an alternative for experiments with no
knowledge about the backgrounds a priori, since the likelihood associated with an unknown
background is unknown, [133].

The Maximum Gap method, see Figure 39, excludes a cross section σ as being too high
if most random experiments would give smaller maximum gaps, where the maximum gaps
correspond to the largest differential recoil rate integration between any two events. The
function C0 equals the desired level of confidence,
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C0(x, µ) =
m∑
k=0

(kx− µ)ke−kx

k!

(
1 +

k

µ− kx

)
(167)

where x is the size of the maximum gap of a random experiment and µ is the total expected
number of events. C0 is defined as the probability of of the maximum gap size being smaller
than a particular value of x.

Figure 39: Illustration of the Maximum gap method

Yellin points out in his original paper, [133], that this method is particularly suited for sit-
uations of having a few events in the part of the energy range that seems relatively free of
backgrounds, (small µ). Nevertheless, it can be used for an arbitrary number of events and
we have noticed in our own implementation for the CRESST experiment that it yields a
significant difference with respect to poissonian statistics, see Figure 40.

If there is a high density of events in the data, it would be useful to consider not only the
spectral information given by maximum interval over which there is 1 event observed, but 2,
3...up to µ. By this means generalizes Yellin the Maximum Gap method to the Optimum
interval method, where know the condifence level is given by the function Cn(x, µ), being
the probability, for a given cross section without background, that all intervals with less than
n events have their expected number of events less than x, and can be computed via Monte
Carlo methods. This is the technique from which CRESST II and CRESST III offical limits
are published, and differ little from our implementation of the Maximum Gap method, see
Figure 40.

C.2 DDCalc-2.2.0 software : Implementing CRESST III

The DDCalc software package, [134][135] is a set of routines and a frontend for doing various
dark matter direct detection calculations for several experimental results, including Pois-
son likelihoods (binned and unbinned). Most of the calculations appearing in this Thesis
have been performed within DDCalc or using DDCalc as the reference software for results
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comparisons. For this purpose, it was necessary to implement the CRESST-III experiment
in the software package for its proper use. This was done this with the help of Andreas
Rappelt and Felix Kahlhoefer and appears as a new feature in the latest release of the
software DDCalc-2.2.0. We strictly use the published CRESST-III data, and account for
a finite energy resolution, energy threshold, and cut-survival probability in the expected
WIMP spectrum according to the CRESST collaboration in [136]. The prediction of differ-
ent models pmodel(E) is corrected to be comparable to the energy distribution measured by
the detector in reconstructed energy p̄(Ereco),

p̄(Ereco) = θ(Ereco − Ethr,reco) · ε̄ · εx,Acc(Ereco) ·
∫ ∞

0

pmodel(E) · N (Ereco − E, σ2
p)dE (168)

where N (Ereco − E, σ2
p) is a normal distribution with width σp being the resolution of the

phonon detector for the convolution accounting for finite energy resolution. ε̄ is the cut-
survival probability that accounts for the loss of the signal events from applied data selection
criteria, and εx,Acc is needed if an acceptance region is defined. θ(Ereco − Ethr,reco imposes
a lower cut off due to the energy threshold. Unlike CRESST-III experimental collaboration
analysis, we did not perform an Analysis based on the Yellin’s optimum interval method,
but a binned likelihood analysis. The Poisson likelihood for the model is

Li(Np,i|No,i) =
(bi +Np,i)

No,ie−(bi+Np,i)

No,i!
(169)

where Np,i is the number of predicted signal events in the analysis region, No,i is the number
of observed events, and bi is the expected number of background events in that region. We
assume no background model for the CRESST experiment, so that all events in the accep-
tance region are considered signal events. This yields a conservative limit and is consequent
with the CRESST collaboration Yellin’s Maximum gap/optimum interval method. In this
case, bi should be set to the value that maximizes the likelihood:

bi =

{
No,i −Np,i, No,i > Np,i

0, No,i ≤ Np,i
(170)

This leads to a one-sided likelihood, i.e. a non-zero WIMP signal can only be disfavoured
but not preferred relative to the background-only hypothesis. Lastly, the likelihood function
can be used to obtain an exclusion limit in the σ − mχ plane. A point in the parameter
space is excluded at 90% confidence level if

2logL(σ = 0)− 2logL(σ,mχ) > 1.64. (171)

We notice that DDCalc spin independent CRESST III limits present a small disagreement
agreement at masses mχ ≥ 5 GeV w.r.t to the optimum interval method, see Figure 40. The
disagreement at large masses is probably a result of stopping the analysis window at 1 keV
along with the stronger constraining power of the optimum interval method for accounting
small gaps. Still, this disagreement is not very relevant since above 3 GeV other direct
detection experiments are currently much more constraining than CRESST III. Surprisingly,
the likelihood background-free analysis of DDCalc yields slightly more agressive results than
CRESST III official ones obtained with the Optimum interval method. We notice that the
CRESST collaboration numerous cases of contacts from people unable to reproduce their
limits exactly, so we are just one among those, [136].
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Figure 40: CRESST-III σ −mχ exclusion limits for the spin independent (upper left) and
spin dependent (upper right) cases. The dotted line represents the collaboration limit while
the continuous one shows the DDCalc binned-likelihood analysis result. The results for spin
independent at CRESST-II are shown in the lower panel.
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[158] F. Kahlhoefer, F. Reindl, K. Schäffner, K. Schmidt-Hoberg, S. Wild, Model-
independent comparison of annual modulation and total rate with direct detection ex-
periments, JCAP 1805 (2018) no.05, 074, https://arxiv.org/abs/1802.10175.

[159] E. Ramos Méndez, Programación lineal y entera, Ediciones Académicas S.A., UNED.
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