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Abstract

Gamma-ray bursts (GRBs) are short and intense flashes of radiation. While the
prompt emission spectrum of GRBs peaks in the γ-ray band, the following so called
‘afterglow’ of GRBs is detected in the X-rays, optical and radio wavelengths. GRBs are
most likely resulting from the death of massive stars or the merger of two neutron stars.
Their duration is measured in seconds. According to the internal-external shock model,
the prompt emission is produced by internal shocks and the afterglow by a shock wave
moving into the external medium.

A recent open issue is the origin of an observed rebrightening in some GRB af-
terglow light-curves. The so called jump component of the GRB light-curve can be
explained by the collision of a late ejected blast wave with the forward shock. Dur-
ing the collision, heat energy is produced which is converted into additional radiation.
During this thesis, a hydrodynamic model is tested which simulates the collision of two
shells and the resulting light-curves. The created light-curves are compared to optical
data of GRB 100621A which was observed with GROND. A general parameter study
is performed, in which the influence of each parameter describing the characteristics
of the shells, the external medium and the physical setting at the shock front on the
simulated light-curves is explored. By using the results of the parameter study, it is
possible to obtain a precise first estimate for all input parameters of the model, which
can be further refined. The best-fit model for the light curve of GRB 100621A yields a
χ2 value of 10.
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1 Introduction

1.1 Gamma ray bursts and their afterglow

After their discovery by military satellites in 1967 (Klebesadel et al., 1973), the origin and mecha-
nism of gamma-ray bursts (GRBs) became an important new research area in astrophysics. With
luminosities of up to 1054 ergs−1 (Frederiks et al., 2013), GRBs are the brightest explosions known
in the universe, and thus carry important information about the high-redshift universe.

In order to obtain information about the characteristics and origin of GRBs, their light-curves
and spectra are observed and studied. The prompt emission of GRBs peaks in the γ-ray regime
and is followed by a broad-band afterglow which can be detected for days or even weeks in the
X-ray, optical and radio wavelengths. On average, GRBs occur at a rate of a few per day. Early
observations indicated that GRBs are isotropically distributed on the sky. Thus, the first theory
that GRBs originate from the galactic center was rejected and the GRB’s extragalactic origin could
be finally confirmed by measuring their high redshifts of z = 1 or more (Metzger et al., 1997).

Gamma-ray bursts can be classified by their duration into short (< 2 s) and long (> 2 s) GRBs
(Kouveliotou et al., 1993). Most models of short GRBs assume that their progenitors are compact
binary systems consisting of a black hole and a neutron star (BH-NS) or two neutron stars (NS-NS).
This theory was confirmed by the joint detection of a gravitational wave (GW 170817) originating
from a neutron star merger and a short GRB (Abbott et al., 2017). Although the observation
does not prove that all short GRBs originate from the coalescing of two compact objects, at least
a fraction do. The first gamma-ray burst associated with a supernova event was GRB 980425
(Galama et al., 1998), but best evidence for the collapsar model was given by the combined
measurement of GRB 030329 and the supernova SN 2003dh five years afterwards (Hjorth et al.,
2003). During the core collapse or the merger scenario, gravitational energy is released on timescales
of milliseconds inside a volume of the order of kilometers cubed (Mészáros, 2006). A fraction of
the freed energy is converted into a high temperature fireball consisting of electrons, positrons,
photons and baryons and expands relativistically into the external medium (Piran, 1999). In both
the binary merger and hypernova scenario, a black hole with a surrounding accretion disk is created
which evolves into the central engine of the outburst. The following relativistic explosion creates a
relativistic jet of material which is pumped into the external medium. According to the internal-
external shock model, the prompt emission of GRBs originates from internal shocks within the
created fireball which occur when matter ejected from the central engine at different times collide
far from the source. Thus, the prompt emission of a GRB can be described by multiple two-shell
collisions. In contrast to the prompt emission, the secondary afterglow originates from the external
shock with the circumburst medium which is produced when the fireball starts to decelerate in
the external medium. The canonical afterglow can therefore be explained by the collision of one
shell with the external medium during which the blast wave’s kinetic energy is dissipated and
transformed to kinetic energy of the circumburst medium and plasma heat, which is ultimately
radiated. Figure 1 shows an artist’s impression of this standard fireball model of GRBs.

Most radiation models for GRB afterglows are based on synchrotron emission originating from
relativistic electrons which are accelerated in a magnetic field at the forward shock front. Sari
et al. (1998) describe the observed emission with a spectrum consisting of four power-law segments

Fν ∝ t−αν−β (1)

with different exponents α and β, t is the observed time after the burst trigger and ν is the
frequency (see Fig. 2). The segments are separated by three characteristic break frequencies:
the self-absorption frequency νa, the typical synchrotron frequency νm and the cooling frequency
νc. Below νa, the effects of synchrotron self-absorption are dominant and the medium becomes
optically thick. Highly energetic electrons cool more rapidly than less energetic electrons. Above
νc, the effects of electron cooling become perceivable. Depending on the order of νm and νc in the
spectrum, two different cases are distinguished, the ‘fast cooling case’ with νc < νm is expected at
early times and the ‘slow cooling case’ with νm < νc at later times.
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Figure 1: Artist’s impression of the standard model of the formation of a GRB. Originating from
a hypernova or from the merger of two compact objects (NS-NS or BH-NS), a black hole is formed
with a surrounding accretion disk. The central engine blows out a jet of matter into the interstellar
medium. While the prompt emission is created via internal shocks within the outflow, the following
afterglow is produced by external shocks with the circumburst medium. Figure taken from Gehrels
et al. (2002).

The accelerated electrons with random Lorentz factor γe at the shock front radius are assumed to
have a minimal Lorentz factor γm and a power-law distribution with index p,

N(γe) ∝ γ−pe , γe > γm. (2)

Furthermore, Sari et al. (1998) assume that a fraction εe of the shock energy is transferred to the
accelerated electrons leading to

γm = εe
p− 2

p− 1

mp

me
γ (3)

and that the magnetic energy density is a fraction εB of the shock energy, giving

B =
√

32πmpεBnγc, (4)

where γ denotes the Lorentz factor of the shocked fluid. Here, c is the speed of light, mp the proton
mass and n is the particle density of the external medium. The power P of synchrotron radiation
produced by an electron moving with a random Lorentz factor γe in a magnetic field with strength
B is in the observer frame given by

P (γe) =
4

3
σTcγ

2γ2
e

B2

8π
, (5)

with σT the Thomson cross-section. The corresponding emission frequency is

ν(γe) = γγ2
e

qeB

2πmec
, (6)

where qe and me are the charge and mass of the electron respectively. The hydrodynamics are
described in this model by the self-similar Blandford & McKee (Blandford & McKee, 1976) solution.
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Figure 2: Model of a synchrotron spectrum created by electrons in a relativistic shock that have
a power law energy distribution with index p. The four power-law segments are separated by the
three break frequencies νa, νm and νc. (a) Fast cooling case, which is expected at early times.
For the adiabatic evolution, the change of the break frequencies with time is indicated above the
arrows and for the fully radiative case in squared brackets underneath the arrows. (b) Slow cooling
case, which is expected at late times and in which the evolution is always adiabatic. Figure taken
from Sari et al. (1998).
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The blast wave propagates into an external medium with density

ρext = mpn

(
R

Rref

)
r−k, (7)

where mp is the proton mass and n the normalized particle density at radius Rref . The case
with k = 0 corresponds to an interstellar medium (ISM) with constant density, and k = 2 to an
external medium which is dominated by the progenitor’s strong wind. For both external medium
cases, under the assumption that radiative losses are small and for different chronological orders
of the break frequencies, Granot & Sari (2002) give a full and detailed description of all possible
spectra (see Appendix B). The flux density is calculated by integrating over all contributions of
created photons which reach the observer from the shocked region. Observations of the broad-
band spectra of GRBs always aim to measure all break frequencies and their evolution. This
measurement requires observations from different telescopes in different wavelengths to overlap in
time which is not often possible. The comparison of observed spectra and light-curves to emission
models can determine many of the microphysical parameters used to explain the formation of a
GRB.

A current open issue is the measurement of late rebrightenings in GRB light-curves (Nardini et al.,
2011; Greiner et al., 2013; Nardini et al., 2014). One explanation of the sudden late flux increase
is the collision of a late ejected shell with an earlier ejected shell which is decelerating into the
external medium. During this thesis, a hydrodynamic model created by Philip Straub was tested
(Straub, 2019). The fully adiabatic model is coupled to a radiation code (van Eerten, 2010; van
Eerten et al., 2012) to simulate the resulting light-curves. The produced light-curves are compared
to data of GRB 100621A which was observed with the Gamma-ray Burst Optical/Near-infrared
Detector (GROND). A parameter study is performed to obtain physical parameters describing the
formation of the GRB.

1.2 Multi-wavelength observations of GRB 100621A

The aim of broad-band GRB observations is always to measure the full synchrotron spectrum at
different times after the trigger in order to obtain all break frequencies and their evolution. As
the spectrum is changing with time, it is important to take spectra with instruments in different
wavelength regimes simultaneously, which can be very challenging. Up until now, the identification
of all break frequencies and their evolution from measured spectra has been possible for only a
handful of GRBs. By obtaining the full synchrotron spectrum at different times and by comparing
it to a model as the one of Granot & Sari (2002), it is possible to determine the corresponding
six microphysical parameters: the kinetic energy of the blast wave E1, the shape of the external
medium described by k, the density of the external medium n normalized by Rref , the spectral
index p and the fraction of energy imparted to the magnetic field εB and to the electrons εe.
Furthermore, the model of Granot & Sari (2002) is only applicable when the redshift z of the
GRB is measured which is primarily determined by absorption spectroscopy of the GRB’s optical
afterglow. GRB 100621A was one of the only GRBs for which the redshift z was obtained and
comprehensive broad-band observations were performed, especially in the optical wavelengths with
GROND (Greiner et al., 2008). The full data set of GRB 100621A was analyzed and presented in
Greiner et al. (2013).

The Burst Alert Telescope (BAT) on the Swift satellite (Gehrels et al., 2004) was triggered by
GRB 100621A on June 21, 2010 at 03:03:32 UT (Ukwatta et al., 2010). The bright prompt emission
was detected for 70 s and after 76 s, the X-Ray Telescope (XRT) and UltraViolet and Optical
Telescope (UVOT) on board the Swift satellite began to take data. GRB 100621A had the brightest
X-ray afterglow of all observed GRBs so far. From a spectrum taken with X-Shooter at the Very
Large Telescope (VLT), a redshift of z = 0.542 was obtained (Milvang-Jensen et al., 2010). In a flat
universe with H0 = 69.6 kms−1Mpc−1, ΩM = 0.286 and ΩΛ = 0.714, the redshift corresponds to a
luminosity distance of DL = 9.74 × 1027 cm. Additional observations with Konus-WIND and the
INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) allowed for measurements of
a time-integrated spectrum, from which an isotropic energy release of Eiso = (2.8± 0.3)× 1052 erg

4
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Figure 3: X-ray (top) and optical (bottom) afterglow light-curves of GRB 100621A as observed
with Swift and GROND in its seven bands (g′r′i′z′JHKs). The vertical lines depict the times at
which spectral energy distributions were measured. Figure taken from (Greiner et al., 2013).

was determined (Golenetskii et al., 2010). Furthermore, observations with the Atacama Pathfinder
Experiment (APEX) and the Australia Telescope Compact Array (ATCA) in radio wavelengths
were performed. Spectral energy distributions (SEDs) measured with GROND revealed a strong
host extinction of AV = 3.6 mag (Krühler et al., 2011) which had to be corrected for in the data
used during the thesis.

The optical light-curve used during this thesis was observed with GROND, a simultaneous seven-
channel optical/ near-infrared imager which is located at La Silla in Chile (Greiner et al., 2008). The
telescope is operated by the Max-Planck-Gesellschaft (MPG) and the European Southern Observa-
tory (ESO). GROND allows simultaneous imaging in four optical (g′r′i′z′) and three near-infrared
bands (JHKs). A 3.05 hrs long exposure of GRB 100621A with GROND started automatically
230 s after the GRB was triggered by Swift (Updike et al., 2010). More observations with GROND
were made during nights 2, 4 and 10 after the Swift trigger. The X-ray afterglow light-curve of
GRB 100621A as observed by Swift and the optical light-curves measured with GROND in its
seven filter bands are shown in Figure 3. Approximately one hour after the prompt emission, a
late rebrightening in the light-curve was measured in all seven optical bands of GROND. This
sudden flux increase is not visible in the X-rays. In the following, the sudden jump in flux is called
the jump component of the GRB and is explained by the two-shell collision model constructed in
previous work by Straub (2019). The comprehensive observations of GRB 100621A, especially the
extensive measurements in the optical regime with GROND (Greiner et al., 2008), make the GRB
a perfect probe for testing the created two-shell collision model.

5
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Figure 4: Spectral energy distributions (SEDs) of GRB 100621A which were measured at different
times indicated by different colors. The times at which the SEDS were measured are marked with
vertical lines in Figure 3. Radio data (on the left) was measured with APEX and ATCA, optical
data (in the middle) with GROND, X-ray data (on the right) with Swift. The curvature of the
GROND and Swift data is due to strong host extinction (indicated by dotted lines), which has to
be corrected for in the measured light-curves. For each time interval, a model which fits to all data
points is shown with continuous lines in the corresponding color. Figure taken from Greiner et al.
(2013).

From the beginning of the observations with GROND to around 400 s, the optical light-curve rises
rapidly. Between 400 and 700 s after the burst, the light-curve becomes almost flat which is likely
due to flares. From about 700 to 3000 s, the flux decreases and after a short flattening, a steep
rise in flux F ∝ t14 (Greiner et al., 2013) was measured between 5 and 6 ks. The intensity jump is
larger in the NIR bands than in the optical and is not visible in the X-rays (see Fig. 3). Following
the intensity jump, the flux decreases at first slowly between 5 and 9 ks and then decays steeply
until after 105 s, the light-curve flattens to reveal the flux of the host galaxy of the GRB.

In Figure 4, the measured SEDs at different times are shown. The data set which was measured
at a specific time is indicated by the same color. The times at which the SEDs were measured are
marked by vertical lines in Figure 3. The optical data observed with GROND is not AV corrected
and thus, appears as curved. For each time, a synchrotron model which fits to all data points
is shown with continuous lines. Initially, the spectrum measured in the first 1 ks with GROND
was fit independently with a power-law function F ∝ ν−β which yielded a best-fit spectral slope
of β = 0.8 ± 0.1 (Greiner et al., 2013). By comparing the result to the theoretical predictions of
Granot & Sari (2002) (see Appendix B), the fast cooling case (spectrum 4 and 5) could be excluded
at any time because the measured spectral slope is larger than the predicted slope of β = 0.5 for
the fast cooling case (as shown in Figure 2a). While for spectra taken at early times after the
Swift trigger, a single power law fit is sufficient for the combined X-ray and optical data, for later
measured SEDs, a spectral break in between the X-ray and optical data has to be introduced. As
the measured slope difference of 0.6± 0.2 between the new power law segments is consistent with
the predicted 0.5, the spectral break is identified as the cooling frequency νc (see Figure 2a). That
the spectral break νc only occurs in SEDs measured at later times and that the spectral slope of
the SEDs in X-rays steepens with time, is consistent with the theory that νc moved from higher
to lower energies, which is only the case for an ISM with a constant density circumburst medium
(k = 0). The corresponding electron spectral index is p = 2.62 ± 0.04. The radio data observed

6
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Figure 5: Best fit spectral energy distribution of the canonical afterglow of GRB 100621A (y-axis
in units of mJy). The frequency regimes which were covered by the different observations are
colored in grey. The optical data observed with GROND has the same spectral slope as the X-ray
data observed with XRT. Figure taken from Greiner et al. (2013).

Figure 6: Constraints on the parameters describing the microphysical setting at the front of the
external shock originating from the best-fit spectrum. Points on the grid, which fulfill the five
constraints mentioned in the text, are marked with circles. Colors correspond to a specific kinetic
energy. Adapted figure from Greiner et al. (2013).

7
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with ATCA implies that the self absorption frequency has to be smaller than 5.5 GHz, which leaves
‘spectrum 1’ from Granot & Sari (2002) as the only option to describe the observed SED. The best
fit spectrum for the canonical afterglow is depicted in Figure 5.

The comparison of the observed spectrum to ‘spectrum 1’ of Granot & Sari (2002) provides four
constraints on the break frequencies νc and νm and the corresponding flux,

1) νc > 4 keV,

2) νm < 1014 Hz,

3) F (νc) < 35 µJy,

4) F (νm) > 9 mJy,

Using the equations in line 2 and 3 of Table 2 of Granot & Sari (2002) and the measured value
p = 2.62± 0.04, the constraints yield the following four conditions,

1) ε
−3/2
B n−1E

−1/2
52 > 2.82× 104,

2) ε̄e
2ε

1/2
B E

1/2
52 < 6.46× 10−6,

3) ε̄e
1.62ε2−12

B n1.31E1.81
52 < 7.17× 10−9,

4) ε
1/2
B n1/2E52 > 0.195,

where n is in units of cm−3, ε̄e = (p − 2)/(p − 1)εe and E52 is in units of 1052 erg. As a fifth
condition, which was added during this thesis, the flux density of F (νc) and F (νm) have to lie on
the same power law with β = 0.8 ± 0.1 as shown in Figure 5. All combined constraints for the
microphysical parameters from the canonical afterglow are shown in Figure 6. A grid of points
was created and the points of the grid which fulfill all five constraints are marked with circles.
The different colored circles belong to a specific kinetic energy E. As a result, for one specific
energy, there are always infinitely many possible combinations of n, εB and εe, which all have a
similar light-curve as a result. Thus, the parameters n, εB and εe are ambiguous and cannot be
independently determined.

8
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2 Theoretical framework

This Chapter contains the theoretical framework of the model constructed by Straub (2019). In
the first part, the most important equations of relativistic hydrodynamics are summarized and in
the second part, it is explained how the relativistic hydrodynamics theory is used to create a model
which can explain the late rebrightenings in the optical light-curves. All simplifications required
to create efficient simulations are fully detailed.

2.1 Relativistic hydrodynamics

To describe the properties of the relativistic blast wave, the external shock (between the relativistic
ejecta and the interstellar medium) and the shock produced when two shells collide, relativistic
hydrodynamics is needed. In the following, a locally Minkowski metric with natural units (c = 1)
is used,

ηµν = diag(1,−1,−1,−1). (8)

The 4-velocity is defined as

uµ :=
dxµ

dτ
, (9)

with τ the fluid proper time and xµ = (t, xi). The metric signature requires that

uµuµ = 1. (10)

The derivative of the coordinate time with respect to the proper time is the Lorentz factor γ, from
which the 4-velocity may be written as

uµ = γ

(
1

~β

)
(11)

with ~β the velocity vector.

2.1.1 Perfect relativistic fluids

In the model created by Straub (2019), all hydrodynamic calculations are based on the motion of
perfect relativistic fluids. For perfect fluids, an inertial reference frame exists, in which the fluid is
isotropic. In this so-called local rest frame, the fluid velocity 4-vector can be written (with c = 1)
as

uµ = (1,~0)T . (12)

In general, the energy-momentum tensor is defined as

Tµν = (e+ p)uµuν − pηµν . (13)

Perfect fluids are only characterized by their density and pressure. For perfect relativistic fluids,
the energy-momentum tensor is diagonal in the local rest frame,

Tµν =


e 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (14)

with p the pressure of the fluid and e the energy density in the local rest frame, as in Rezzolla &
Zanotti (2013). Viscous effects and heat fluxes are zero for perfect fluids. The mass flux in the µ
direction is defined by

Jµ = ρuµ. (15)

9
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The relativistic motion of a perfect fluid can be obtained from the relativistic hydrodynamic equa-
tion, namely the conservation of rest mass,

∂µ(Jµ) = ∂µ(ρuµ) = 0 (16)

and the conservation of energy and momentum,

∂µT
µν = ∂µ [(e+ p)uµuν − pηµν ] = 0, (17)

which yield five equations (mass conservation, energy conservation for µ = 0 and momentum
conservation for µ = 1, 2, 3) for six unknowns, the three components of the 4-velocity (the fourth
component is determined by the normalization condition in equation 10), the mass density ρ, the
pressure p and the energy density e. A sixth equation is given by the equation of state,

p = (a− 1)(e− ρ), (18)

where a is the adiabatic index, which equals 4/3 for a hot and 5/3 for a cold fluid. Furthermore,
the relativistic specific enthalpy is defined as

h :=
e+ p

ρ
(19)

and the local rest frame enthalpy density is defined as

w := hρ = e+ p (20)

2.1.2 Shock waves and contact discontinuities

A discontinuity represents a surface which separates two regions of a fluid with an abrupt change
of one or more fluid parameters which propagates with a velocity in excess of the speed of sound.
A shock wave separates the space into two regions. The region ahead of the shock is termed
‘upstream’, and the region behind ‘downstream’. At the location of the shock, the hydrodynamic
equations are not applicable and are replaced by the so-called Rankine-Hugoniot junction condi-
tions (see e.g. Taub (1948) for the special relativistic case), which demand that rest-mass flux,
energy and momentum are conserved across the discontinuity, e.g.

J = ρaγaua = ρbγbub, (21)

ρahaγ
2
au

2
a + pa = ρbhbγ

2
bu

2
b + pb, (22)

ρahaγ
2
aua = ρbhbγ

2
bub, (23)

where J is the rest mass density current projected on the plane perpendicular to the shock and
γa and γb the Lorentz factors of the fluid on side a and b of the shock respectively (Rezzolla &
Zanotti, 2013). From the junction conditions, it is possible to compute the velocity on both sides
of the shock from the fluid parameters by

β2
a =

(pa − pb)(eb + pa)

(ea − eb)(ea + pb)
(24)

β2
b =

(pa − pb)(ea + pb)

(ea − eb)(eb + pa)
, (25)

from which the relative velocity of both fluids is given by

βab =
βa − βb
1− βaβb

=

√
(pa − pb)(ea − eb)
(ea + pb)(eb + pa)

. (26)

Contact discontinuities are a special case of shock waves with no mass flux across the discontinuity
(J = 0). Both separated zones are in pressure equilibrium, i.e. pa = pb.

10
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2.1.3 The Riemann problem for two colliding shells

The Riemann problem is a boundary value problem. The initial fluid parameters on the left and
right side of an imaginary layer at time t = 0 are given by the state vectors

ψL =


ρL

eL

βL

 , ψR =


ρR

eR

βR

 , (27)

where the valid regions of the state vectors are

ψ0(x) =

{
ψL if x < 0

ψR if x > 0
. (28)

Figure 7: Spacetime diagram of the four regions of the Riemann problem. In the case of two
colliding shells, region 3 and 3’ are separated by a contact discontinuity. Between regions 1 and 3
there is a shock wave, as between 2 and 3’. Figure taken from Rezzolla & Zanotti (2013)

For a collision to occur, i.e. to obtain a shock-shock scenario, the velocity of the second shell βL

has to be greater than the velocity of the first shell βR. When two shells collide at t = 0, the fluid
is divided into four different regions, which are separated by three different discontinuities (see
Figure 7 ). Each region has a constant density vector and is characterized by the following:

• Region 1: The state vector is described by the original state ψL.

• Region 2: The state vector is described by the original state ψR.

• Region 3 is separated from region 1 by a shock. The state vector is unknown.

• Region 3’ is separated from region 3 by a contact discontinuity (p3 = p3′ , β3 = β3′) and from
region 2 by a shock. The state vector is also unknown.

In the following, the jump conditions (Equations (21 - 23)) are used to compute the unknown fluid
quantities for every region. As the regions are propagating with different velocities, the boundaries
are defined by the relative velocities between them. By using Equations (24) and (25), the velocities
can be calculated as a function of the known fluid properties. In addition, it can be used that
the velocities of the fluids which are separated by a contact discontinuity are the same. The exact
solution of the one-dimensional Riemann problem for the fluid parameters and their velocities for
all regions was taken from Lora-Clavijo et al. (2013).

11
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2.1.4 Relativistic blast waves

Produced by a central engine after an impulsive burst of high energy, blast waves are very rapid
flows propagating into a cold medium at rest. Blast waves can be described as highly relativistic
homogeneous and spherically symmetric thin shells. The hydrodynamic properties of such a blast
wave are shown in Figure 8 (Straub, 2019). The blast wave creates a shock which separates it from
the external medium. The shock front propagates with Lorentz factor Γ.

The fluid parameters of the external medium are all dependent on the external density ρext and
are given by

ρext = ρext(r) ∝ r−k, (29)

eext = (1 + ε)ρext, (30)

pext = (a− 1)ερext, (31)

wext = (1 + aε)ρext = hρext, (32)

βext = 0. (33)

The fluid parameters behind the shock (subscript b) characterizing the blast wave can be computed
by using the junction conditions (Equations (21 - 23)) and using ρa = ρext(r), which yield in the
local rest frame

ρb = 2
√

2Γ2hρa, (34)

eb = 2Γ2wa = 2Γ2hρa, (35)

pb =
2

3
Γ2wa =

2

3
Γ2hρa, (36)

wb =
8

3
Γ2wa =

8

3
Γ2hρa, (37)

γb =
Γ√
2
, (38)

as in Blandford & McKee (1976).

The first component of the energy-momentum tensor (Equation (13)) and of the current density
(Equation (15)) are approximately given by

ε0b ≈ wbγ2
b =

4

3
Γ4hρa, (39)

µb ≈ 2Γ2ρa, (40)

which correspond to the energy and mass density of the blast wave respectively. The global energy
and mass conservation is given by

Eb = E0 + ∆E, (41)

Mb = M0 + ∆M, (42)

where ∆E and ∆M are the energy and mass collected by the blast wave from the external medium.
The collected mass can be computed as the integral over the density of the external medium,

∆M := m(R) = 4π

∫ R

0

ρextr
2dr. (43)

By assuming that the shell is homogeneous, the energy and the mass of the blast wave can be
calculated by

Eb = ε0b · V =
4

3
Γ4hρa · V = E0 + ∆E, (44)

Mb = µb · V = 2Γ2ρa · V = M0 +m. (45)

12



Late Two-Shell Collisions in GRB Afterglows Elisa Clara Schösser

Figure 8: Characteristics of a relativistic blast wave propagating into a cold external medium. The
y-axis shows the density of the different regions. Figure taken from Straub (2019).

By dividing Eb by Mb, one obtains

Eb
Mb

=
2

3
Γ2h =

E0 + ∆E

M0 + ∆M
, (46)

which yields with E0 � ∆E in the case of relativistic motion an equation for Γ as a function of
the radius R,

Γ−2 =
2h

3E0
(M0 + ∆M) = Γ−2

i +
2hm(R)

3E0
, (47)

with Γi := (3E0/(2hM0))1/2 the initial Lorentz factor. The equation can be solved numerically to
obtain R(t). During this thesis, another approach was used to derive the evolution of the shock
front radius, which is explained in Section 3.1. Under the same assumption, that E0 � ∆E, the
volume of the blast wave is given by

V =
Eb
ε0b
≈ 3E0

4hρaΓ4
=

3E0

4hρa

(
Γ−2

i +
2hm

E0

)2

, (48)

from which the width of the shell ∆R can be estimated by using

∆R ≈ V

4πR2
. (49)

2.2 The two-shell collision model

In the previous work by Straub (2019) two hydrodynamic models were created and coupled to
the radiation code of van Eerten (2010); van Eerten et al. (2012). In the first model, only one
blast wave propagates into a cold interstellar medium and the produced radiation is simulated. In
the second model, the propagation of a second shell ejected later by the central engine is added,
which propagates into empty space with constant Lorentz factor as the first shell sweeps up all
the circumburst medium. As the first blast wave slows down because of the interaction with the
interstellar medium, the second shell collides with the first blast wave.

For r > R with R the radius of the blast wave, the hydrodynamic properties of the external
medium are given by Equations (29) to (33). The first blast wave (in the region R−∆R < r < R)

13
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decelerating into the external medium is characterized by the fluid properties of Equations (34) to
(38). Behind the first blast wave in empty space, all fluid parameters become zero. The second shell
is described by its energy E2, width ∆R2, mass M2 and Lorentz factor Γ2 and is cold (E2 = Γ2M2).
As the second shell propagates into empty space, there are no interactions and thus, E2, ∆R2, M2

and Γ2 are constant parameters. The fluid Lorentz factor is equal to Γ2. The equation of state is
given by Equation (18) as p = (a− 1)(e− ρ) with a = 5/3 for a cold fluid. The first component of
the rest mass density current (equation 53) corresponds to the mass density µ = ρ2Γ2 and equals
M2/V2. Similarly, the energy density can be calculated from the zeroth component of the energy
momentum tensor (Equation (13)) and by using ε2 = E2/V2, which yields

ε2 = (e2 + p2)Γ2
2 − p2, (50)

where p2 can be related to the density ρ2 by the equation of state. Additionally, the density ρ2

can be calculated by

ρ2 =
M2

Γ2V2
. (51)

All fluid parameters of the second shell are thus determined.

The fluid parameters of the colliding shells in the region R−∆R−∆R2 < r < R are given by solving
the one dimensional Riemann Problem. The rebrightening in the light-curve can be explained by
the heat energy Eheat which is produced during the collision time and which is converted into
radiation. During the collision, the evolution of the first shell and any boundary effects originating
from the finite width of the shells are neglected. After the forward shock crosses the first shell,
the following evolution is described by one combined shell which has mass, energy and momentum
equal to the respective sum of the two individual shells. The radiative losses during the deceleration
of the first shell, in which a part of the energy is converted into radiation, is neglected.

A similar but more complex, fully numerical model simulating the late collision of two blast waves
in late afterglows was created by Vlasis et al. (2011). The comparison between the model created
by Straub (2019) and Vlasis et al. (2011) is further explored in Section 4.2.
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3 Modification of the theory

In order to apply the theoretical model developed by Straub (2019) to observed data, some theo-
retical modifications had to be implemented, which are presented in the following sections. While
in Straub (2019), the evolution of the blast waves was calculated numerically, during this thesis
the analytical Blandford & McKee solution is used (Blandford & McKee, 1976). Furthermore, it
is described how the heat energy can be calculated explicitly.

3.1 Evolution of relativistic blast waves

When examining the evolution of a blast wave, two cases for the circumburst medium have to
be considered separately. In the first case, the blast wave propagates into an interstellar medium
(ISM) with constant density (k = 0) and in the second case, the blast wave propagates into a wind
medium (k = 2) (Panaitescu & Kumar, 2000). If the GRB was produced during the merging of
two compact objects, it is expected that the circumburst medium is homogeneous. If the origin of
the GRB is the collapse of a massive star instead, the circumburst medium is characterized by the
wind ejected by the prior star. The density of this wind profile medium decreases with increasing
distance R from the center as ρext ∝ R−2. The two cases for the density profile of the external
medium can be described by Equation 7.

Immediately after the ejection of the extremely hot fireball, the shell’s Lorentz factor Γ increases
linearly with the radius R, as Γ ∝ R (Meszaros & Rees, 1993). When the internal energy of the
fireball is completely converted into kinetic energy, the acceleration phase is completed and the
highest Lorentz factor Γi is reached. Afterwards, the so called coasting phase begins, in which the
shell is moving with approximately constant Lorentz factor Γi. As the radius of the shell increases,
the shell sweeps up more and more matter of the circumburst medium and an external shock is
created. When the blast wave sweeps up enough matter of the circumburst medium, the blast
wave starts to substantially decelerate. The mass m of the material which is swept up from the
external medium by the blast wave, in the distance R from the central engine, is calculated by

m(R) = 4π

∫ R

0

r2ρext(r)dr = 4πK

∫ R

0

r2−kdr =
4πK

3− k
R3−k. (52)

At the so called deceleration radius Rdec, the initial energy of the shell E1 equals the swept up
relativistic energy of the external medium m, i.e

m (Rdec) =
E1

c2Γ2
0

. (53)

By combining Equation (52) and (53), it follows for the deceleration radius Rdec that

Rdec =

(
3− k
4πK

E1

c2Γ2
i

)1/(3−k)

, (54)

as in Panaitescu & Kumar (2000).

Due to relativistic effects of an object moving in the direction of the observer, the radius R and
the observer time t are connected by the following equation,

t =
R

ctΓ2
i c

(55)

where ct is a numerical value which can vary depending on the details of the hydrodynamic evolution
of the blast wave (Sari, 1997). For the coasting phase, when Γ is constant, ct equals 2. To describe a
decelerating source, ct has to be set to a higher value between 4 and 7 depending on the assumption
of a radiative or adiabatic blast-wave.
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Figure 9: Early optical afterglow light-curves of a sample of GRBs with a dominating forward
shock component. The forward shock peak is clearly visible. Figure taken from Gao et al. (2015).

A photon emitted at the deceleration time tdec is observed at

tdec =
tpeak1

1 + z
, (56)

where z is the obtained redshift of the GRB. The time tpeak1
equals the time of the first peak

which can be observed in many GRB afterglow light-curves (see Fig. 9). Finally, by connecting
the Equations (54), (55) with ct = 2 and (56), one obtains for the time of the forward shock peak

tpeak1 =
1 + z

2cΓ2
i

(
3− k

4πmpnRkref

E

c2Γ2
i

)1/(3−k)

(57)

and for the Lorentz factor

Γi(tpeak1
) =

((
1 + z

2ctpeak1

)(3−k)
3− k

4πmpnRkref

E

c2

)1/(8−k)

. (58)

For a homogeneous circumburst medium (k = 0), it follows

Γi(tpeak1
) =

(
3E(1 + z)3

32πnmpc5t3peak1

)1/8

, (59)

as in Molinari et al. (2007).

After the deceleration time, most of the fireball’s energy is transformed into the the accelerated
interstellar medium kinetic energy and the shock evolution can be described by the self-similar
solution of Blandford & McKee (1976), which is summarized in the following. For a thin and
homogeneous spherical shell, the conserved internal energy E of the blast wave, which is released
in a full sphere, is given by

E =
4π

3− k
KR3−kΓ2c2, (60)

with K = mpnR
k
ref the normalization constant of the wind profile medium (Piran, 2004). The

Sedov length l is given by

l =

(
(3− k)E

Kc2

) 1
3−k

, (61)
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Figure 10: Evolution of the Lorentz factor Γ of a blast wave after the acceleration phase in log-log
scale. During the coasting phase, Γ is approximately constant until the deceleration time tdec.
After the coasting phase, the shell is decelerating and the evolution of Γ can be described with the
Blandford & McKee (BM) solution.

which corresponds to the radius, at which the blast wave becomes approximately Newtonian (Γ ≈
1). Thus, the Blandford-McKee (BM) solution is only valid in the region Rdec < R � l. Similar
to Piran (2004), one obtains the relations for the evolution of the Lorentz factor and the radius of
the blast wave as a function of time by connecting the Equations (60), (61) and (55),

R(t) =

(
ctcl

3−k

4π

)1/(4−k)

t1/(4−k), (62)

Γ(t) =

(
l3−k

4πc3−kc3−kt

)1/2(4−k)

t−(3−k)/(2(4−k)). (63)

When the blast wave propagates into the ISM with k = 0, the equations describing the evolution
of the blast wave can be simplified to

R(t) = 3.2× 1016E
1/4
52 n

−1/4
1 t1/4s cm, (64)

Γ(t) = 260E
1/8
52 n

−1/8
1 t−3/8

s , (65)

where E52 is the energy in units of 1052 erg, n1 is the ISM density in cm−3 and ts is the time in
seconds (Sari, 1997). The evolution of the Lorentz factor Γ during the coasting and deceleration
phase is shown in Figure 10.

When the shock slows to the non-relativistic regime (Γ � 1), its motion can be described by
the Sedov-Taylor solution. This regime is not expected to be reached in the time scale of the
light-curves which are obtained during this study and thus is not discussed here.
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3.2 Duration of the collision

The total duration ∆tc of the collision corresponds to the time the forward shock needs to cross
the first decelerating shell and is given by

∆tc =
∆R1(tc)

βfs −
√

1− Γ1(tc)−2
, (66)

where βfs is the velocity of the forward shock created when the second shell collides with the first
shell. ∆R1(tc) is the width and Γ1(tc) the Lorentz factor of the shock front of the first shell at the
time of collision.

The width of the first shell ∆R1 at the time of collision can be obtained by

∆R1(tc) =
V

4πRc
2 (67)

for a spherical symmetric shell and the radius of the collision Rc. The volume V of the shell can
be calculated by using the global conservation of energy, momentum and mass (Equation (48)).

In the frame of the first shell, the Lorentz factor of the forward shock which is created when the
second shell collides with the first shell, is approximately given by

Γ′fs =
√

2Γrel, (68)

where Γrel = (1− β′2rel)
−1/2 is the Lorentz factor with which the second shell moves relative to the

first shell (Blandford & McKee, 1976). The relative velocity β′rel can be computed by performing
a Lorentz transformation from the frame of the central engine to the frame of the first shell, e.g.

β′rel =
β2 − β1

1− β2β1
, (69)

where β1 = (1−Γ1(tc)−2)1/2 and β2 = (1− (Γ2)−2)1/2 are the velocities of the first and the second
shell in the central engine frame. Finally, to obtain the velocity of the forward shock in the central
engine frame, a Lorentz transformation back to the laboratory frame of β′fs = (1 − (Γ′fs)

−2)1/2 is
needed, which yields

βfs =
β′fs + β1

1 + β′fsβ1
. (70)

3.3 Produced heat energy during the collision

An estimate for the heat energy Eheat during the collision can be obtained by analyzing energy
and momentum conservation during the collision. The energy conservation yields

m1(tc)Γ1(tc) +m2Γ2 =

(
m1(tc + ∆tc) +m2 +

Eheat

c2

)
Γm, (71)

where m1(tc) and m2 are the masses and Γ1(tc) and Γ2 the Lorentz factors of the two shells at
the time of the beginning of the collision. Γm is the Lorentz factor of the merged shell after the
collision at tc + ∆tc. As a result of the second shell propagating into empty space, the mass
m2 = E2/(c

2Γ2
2), the Lorentz factor Γ2 and thus, also the velocity β2 = (1−Γ−2

2 )1/2 of the second
shell are constant and correspond to the initial values. From momentum conservation, it follows
that

m1(tc)Γ1(tc)β1(tc) +m2Γ2β2 =

(
m1(tc + ∆tc) +m2 +

Eheat

c2

)
Γmβm. (72)

Equations (71) and (72) can be combined to identify the values of the two unknown parameters,
the energy Eheat which is converted into heat during the collision, and the Lorentz factor of the
merged shell Γm. The equations cannot be solved analytically and thus, numerical methods are
needed.

18



Late Two-Shell Collisions in GRB Afterglows Elisa Clara Schösser

4 Modeling process of GRB lightcurves

Before the beginning of the simulations, a set of input parameters has to be fixed. A list of
all input parameters of the model of Straub (2019) can be found in Appendix A with a short
explanation. In the following, the multi-dimensional parameter space of the model is analyzed. To
fit the simulated light-curves to the measured GRB light-curves, it is necessary to investigate the
parameter space and the impact of individually changing each parameter on the simulations. An
extensive parameter study of the model is presented in Chapter 4.1. To obtain physical meaningful
parameters and to reduce the large parameter space, as many input parameters as possible are
connected to observable parameters of a GRB. The used approach is explained in Chapter 4.2.

4.1 Parameter study of the model

For the parameter study, the two cases for the external medium, the ISM with k = 0 and the
wind profile medium with k = 2, were considered separately. Additional to the density n, there is
another input parameter for the external medium with a wind profile, the radius Rref , which adds
one more degree of freedom and hence complicates the simulations. The parameters describing the
physical setting at the shock front are the electron spectral index p, the fraction of energy which is
converted into the electrons εe and the portion which is converted into the creation of a magnetic
field εB. The first blast wave is characterized by its kinetic energy E1 and its initial Lorentz factor
Γi and radius Ri. As the first shell sweeps up almost all circumburst matter, the second shell is
moving into empty space with constant Lorentz factor Γ2 until it collides with the first shell. In
addition to the Lorentz factor, the second shell is characterized by its width ∆R2 and its energy
E2. The time of collision is defined by the Lorentz factor of the first shell at the time of collision
Γ1(tc).

Parameter Fixed value

p 2.5

εB 0.001

εe 0.01

n 1 cm−3

E1 5× 1053 erg

Γi 100

Ri 2× 1017 cm

Γ1(tc) 30

E2 3× 1054 erg

Γ2 35

∆R2 1× 1014 cm

(a) k = 0 (ISM)

Parameter Fixed value

p 2.5

εB 0.005

εe 0.05

n 0.1 cm−3

Rref 1× 1017 cm

E1 5× 1053 erg

Γi 200

Ri 2× 1017 cm

Γ1(tc) 30

E2 1× 1053 erg

Γ2 70

∆R2 1× 1012 cm

(b) k = 2 (wind profile)

Table 1: Chosen values which were fixed for the parameter study for the ISM case with k = 0 (a)
and the wind profile medium with k = 2 (b), for which one more parameter Rref has to be set to
normalize the external medium density.

In order to better understand the influence of each input parameter on the simulated light-curves,
each parameter was changed while the others were fixed to values in typical dimensions. In Table
1 the chosen parameters which were fixed before the beginning of the parameter study are listed.
The dependency of the simulated light-curves on all input parameters are shown in Figures 11 and
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12 for the ISM case with constant density and k = 0 and for the external medium with wind profile
and k = 2 in Figures 13 and 14. It is important to stress that in the model of Straub (2019), the
evolution of the blast wave is calculated only for the BM phase, so after the deceleration time, when
self-similarity is meaningful. Thus, the early simulated light-curve is not meaningful because the
computation of the hydrodynamics is only valid after the forward shock peak. Therefore, confident
interpretations about the simulated light-curves can be only made after the maximum of flux of
the first peak.

As expected, the higher the fraction of the energy which is converted into the creation of a magnetic
field (εB) and into the electrons at the shock front (εe), the more synchrotron radiation is produced
and thus, the higher is the observed flux in the simulated light-curve. A change of εB or εe is
ambiguous and thus, these parameters cannot be distinguished or fit individually. The density n
scales the amount of radiation which is produced in a similar way to εB and εe. The collision of
the first blast wave with the circumburst medium is stronger the more particles there are which
can be accelerated at the external shock front. In addition, the larger the density is, the faster
the first shell decelerates to lower Lorentz factors and thus, the earlier the Lorentz factor Γ1(tc) is
reached. Thus, the higher the density of the external medium, the earlier is the beginning of the
collision of both shells. For the case k = 2, a change of the density n and the normalizing radius
Rref cannot be distinguished and can therefore only be fit together. The electron index p is the
only parameter which changes the steepness of the decline of the light-curve far after the forward
shock peak in the BM deceleration phase which is consistent with the model of Granot & Sari
(2002). In the model of Granot & Sari (2002), the flux is described by a power law with an index
which is only dependent on p.
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Figure 11: The dependencies of the simulated light-curve on the the microphysical parameters εB
εe and p and the density n of the ISM with k = 0.
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Figure 12: The dependencies of the simulated light-curve on the parameters of the initial Lorentz
factor Γi and radius Ri and the kinetic energy E1 of the first shell. The time of collision is
determined by the Lorentz factor of the first shell at the time of collision Γ1(tc). In addition, the
impact of the energy E2, the Lorentz factor Γ2 and the width ∆R2 of the second shell on the
produced radiation during the collision is shown.
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Figure 13: The dependencies of the simulated light-curve on the the microphysical parameters εB
and εe. The density n of the external medium with k = 2 is normalized by the additional parameter
Rref . In addition, the impact of the electron index p, the kinetic energy of the first shell E1, the
initial Lorentz factor Γi and the radius Ri of the first shell on the simulated light-curves is shown.
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Figure 14: The dependencies of the simulated light-curve on the Lorentz factor of the first shell at
the time of collision Γ1(tc), the energy E2, the Lorentz factor Γ2 and the width ∆R2 of the second
shell for the case of two colliding shells in an external medium with k = 2.

Furthermore, a higher kinetic energy E1 of the first blast wave allows for more energy to be
converted into radiation and the simulated flux of the forward shock peak is higher. With a higher
kinetic energy, the first shell decelerates slower to Γ1(tc) and thus the beginning of the collision is
later if the energy of the first blast wave is higher (see Equation (65)). Contrary to the forward
shock peak, the jump component becomes smaller in proportion to the first peak with increasing E1.
The smaller the energy of the first shell E1, the smaller is the Lorentz factor Γ1(tc), and therefore
more internal energy is freed during the collision. If at a fixed radius Ri, the corresponding initial
Lorentz factor Γi is set to a higher value, the BM region is reached in an ISM (k = 0) at an earlier
time with the decay of the light-curve beginning earlier, and hence more radiation is produced
during the external shock. If the same Lorentz factor Γi is set to be reached at a larger radius Ri,
the collision with the ISM becomes softer. Therefore, less radiation is produced and the BM region
is reached later. In contrast to the external medium with a wind profile, Ri is a very sensitive
parameter in the ISM case and already small variations of Ri can change the shape of the early
light-curve. In the wind case scenario, the blast wave is surrounded by a large number of particles
at early times when the radius is small. In order for the blast wave to penetrate the dense matter,
the initial Lorentz factor has to be set to a much higher value than in the ISM case to produce the
same amount of radiation. The Lorentz factor of the second shell Γ2 has to be increased too in
comparison to the ISM case, so that the second shell is able to collide with the first shell. The time
of the collision is determined by the Lorentz factor Γ1(tc), as expected. The earlier the collision is,
the more radiation is produced because the collision is stronger. In the ISM case, the magnitude
of the jump component is only dependent on the energy of the second shell. The higher the energy
of the second shell E2 is, the stronger the collision is and hence, the more radiation is produced
during the collision. The Lorentz factor Γ2 and the width ∆R2 of the second shell have a small
impact on the size of the jump. By increasing the Lorentz factor Γ2 or decreasing the width ∆R2,
a second peak becomes visible which originates from the reverse shock created during the collision.
A second hump in the jump component is not visible in the wind case scenario because the peaks
are expected to overlap. Thus, in the wind case scenario, an increase of Γ2 or a smaller width
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∆R2 increases the magnitude of the jump. As expected, the parameters describing the second
shell and the collision (Γ2, E2, ∆R2, Γ1(tc)) are not changing the shape of the forward shock peak
because the second shell is moving into empty space and is thus not creating any radiation before
the collision.

4.2 Comparison to numerical model

A similar, but fully numerical and more complex model for the late collision of two shells in the
GRB afterglow phase was created in previous work by Vlasis et al. (2011). The hydrodynamic
equations and the equations describing the dynamics of the blast waves and shocks were solved by
using the Adaptive Mesh Refinement version of the Versatile Advection Code (AMRVAC) (Meliani
et al., 2007; Keppens et al., 2003). The hydrodynamic model was coupled to the radiation code
of van Eerten & Wijers (2009), which is also used during this thesis. In the numerical model of
Vlasis et al. (2011), not only the case of an isotropic explosion as in the model of Straub (2019) is
considered but also the more likely jet scenario characterized by its jet opening angle. Additional
to light-curves, snapshots of the hydrodynamic profile of the shells during the collision and emission
images of different parts of the fluid were simulated.

Case Γ2 E2

1 Γi/
√

2 E1

2 2Γi/
√

2 E1

3 Γi/
√

2 2E1

4 2Γi/
√

2 2E1

Table 2: Values for the Lorentz factor Γ2 and the energy E2 of the second shell as a function of
the initial Lorentz factor Γi = 23 and the energy E1 = 1052 erg of the first shell for the four cases
as described in Vlasis et al. (2011).

For the simulated light-curves in Vlasis et al. (2011), a circumburst medium with constant density
n = 1 cm−3 and k = 0 was considered. The initial Lorentz factor was set to Γi = 23 at radius
Ri = 2.04× 1017 cm and the energy of the first shell to E1 = 1052 erg. Four different cases for the
energy and the Lorentz factor of the second blast wave are distinguished, which are summarized
in Table 2. The width of the second shell was chosen to be ∆R2 = 3 × 1013 cm. The electron
spectral index was set to the typical value of 2.5 and the parameters εB and εe to 0.01 and 0.1
respectively. The optical light-curves which were simulated in Vlasis et al. (2011), are shown in
Figure 15. One result of Vlasis et al. (2011) was that the jet opening angle has a high impact on
the resulting light-curve. The smaller the jet opening angle the steeper is the flux rise. The case
of an isotropic explosion without a jet is marked with a red dotted line in Figure 15.

The parameter combination of Vlasis et al. (2011) was tested with the model created by Straub
(2019). The simulated light-curves are shown in Figure 16. The BM phase of the light-curve
begins with the chosen parameter set only after 10 days and thus, the model of Straub (2019) can
only reproduce meaningful light-curves after this time. Therefore, the simulation of a collision at
0.2 days as in Figure 15 is not possible to simulate with the model of Straub (2019). Instead, a
small value for Γ1(tc) = 8 had to be chosen to obtain a graph, in which the collision occurs in the
BM region, where the model can solve the hydrodynamics correctly. Consequently, as the Γ1(tc)
is much smaller than the chosen Γ2, the second reverse shock peak becomes exceptionally large,
which is not an observed phenomenon.
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Figure 15: Simulated optical light-curves of Vlasis et al. (2011) for different jet opening angles.
Case 1 (top left): Γ2 = Γi/

√
2, E2 = E1. Case 2 (top right): Γ2 = 2Γi/

√
2, E2 = E1. Case 3

(bottom left): Γ2 = Γi/
√

2, E2 = 2E1. Case 4 (bottom right): Γ2 = 2Γi/
√

2, E2 = 2E1.
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Figure 16: Simulated optical light-curves with the model of Straub (2019) for the four cases of
Vlasis et al. (2011) as in Figure 15.
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The Lorentz factor of the first shell at the time of collision can be estimated by Equation (76) which
yields Γ1(tc = 0.2 days) ≈ 36 for E2 = 2E1 = 2× 1052 erg. The Lorentz factor Γ2 = 2Γi/

√
2 ≈ 33

is smaller than Γ1(tc) which is not physically meaningful as a collision does not occur. As a
collision still occurs with the chosen parameter set for Vlasis et al. (2011), the dynamics of the
shells are differently described in both models. As the parameter combinations tested in Vlasis
et al. (2011) are arbitrarily chosen without physical motivation, it is not possible to compare the
chosen parameter set with the model used during this thesis.

During the parameter study obtained in Section 4.1, it was shown that the energy of the second
shell E2 strongly influences the peak of the jump component (see Figure 12), which is qualitatively
consistent with the modeled light-curves of Vlasis et al. (2011), i.e. the difference in the amplitude
of the jump component between case 1 and 3, and case 2 and 4 in Figure 15. In contrast to the
model of Vlasis et al. (2011), the amplitude of the jump component is weakly dependent on the
Lorentz factor of the second shell Γ2 in the model of Straub (2019) (see Figure 12).

4.3 Connection of input and observable parameters

At first, the parameters which were measured for the specific GRB, e.g. the redshift z and the
corresponding luminosity distance DL have to be set. The luminosity distance DL can be com-
puted from the redshift z. The redshift of GRBs is primarily determined by finding characteristic
absorption features in spectra of the optical afterglow. From 2043 GRBs, which were observed
between 1997 and 2019, for only 522 could the redshift be determined, which corresponds to a rate
of around 25 % 1.

Additionally, the parameters describing the physical setting at the shock front have to be chosen.
Meaningful values for these parameters can only be obtained from SEDs which are compared to
theoretical models. In the following, the advanced model by Granot & Sari (2002) is used, in
which also the case of an external medium with a wind profile is considered. The different possible
synchrotron spectra can be found in Appendix B. In general the density of the external medium is
given by Equation (7). The evolution of the break frequencies with time gives the best evidence for
the differentiation between an ISM with k = 0 and an external medium with a wind profile. How
much synchrotron radiation is produced in a relativistic shock is dependent on the strength of the
magnetic field, the energy of the accelerated electrons at the shock front and the characteristics of
the circumburst medium. In the used radiation model of van Eerten (2010), it is assumed that the
electrons are accelerated at the shock front to a power-law distribution of Lorentz factor γe (see
Equation (2)) with an index p. A fraction εe of the shock energy is transferred to the electrons (see
Equation (3)) and another fraction εB to the creation of a magnetic field described by Equation
(4). As the fraction of energy going into the electrons and into the magnetic field cannot exceed
the shock energy, εe and εB have to satisfy the condition that εB +εe < 1. The electron index p can
be extracted from the measured spectral slopes in the power law segments (see Fig. 2). A typical
value for the electron index is p = 2.5. Once one of the five theoretical spectra of Granot & Sari
(2002) is chosen which best fits the observed SEDs, constraints on the spectral break frequencies
can be extracted. By using the equations for the break frequencies and the corresponding flux
from Table 2 of Granot & Sari (2002), the constraints can be translated directly into conditions
for the microphysical parameters εB, εe, the density n and the kinetic energy E1 of the first blast
wave.

The first peak originating from the forward shock is only dependent on the properties of the first
blast wave. Thus, the parameters describing the first shell, the microphysical parameters of the
shock front and the external medium can be obtained at first by deactivating the propagation of
the second shell and fitting the simulated light-curves to the data. Thereafter, the evolution of the
second shell can be added and the parameters describing the properties of the second shell and the
collision can be obtained.

The first blast wave is characterized by its kinetic energy E1, its initial Lorentz factor Γi and the
corresponding radius Ri. The strategy to obtain physical meaningful parameters and to reduce the

1Statistics from http://www.mpe.mpg.de/~jcg/grbgen.html
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number of free input parameters to as few as possible, is to connect observable parameters with
input parameters of the model. In some GRB afterglow light-curves, the observations were started
so early that the peak of the forward shock is visible (see Fig. 9). If the forward shock peak is
visible in the light-curve, the initial Lorentz factor Γi can be calculated by using Equation (58) as
a function of the measured time of the forward shock peak tpeak. The corresponding initial radius
Ri can be set to the deceleration radius, which can be calculated by using Equations (55) and (56),

Ri = Rdec = 2cΓ2
i

tpeak

1 + z
. (73)

For GRBs with a redshift z, the isotropic energy release Eiso can be calculated by

Eiso =
4πD2

LS

1 + z
, (74)

assuming an isotropic emission of energy. Here, S is the fluence and DL the luminosity distance.
The fluence S is the integral over the best-fit power-law spectrum of the GRB. From the isotropic
energy release Eiso, it is possible to estimate the kinetic energy of the blast wave E by assuming
an efficiency η for the conversion of the energy E into radiation, e.g.

Eiso = ηE. (75)

Thus, there is a lower limit on the kinetic energy E1. There is no specific value for the efficiency
η but in practice, it is often set to 10% (Kobayashi et al., 1997).

The dimension of the Lorentz factor of the first shell at the time of collision Γ1(tc) can be estimated
by using the Blandford & McKee solution (Equation (65)) and by using Equation (56) for the
redshift correction, which yields

Γ1(tc) =

(
(3− k)E

4πc5−k53−kmpnRkref

)1/2(4−k)(
tc

1 + z

)−(3−k)/(2(4−k))

. (76)

Here, tc is the time of collision in the observer frame, which can be set to the start of the sudden
late flux rise in the light-curve. The numerical value was chosen to be ct = 5.
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5 Results for GRB 100621A

At first, the parameters which were determined by observations for GRB 100621A are set. As the
measured SEDs were in conflict with the wind scenario (k = 2) (Greiner et al., 2013), only the
ISM case (k = 0) is considered in the following. By assuming a typical radiative efficiency of 10%
and the measured value of Eiso = (2.8± 0.3)× 1052 erg, the kinetic energy of the blast wave can
be calculated by Equation (75) yielding E = (2.8± 0.3)× 1053 erg, which corresponds to the dark
blue points in Figure 6. In the following three of the six dark blue grid points of Figure 6 are
chosen to test the model,

a) n = 1 cm−3, εB = 5.62× 10−4, εe = 1.78× 10−2,
b) n = 10 cm−3, εB = 5.62× 10−5, εe = 3.16× 10−2,
c) n = 100 cm−3, εB = 5.62× 10−6, εe = 5.62× 10−2.

The choice of the three cases is arbitrary and serves only as illustration. For other radiative
efficiencies, there are other valid parameter combinations. For each case a) to c), the initial
Lorentz factor Γi can be calculated by equation 58. For GRB 100621A, the peak of the forward
shock is at tpeak1

= (380±30) s (Greiner et al., 2013). The peak time tpeak1
can be only determined

with a high uncertainty because of the underlying flares at that time. The radius Ri can be set to
the corresponding deceleration radius, which can be computed by using Equation (73).
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Figure 17: Error propagation of the calculated input parameters as a function of the relative
uncertainty of the density for n = 10.

To estimate the uncertainties of the parameters which are calculated as a function of the observable
parameters, i.e. Γi, Ri and Γ1(tc), the uncertainties of the literature parameters (Eiso, tpeak1

, tc)
and the density n are needed. As the uncertainty of n is unknown and unable to be uniquely
determined, a conservative estimate of the relative error is taken to be 20% in the following. The
error propagation of a general function f(xi) is calculated as

f =

n∏
i=1

xbii =⇒
(
δf

f

)2

=

n∑
i=1

b2i

(
δxi
xi

)2

. (77)

In Figure 17, the error propagation of Γi (Equation (58), Ri (Equation (73)) and Γ1(tc) (Equation
(76)) are calculated as a function of the relative error of the density n. Even for a large relative
error in density n of 20%, the relative errors of the Lorentz factors Γi and Γ1(tc) are of order 4%
and for Ri of the order 11%.

For the three cases, the Lorentz factor Γi and the radius Ri are constrained to the following values,

a) Γi = 104± 4, Ri = (16.0± 1.8)× 1016 cm,
b) Γi = 78± 3, Ri = (9.0± 1.0)× 1016 cm,
c) Γi = 59± 2, Ri = (5.1± 0.6)× 1016 cm.
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By fixing the redshift to the measured value of z = 0.542 for GRB 100621A (Milvang-Jensen
et al., 2010) and the luminosity distance to the corresponding value DL = 9.74 × 1027 cm, all
parameters are set which are necessary to describe the radiation which is produced by one blast
wave decelerating into an ISM. The simulated light-curves for the three cases (a) to (c) are shown
in Figure 18. The flux of the host galaxy of 0.08 mJy was added as a factor to all following
simulations. As expected, all three light-curves are similar, which shows that the implemented
radiation model of van Eerten & Wijers (2009) is in agreement with the model of Granot & Sari
(2002). The modeled flux function of the canonical afterglow for the J band given by Equation G
of Table 2 in Granot & Sari (2002) is shown in the right panel of Figure 18 as the pink dashed line.
The model of Granot & Sari (2002) fits the observed data and also the corresponding simulated
light-curves of Straub (2019) well.
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Figure 18: Simulated light-curves for E1 = 2.8 × 1053 erg and the three illustrative cases (a), (b)
and (c), which all yield a similar light-curve, as expected (right panel is a zoom of the left). Cases
a, b and c belong to the following parameter combinations
Case a: n = 1 cm−3, εB = 5.62× 10−4, εe = 1.78× 10−2,Γi = 104, Ri = 16.01× 1016 cm,
Case b: n = 10 cm−3, εB = 5.62× 10−5, εe = 3.16× 10−2,Γi = 78, Ri = 9.01× 1016 cm,
Case c: n = 100 cm−3, εB = 5.62× 10−6, εe = 5.62× 10−2,Γi = 59, Ri = 5.06× 1016 cm.

The time of collision was measured for GRB 100621A at around tc = 4.0± 0.2 ks from which the
Lorentz factor of the first shell at the time of collision can be calculated by Equation (76) for the
cases (a) to (c),

a) Γ1(tc) = 30.5± 1.0,
b) Γ1(tc) = 22.9± 0.8,
c) Γ1(tc) = 17.2± 0.6.

By using the results of the parameter study discussed in Chapter 4, it is possible to estimate the
dimension of the other free parameters. As a second peak in the jump component was not observed
in the GRB 100621A light-curve, the parameters have to be chosen such that the reverse shock
peak is suppressed in the simulated light-curves. Therefore, the width of the second shell is set to
a large value ∆R2 = 1014 cm and the Lorentz factor of the second shell Γ2 to a small value but
under the condition that the Lorentz factor Γ2 is larger than Γc because otherwise the shells do not
collide. The amplitude of the jump component is then only dependent on the energy of the second
shell, which was scaled up until the jump component was in the same dimension as the measured
flux increase. The results for the first attempt for the optimal choice of parameters for the cases a)
to c) are shown in Figure 19. The simulated light-curves fit the observations already surprisingly
well. Only at late times after the collision, the light-curve declines faster than observed but with
the same slope. After the collision, the hydrodynamics are described by a combined shell with
energy E1 +E2. As a simplification, the energy which was radiated away was not subtracted from
the energy of the combined shell E1 + E2 and is likely the reason for the higher simulated flux.
The energy of the second shell E2 is in all three cases approximately 1.6× 1054 erg.
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Figure 19: Simulated light-curves for the initial choice of the input parameters for the simulations
of GRB 100621A (right panel is a zoom of the left). Parameters for n, εB, εe,Γi, Ri are chosen
as described in the text for the three cases a) to c) and as shown in Figure 18. The following
parameters for the collision and the second shell were set
Case a: Γ1(tc) = 30.5,Γ2 = 34, E2 = 1.6× 1054 erg,∆R2 = 1014 cm,
Case b: Γ1(tc) = 22.9,Γ2 = 26, E2 = 1.6× 1054 erg,∆R2 = 1014 cm,
Case c: Γ1(tc) = 17.2,Γ2 = 20, E2 = 1.6× 1054 erg,∆R2 = 1014 cm.

The simulated light-curves with the initial estimate of the parameter values have the following χ2

values:

a) χ2 = 14,
b) χ2 = 26,
c) χ2 = 17.

For the calculation of the χ2 value, only the data after the forward shock peak and not affected
by flares were included.

In the following, another parameter study was performed to determine how much a variation of
each parameter changes the light-curve with the aim to improve the fit. The parameter studies
are shown in Appendix C for each case. The values for the different parameters for each case were
chosen as shown in Figure 18 and 19. During the parameter study, only one of the parameters was
varied and the light-curves were simulated.
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Figure 20: Best fit plot obtained when varying all parameters around the initially chosen values in
case a) as described in the text (right panel is a zoom of the left). The parameters of the best fit
are E1 = 2.7× 1053 erg, n = 0.9, Γi = 102, Ri = 1.5× 1017 cm, Γ1(tc) = 30, E2 = 1.6× 1054 erg,
Γ2 = 30, ∆R2 = 1.0× 1014 cm. The fit gives a χ2 value of 10.
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By choosing a grid of parameter values around the initial estimated values, the best fit for case a)
was searched. The best fit was obtained by the simulation with the smallest χ2 value. The final
best fit is shown in Figure 20. The χ2 value for the best fit is 10 with the following parameters:

• E1 = 2.7× 1053 erg,
• n = 0.9,
• Γi = 102
• Ri = 1.5× 1017 cm,
• Γ1(tc) = 30,
• E2 = 1.6× 1054 erg,
• Γ2 = 30,
• ∆R2 = 1.0× 1014 cm.

The simulated light-curve fits the data, particularly in the jump component, very accurately. The
change of the χ2 value is not significantly large, which emphasizes the accuracy of the initially
estimated parameter values, which could be obtained easily by evaluating the parameter study in
Section 4.1.
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6 Conclusion and Outlook

The simple hydrodynamics model created by Straub (2019) coupled to the radiation code of van
Eerten (2010) reproduces the data of GRB 100621A surprisingly well. With a good choice of
parameters, it is possible to model the decrease of the GRB light-curve after the forward shock
peak and the jump component. The observation of jump components in GRB afterglows allow
one to learn more about the origin of GRBs and their central engine. The jump component is an
additional tool which allows the determination of characteristic parameters of the relativistic shells
such as the Lorentz factor and energy. Whilst it is not possible to determine the Lorentz factor of
the first shell and the Lorentz factor of the second shell directly from the simulations, the model
still allows one to constrain the parameter space and to make statements about their relation. It
was found that the Lorentz factor of the second shell Γ2 has to be small and in the dimension
of the Lorentz factor of the first shell at the time of collision Γ1(tc). The result is surprising as
rebrightenings measured in the prompt emission of GRBs are often considered to be originating
from shells with a high Lorentz factor Γ ∼ 102 − 103 (Ruffini et al., 2018). It was found that the
amplitude of the jump component is mostly dependent on the energy of the second blast wave.
From the extensive first parameter study obtained in Section 4.1, it was possible to produce an
accurate initial guess for all parameters. After a second parameter study, it was possible to reduce
the χ2 value of the initial estimate from 14 to χ2 = 10 for case a).

During this thesis, the focus was to find physically motivated parameters as input for the hydrody-
namic simulations. The peak of the forward shock was used to calculate the initial Lorentz factor
Γi and radius Ri. For GRBs with an observed rebrightening for which the observations began
after the expected forward shock peak (e.g. GRB 081029 (Nardini et al., 2011)), the method of
Molinari et al. (2007) for calculating the initial Lorentz factor is not applicable and there exist
two additional free parameters which complicate the simulations. Additionally, constraints on the
parameters n, εB and εe can only be obtained when it is possible to identify the type of synchrotron
spectrum of Granot & Sari (2002), the break frequencies and their evolution, for which extensive
broadband observations at different times are required.

To make confident statements about the generality of the parameter relations, it is necessary to
test the model also for other GRBs, e.g. GRB 081029 (Nardini et al., 2011) or GRB 100814A
(Nardini et al., 2014). Furthermore, there may exist other observable parameters which might be
used in future work to connect measurable parameters with model parameters, for example the
duration of the collision (equation 66) and the produced heat energy. In order to obtain a better
fit of the simulated light-curve to the measured data at early times before the BM region and at
later times after the collision of both shells the model would need to be extended. Considering the
simplicity of the model relative to the complexity of the phenomenon, most physical features are
captured remarkably well.
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Appendices

A Free parameters of the model

A.1 Observer position settings

Parameter Parameter
name in model

Meaning Allowed
Values

DL r obs Observer luminosity distance > 0

z z Observer redshift > 0

A.2 Parameters describing the physics setting

Parameter Parameter
name in model

Meaning Allowed
Values

εB epsilon B Magnetic energy density behind the shock 0 < εB < 1

εe epsilon E Fraction of the energy going into the elec-
trons

0 < εe < 1

p p synch Electron spectral index > 2

A.3 Parameters describing the external medium

Parameter Parameter
name in model

Meaning Allowed
Values

k special k Determines fluid profile of external
medium (r−k)

k = 0 (ISM)
k = 2 (wind
profile)

n special n ref Particle proton density
[

1
cm3

]
;

constant for k = 0,
normalized with radius Rref for k = 2

> 0

Rref special R ref Used for normalization of the density of the
external medium if k = 2; Rref has no im-
pact on the light curve if k = 0 [cm]

> 0

A.4 Parameters describing the shock front/ first shell

Parameter Parameter
name in model

Meaning Allowed
Values

Ri R i Initial shock front radius (corresponds to
G i) [cm]

> 0

Γi G i Initial Lorentz factor of the shock front for
radiative simulations

> 0

E1 special E iso Total energy of the first blast wave [erg] > 0
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A.5 Parameters describing the collision with the second shell

Parameter Parameter
name in model

Meaning Allowed
Values

E2 E2 Energy of the second shell [erg] > 0

Γ2 G 2 Lorentz factor of the second shell > 0

Γ1(tc) G c Lorentz factor of the first shell at the time
of the collision

> 1

∆R2 width2 Width of the second shell [cm] > 0
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B Spectral model of Granot & Sari (2002)

Figure 21: All possible broadband spectra which can be created by a relativistic blast wave accel-
erating electrons to a power law distribution with index p. The power-law segments are separated
by specific break frequencies. The temporal scaling and evolution of the different break frequencies
and segments are indicated by the relations above the arrow for the ISM (k=0) and below for the
wind profile medium (k=2). Spectrum 1 and 2 belong to the slow cooling case (νm < νc), spectrum
4 and 5 to the fast cooling case (νc < νm). Figure taken from Granot & Sari (2002).
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C Parameter study for cases (a) to (c) for GRB 100621A
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Figure 22: Parameter study for case a) for GRB 100621A. Only one parameter was changed in
each plot while the other parameters were fixed. The values to which the parameters n, εB, εe, Γi

and Ri were fixed, can be found in the text.
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Figure 23: Parameter study for case b) for GRB 100621A. Only one parameter was changed in
each plot while the other parameters were fixed. The values to which the parameters n, εB, εe, Γi

and Ri were fixed, can be found in the text.
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Figure 24: Parameter study for case c) for GRB 100621A. Only one parameter was changed in
each plot while the other parameters were fixed. The values to which the parameters n, εB, εe, Γi

and Ri were fixed, can be found in the text.
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